201
|
Afifi L, Jarrett Rushmore R, Valero-Cabré A. Benefit of multiple sessions of perilesional repetitive transcranial magnetic stimulation for an effective rehabilitation of visuospatial function. Eur J Neurosci 2012; 37:441-54. [PMID: 23167832 DOI: 10.1111/ejn.12055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/28/2022]
Abstract
Noninvasive neurostimulation techniques have been used alone or in conjunction with rehabilitation therapy to treat the neurological sequelae of brain damage with rather variable therapeutic outcomes. One potential factor limiting a consistent success for such techniques may be the limited number of sessions carried out in patients, despite reports that their accrual may play a key role in alleviating neurological deficits long-term. In this study, we tested the effects of seventy consecutive sessions of perilesional high-frequency (10 Hz) repetitive transcranial magnetic stimulation (rTMS) in the treatment of chronic neglect deficits in a well-established feline model of visuospatial neglect. Under identical rTMS parameters and visuospatial testing regimes, half of the subjects improved in visuospatial orienting performance. The other half experienced either none or extremely moderate ameliorations in the neglected hemispace and displayed transient patterns of maladaptive visuospatial behavior. Detailed analyses suggest that lesion location and extent did not account for the behavioral differences observed between these two groups of animals. We conclude that multi-session perilesional rTMS regimes have the potential to induce functional ameliorations following focal chronic brain injury, and that behavioral performance prior to the onset of the rTMS treatment is the factor that best predicts positive outcomes for noninvasive neurostimulation treatments in visuospatial neglect.
Collapse
Affiliation(s)
- Linda Afifi
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | | | | |
Collapse
|
202
|
Huynh W, Vucic S, Krishnan AV, Lin CSY, Hornberger M, Kiernan MC. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair 2012; 27:219-29. [PMID: 23077145 DOI: 10.1177/1545968312462071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND With the advent of novel brain stimulation techniques aimed at improving functional outcome, understanding poststroke plasticity becomes critical for the appropriate selection of patients and optimal timing to introduce neuromodulatory interventions. OBJECTIVE To better define the temporal evolution of central and peripheral neuroplastic changes in the first 3 months after stroke and their clinical implications. METHODS Transcranial magnetic stimulation, peripheral nerve excitability, and clinical assessments were undertaken longitudinally in 31 acute stroke patients, comprising a total of 384 clinical studies. RESULTS During the hyperacute phase (<7 days), short-interval intracortical inhibition (SICI) was significantly reduced in lesioned (4.3% ± 1.3%) and contralesional hemispheres (3.6% ± 1.9%) compared with controls (11.4% ± 1.3%, P = .001). There were also significant alterations in accommodative properties of motor axons in the affected limb. At follow-up, SICI remained suppressed in both hemispheres in the context of significant clinical improvement. CONCLUSION Simultaneous assessment of central and peripheral motor pathways has identified bilateral plastic changes that develop throughout the neural axis in acute stroke patients. It is proposed that these changes represent an adaptive response and that the persistent bihemispheric reduction in SICI may act to promote stroke recovery through cortical reorganization.
Collapse
Affiliation(s)
- William Huynh
- Neuroscience Research Australia, Randwick, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
203
|
Transcranial magnetic stimulation for the prediction and enhancement of rehabilitation treatment effects. J Neurol Phys Ther 2012; 36:87-93. [PMID: 22592064 DOI: 10.1097/npt.0b013e3182564d26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this update on rehabilitation technology, transcranial magnetic stimulation (TMS), a technique that allows noninvasive stimulation of the brain, is examined. The background and basic principles of TMS are reviewed, and its usefulness as a tool to inform and possibly augment the rehabilitation process is discussed. The three main paradigms by which TMS is applied-physiological measurement, disruption/virtual lesion studies, and modulation of cortical excitability-are discussed relative to the types of scientific information each paradigm can provide and their potential clinical usefulness in the future. One of the more exciting prospects is that, when combined with rehabilitation training, TMS modulation of cortical excitability could potentially enhance the effects of rehabilitation and lead to greater levels of recovery than are currently attainable with rehabilitation alone. It is concluded that current studies must focus on the mechanisms of recovery based on the specific structures and processes affected by the disorder and the neural effects of specific rehabilitation interventions in order for the potential of TMS-augmented rehabilitation to be realized.
