201
|
Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol 2018; 78:283-297. [PMID: 28884504 PMCID: PMC5816708 DOI: 10.1002/dneu.22534] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022]
Abstract
Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
- Graduate School of Biomedical SciencesUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Ferdi Ridvan Kiral
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| | - Peter Robin Hiesinger
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| |
Collapse
|
202
|
Balestrino R, Schapira AHV. Glucocerebrosidase and Parkinson Disease: Molecular, Clinical, and Therapeutic Implications. Neuroscientist 2018; 24:540-559. [PMID: 29400127 DOI: 10.1177/1073858417748875] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson disease (PD) is a complex neurodegenerative disease characterised by multiple motor and non-motor symptoms. In the last 20 years, more than 20 genes have been identified as causes of parkinsonism. Following the observation of higher risk of PD in patients affected by Gaucher disease, a lysosomal disorder caused by mutations in the glucocerebrosidase (GBA) gene, it was discovered that mutations in this gene constitute the single largest risk factor for development of idiopathic PD. Patients with PD and GBA mutations are clinically indistinguishable from patients with idiopathic PD, although some characteristics emerge depending on the specific mutation, such as slightly earlier onset. The molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are multiple and not yet fully elucidated, they include alpha-synuclein aggregation, lysosomal-autophagy dysfunction and endoplasmic reticulum stress. Moreover, dysfunction of glucocerebrosidase has also been demonstrated in non-GBA PD, suggesting its interaction with other pathogenic mechanisms. Therefore, GBA enzyme function represents an interesting pharmacological target for PD. Cell and animal models suggest that increasing GBA enzyme activity can reduce alpha-synuclein levels. Clinical trials of ambroxol, a glucocerebrosidase chaperone, are currently ongoing in PD and PD dementia, as is a trial of substrate reduction therapy. The aim of this review is to summarise the main features of GBA-PD and discuss the implications of glucocerebrosidase modulation on PD pathogenesis.
Collapse
Affiliation(s)
| | - Anthony H V Schapira
- 2 Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| |
Collapse
|
203
|
Suzuki M, Sango K, Wada K, Nagai Y. Pathological role of lipid interaction with α-synuclein in Parkinson's disease. Neurochem Int 2018; 119:97-106. [PMID: 29305919 DOI: 10.1016/j.neuint.2017.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In sporadic PD and DLB, normally harmless αSyn proteins without any mutations might gain toxic functions by unknown mechanisms. Thus, it is important to elucidate the factors promoting the toxic conversion of αSyn, towards understanding the pathogenesis of and developing disease-modifying therapies for PD and DLB. Accumulating biophysical and biochemical studies have demonstrated that αSyn interacts with lipid membrane, and the interaction influences αSyn oligomerization and aggregation. Furthermore, genetic and clinicopathological studies have revealed mutations in the glucocerebrosidase 1 (GBA1) gene, which encodes a degrading enzyme for the glycolipid glucosylceramide (GlcCer), as strong risk factors for PD and DLB, and we recently demonstrated that GlcCer promotes toxic conversion of αSyn. Moreover, pathological studies have shown the existence of αSyn pathology in lysosomal storage disorders (LSDs) patient' brain, in which glycosphingolipids (GSLs) is found to be accumulated. In this review, we focus on the lipids as a key factor for inducing wild-type (WT) αSyn toxic conversion, we summarize the knowledge about the interaction between αSyn and lipid membrane, and propose our hypothesis that aberrantly accumulated GSLs might contribute to the toxic conversion of αSyn. Identifying the trigger for toxic conversion of αSyn would open a new therapeutic road to attenuate or prevent crucial events leading to the formation of toxic αSyn.
Collapse
Affiliation(s)
- Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan; Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| |
Collapse
|
204
|
Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:161-181. [PMID: 29614701 PMCID: PMC6004921 DOI: 10.3233/jpd-171296] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Daniel W Curry
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bernardo Stutz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zane B Andrews
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
205
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
206
|
He S, Li Q, Jiang X, Lu X, Feng F, Qu W, Chen Y, Sun H. Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. J Med Chem 2017; 61:4656-4687. [PMID: 29211480 DOI: 10.1021/acs.jmedchem.7b01019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosome-dependent mechanism of intracellular degradation for maintaining cellular homeostasis. Dysregulation of autophagy has been verified to be closely linked to a number of human diseases. Consequently, targeting autophagy has been highlighted as a novel therapeutic strategy for clinical utility. Mounting efforts have been done in recent years to elucidate the mechanisms of autophagy regulation and to identify potential modulators of autophagy. However, most of the compounds target complex and multifaceted pathway and proteins, which may limit the evaluation of therapeutic value and in depth studies as chemical tools. Therefore, the development of specific and active autophagy modulators becomes most desirable. Here, we briefly review the regulation of autophagy and then summarize the recent development of small molecules targeting the core autophagic machinery. Finally, we put forward our viewpoints on the current problems, with the aim to provide reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective autophagy modulators.