Collapse
|
204
|
Hemond CC, Fregni F. Transcranial magnetic stimulation in neurology: what we have learned from randomized controlled studies. Neuromodulation 2012; 10:333-44. [PMID: 22150892 DOI: 10.1111/j.1525-1403.2007.00120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background. Initially developed to excite peripheral nerves, magnetic stimulation was quickly recognized as a valuable tool to noninvasively activate the cerebral cortex. The subsequent discovery that repetitive transcranial magnetic stimulation (rTMS) could have long-lasting effects on cortical excitability spawned a broad interest in the use of this technique as a new therapeutic method in a variety of neuropsychiatric disorders. Although the current outcomes from initial trials include some conflicting results, initial evidence supports that rTMS might have a therapeutic value in different neurologic conditions. Methods. We reviewed the results of clinical trials of rTMS on four different disorders: stroke, Parkinson's disease, chronic refractory pain, and epilepsy. We reviewed randomized, controlled studies only in order to obtain the strongest evidence for the clinical effects of rTMS. Results. An extensive literature review revealed 32 articles that met our criteria. From these studies, we found evidence for the therapeutic efficacy of rTMS, particularly in the relief of chronic pain and motor neurorehabilitation in single hemisphere stroke patients. Repetitive TMS also seems to have a therapeutic effect on motor function in Parkinson's disease, but the evidence is somewhat confounded by the uncontrolled variability of multiple factors. Lastly, only two randomized, sham-controlled studies have been performed for epilepsy; although evidence indicates rTMS may reduce seizure frequency in patients with neocortical foci, more research is needed to confirm these initial findings. Conclusions. There is mounting evidence for the efficacy of rTMS in the short-term treatment of certain neurologic conditions. More long-term research is needed in order to properly evaluate the effects of this method in a clinical setting.
Collapse
Affiliation(s)
- Christopher C Hemond
- Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
205
|
Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 2012; 32:1515-24. [PMID: 22434071 PMCID: PMC3421088 DOI: 10.1038/jcbfm.2012.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the healthy brain, there are close correlations between task-related activation of the primary motor cortex (M1), the magnitude of interhemispheric inhibition, and microstructural properties of transcallosal fiber tracts. After subcortical stroke affecting the pyramidal tract (PT), an abnormal pattern of bilateral activity develops in M1. With this prospective longitudinal study, we aimed to determine whether a morphological correlate of poststroke disinhibition could be measured within 20 days and 6 months of PT stroke. Using diffusion tensor imaging with tractography, we delineated transcallosal motor fibers (CMF) in nine PT stroke patients, six patients with subcortical infarct not affecting the PT (NonPT) and six transient ischemic attack patients. We compared changes in CMF fractional anisotropy ratios (rFA) with rFA in a distinct bundle of callosal occipital fibers (COF). At the initial time point, there were no significant differences in rFA between groups and fiber bundles. At follow-up, PT-group rFA(CMF) was significantly lower than PT-group rFA(COF) and NonPT-group rFA(CMF). PT-group rFA(CMF) decreased over time and correlated with rFA of the PT (rFA(PT)) retrograde to the infarct at 6 months. Our data suggest a progressive degenerative transsynaptic effect of PT stroke on CMF, which could be a morphological correlate of transcallosal disinhibition.
Collapse
Affiliation(s)
- Basia A Radlinska
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
206
|
Hsu WY, Cheng CH, Liao KK, Lee IH, Lin YY. Effects of Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients With Stroke. Stroke 2012; 43:1849-57. [DOI: 10.1161/strokeaha.111.649756] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The purpose of this study was to perform a meta-analysis of studies that investigated the effects of repetitive transcranial magnetic stimulation (rTMS) on upper limb motor function in patients with stroke.
Methods—
We searched for randomized controlled trials published between January 1990 and October 2011 in PubMed, Medline, Cochrane, and CINAHL using the following key words: stroke, cerebrovascular accident, and repetitive transcranial magnetic stimulation. The mean effect size and a 95% CI were estimated for the motor outcome and motor threshold using fixed and random effect models.
Results—
Eighteen of the 34 candidate articles were included in this analysis. The selected studies involved a total of 392 patients. A significant effect size of 0.55 was found for motor outcome (95% CI, 0.37–0.72). Further subgroup analyses demonstrated more prominent effects for subcortical stroke (mean effect size, 0.73; 95% CI, 0.44–1.02) or studies applying low-frequency rTMS (mean effect size, 0.69; 95% CI, 0.42–0.95). Only 4 patients of the 18 articles included in this analysis reported adverse effects from rTMS.
Conclusions—
rTMS has a positive effect on motor recovery in patients with stroke, especially for those with subcortical stroke. Low-frequency rTMS over the unaffected hemisphere may be more beneficial than high-frequency rTMS over the affected hemisphere. Recent limited data suggest that intermittent theta-burst stimulation over the affected hemisphere might be a useful intervention. Further well-designed studies in a larger population are required to better elucidate the differential roles of various rTMS protocols in stroke treatment.
Collapse
Affiliation(s)
- Wan-Yu Hsu
- From the Institute of Brain Science (W.-Y.H., C.-H.C., I.-H.L., Y.-Y.L.), the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), the Institute of Physiology (Y.-Y.L.), and the Institute of Clinical Medicine (Y.-Y.L.), National Yang-Ming University, Taipei, Taiwan; and the Laboratory of Neurophysiology (W.-Y.H., C.-H.C., Y.-Y.L.) and the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- From the Institute of Brain Science (W.-Y.H., C.-H.C., I.-H.L., Y.-Y.L.), the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), the Institute of Physiology (Y.-Y.L.), and the Institute of Clinical Medicine (Y.-Y.L.), National Yang-Ming University, Taipei, Taiwan; and the Laboratory of Neurophysiology (W.-Y.H., C.-H.C., Y.-Y.L.) and the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kwong-Kum Liao
- From the Institute of Brain Science (W.-Y.H., C.-H.C., I.-H.L., Y.-Y.L.), the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), the Institute of Physiology (Y.-Y.L.), and the Institute of Clinical Medicine (Y.-Y.L.), National Yang-Ming University, Taipei, Taiwan; and the Laboratory of Neurophysiology (W.-Y.H., C.-H.C., Y.-Y.L.) and the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Hui Lee
- From the Institute of Brain Science (W.-Y.H., C.-H.C., I.-H.L., Y.-Y.L.), the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), the Institute of Physiology (Y.-Y.L.), and the Institute of Clinical Medicine (Y.-Y.L.), National Yang-Ming University, Taipei, Taiwan; and the Laboratory of Neurophysiology (W.-Y.H., C.-H.C., Y.-Y.L.) and the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- From the Institute of Brain Science (W.-Y.H., C.-H.C., I.-H.L., Y.-Y.L.), the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), the Institute of Physiology (Y.-Y.L.), and the Institute of Clinical Medicine (Y.-Y.L.), National Yang-Ming University, Taipei, Taiwan; and the Laboratory of Neurophysiology (W.-Y.H., C.-H.C., Y.-Y.L.) and the Department of Neurology (K.-K.L., I.-H.L., Y.-Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
207
|
Jayaram G, Stagg CJ, Esser P, Kischka U, Stinear J, Johansen-Berg H. Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin Neurophysiol 2012; 123:2422-8. [PMID: 22717679 PMCID: PMC3778984 DOI: 10.1016/j.clinph.2012.04.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Studies on upper limb recovery following stroke have highlighted the importance of the structural and functional integrity of the corticospinal tract (CST) in determining clinical outcomes. However, such relationships have not been fully explored for the lower limb. We aimed to test whether variation in walking impairment was associated with variation in the structural or functional integrity of the CST. METHODS Transcranial magnetic stimulation was used to stimulate each motor cortex while EMG recordings were taken from the vastus lateralis (VL) bilaterally; these EMG measures were used to calculate both ipsilateral and contralateral recruitment curves for each lower limb. The slope of these recruitment curves was used to examine the strength of functional connectivity from the motor cortex in each hemisphere to the lower limbs in chronic stroke patients and to calculate a ratio between ipsilateral and contralateral outputs referred to as the functional connectivity ratio (FCR). The structural integrity of the CST was assessed using diffusion tensor MRI to measure the asymmetry in fractional anisotropy (FA) of the internal capsule. Lower limb impairment and walking speed were also measured. RESULTS The FCR for the paretic leg correlated with walking impairment, such that greater relative ipsilateral connectivity was associated with slower walking speeds. Asymmetrical FA values, reflecting reduced structural integrity of the lesioned CST, were associated with greater walking impairment. FCR and FA asymmetry were strongly positively correlated with each other. CONCLUSIONS Patients with relatively greater ipsilateral connectivity between the contralesional motor cortex and the paretic lower limb were more behaviorally impaired and had more structural damage to their ipsilesional hemisphere CST. SIGNIFICANCE Measures of structural and functional damage may be useful in the selection of therapeutic strategies, allowing for more tailored and potentially more beneficial treatments.