Collapse
Affiliation(s)
- Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi Li
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xueyang Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xin Lu
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Yao Chen
- School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , 210023 , China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
207
|
Chan DKY, Xu YH, Chan LKM, Braidy N, Mellick GD. Mini-review on initiatives to interfere with the propagation and clearance of alpha-synuclein in Parkinson's disease. Transl Neurodegener 2017; 6:33. [PMID: 29270291 PMCID: PMC5738184 DOI: 10.1186/s40035-017-0104-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022] Open
Abstract
In this mini-review, we summarize recent findings relating to the prion-like propagation of α-synuclein (α-syn) and the development of novel therapeutic strategies to target synucleinopathy in Parkinson’s disease (PD). We link the Braak’s staging hypothesis of PD with the recent evidence from in-vivo and in-vitro studies for the prion-like cell-to-cell propagation of α-syn (via exocytosis and endocytosis). The classical accumulation of aggregated α-syn in PD may result from an increased production or a failure in the mechanisms of clearance of α-syn. We discuss novel agents, currently in clinical trial for PD including the ones that impact the aggregation of α-syn and others that interfere with α-syn endocytosis as a means to target the progression of the disease.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Ying Hua Xu
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Luke Kar Man Chan
- Faculty of Medical Science, Griffith University, Nathan, QLD Australia
| | - Nady Braidy
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW 2200 Australia.,Ingham Institute, Liverpool, NSW 2170 Australia.,University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD Australia
| |
Collapse
|
208
|
Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Res Rev 2017; 40:149-167. [PMID: 28986235 DOI: 10.1016/j.arr.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein.
Collapse
|
209
|
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298:225-235. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
Starting two decades ago with the discoveries of genetic links between alpha-synuclein and Parkinson's disease risk and the identification of aggregated alpha-synuclein as the main protein constituent of Lewy pathology, alpha-synuclein has emerged as the major therapeutic target in Parkinson's disease and related synucleinopathies. Following the suggestion that alpha-synuclein pathology gradually spreads through the nervous system following a stereotypic pattern and the discovery that aggregated forms of alpha-synuclein can propagate pathology from one cell to another, and thereby probably aggravate existing deficits as well as generate additional symptoms, the idea that alpha-synuclein is a viable therapeutic target gained further support. In this review we describe current challenges and possibilities with alpha-synuclein as a therapeutic target. We briefly highlight gaps in the knowledge of the role of alpha-synuclein in disease, and propose that a deeper understanding of the pathobiology of alpha-synuclein can lead to improved therapeutic strategies. We describe several treatment approaches that are currently being tested in advanced animal experiments or already are in clinical trials. We have divided them into approaches that reduce alpha-synuclein production; inhibit alpha-synuclein aggregation inside cells; promote its degradation either inside or outside cells; and reduce its uptake by neighbouring cells following release from already affected neurons. Finally, we briefly discuss challenges related to the clinical testing of alpha-synuclein therapies, for example difficulties in monitoring target engagement and the need for relatively large trials of long duration. We conclude that alpha-synuclein remains one of the most compelling therapeutic targets for Parkinson's disease, and related synucleinopathies, and that the multitude of approaches being tested provides hope for the future.
Collapse
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Kuldip D Dave
- The Michael J Fox Foundation, New York, NY 10017, USA
| | - Jeffrey H Kordower
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
210
|
Rousseaux MWC, Shulman JM, Jankovic J. Progress toward an integrated understanding of Parkinson's disease. F1000Res 2017; 6:1121. [PMID: 28751973 PMCID: PMC5510019 DOI: 10.12688/f1000research.11820.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.
Collapse
Affiliation(s)
- Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA.,Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA
| |
Collapse
|