Collapse
Affiliation(s)
- Gowri Jayaram
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Effect of afferent input on motor cortex excitability during stroke recovery. Clin Neurophysiol 2012; 123:2429-36. [PMID: 22721651 DOI: 10.1016/j.clinph.2012.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Afferent input is proposed to mediate its effect on motor functions by modulating the excitability of the motor cortex. We aimed to clarify - in a longitudinal study - how afferent input affects motor cortex excitability after stroke and how it is associated with recovery of hand function. METHODS The motor cortex excitability was studied by measuring the reactivity of the motor cortex beta rhythm to somatosensory stimulation. We recorded the amplitude of the suppression and subsequent rebound of the beta oscillations during tactile finger stimulation with MEG in 23 first-ever stroke patients within one week and at 1 and 3 months after stroke, with concomitant evaluation of hand function. RESULTS The strength of the beta rhythm rebound, suggested to reflect decreased motor cortex excitability, was weak in the affected hemisphere after stroke and it was subsequently increased during recovery. The rebound strength correlated with hand function tests in all recordings. CONCLUSION Motor cortex excitability is modulated by afferent input after stroke. The motor cortex excitability is increased in the AH acutely after stroke and decreases in parallel with recovery of hand function. SIGNIFICANCE The results implicate the importance of parallel recovery of both sensory and motor systems in functional recovery after stroke.
Collapse
|
209
|
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology 2012; 64:579-87. [PMID: 22687520 DOI: 10.1016/j.neuropharm.2012.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/30/2022]
Abstract
Non-invasive brain stimulation has shown its potential to modulate brain plasticity in humans. Endeavour has been made to utilize brain stimulation in neurological diseases to enhance adaptive processes and prevent potential maladaptive ones. In stroke for instance both sensorimotor and higher cognitive impairment, such as aphasia and neglect, has been addressed to facilitate functional recovery. In Parkinson's disease, brain stimulation has been evaluated to improve motor and non-motor symptoms. In the present review we provide an update of the field of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as non-invasive brain stimulation techniques to improve motor and higher cognitive functions in patients suffering from stroke and Parkinson's disease. Rather than attempting to be comprehensive in regard of the reviewed scientific field, this article may be considered as a present day's framework of the application of non-invasive brain stimulation on selected examples of common neurological diseases. At the end we will briefly discuss open controversies and future directions of the field which has to be addressed in upcoming studies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Robert Schulz
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | |
Collapse
|
210
|
Knorr S, Rice CL, Garland SJ. Perspective on neuromuscular factors in poststroke fatigue. Disabil Rehabil 2012; 34:2291-9. [DOI: 10.3109/09638288.2012.683233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
211
|
Lee D, Beom J, Oh BM, Seo KS. Effect of magnetic stimulation in spinal cord on limb angiogenesis and implication: a pilot study. Ann Rehabil Med 2012; 36:311-9. [PMID: 22837965 PMCID: PMC3400869 DOI: 10.5535/arm.2012.36.3.311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 04/11/2012] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effect of repetitive magnetic stimulation (rMS) of the spinal cord on limb angiogenesis in healthy rats and explore its implication for the treatment of lymphedema. METHOD Twelve adult male Sprague-Dawley rats were divided into four groups as follows: sham rMS followed by tissue harvest 5 minutes later (group 1, n=2), 1 Hz rMS and tissue harvest 5 minutes later (group 2, n=3), 20 Hz rMS and tissue harvest 5 minutes later (group 3, n=3), 20 Hz rMS and tissue harvest 30 minutes later (group 4, n=4). Animals were treated with 20-minute rMS with 120% of the motor threshold on their left side of upper lumbar spinal cord. Expression of angiogenic factors, that is, Akt, phospho-Akt (pAkt), endothelial nitric oxide synthase (eNOS), phospho-eNOS (p-eNOS) were measured by western blot. Bilateral hindlimb muscles (quadriceps and gastrocnemius) were harvested. RESULTS Expression of Akt in left quadriceps increased in group 4 compared with group 2 and 3 (3.4 and 5.3-fold each, p=0.026). Expression of eNOS in left plus right quadriceps markedly increased in group 3 and 4 compared with group 1 and 2 (p=0.007). Expressions of eNOS, Akt and p-eNOS, pAkt in gastrocnemius were not comparable between four groups (p>0.05). CONCLUSION Repetitive magnetic stimulation of the spinal cord may exert an angiogenic effect closely linked to lymphangiogenesis. It has clinical implication for the possible therapy of lymphedema caused by breast, cervical or endometrial cancer operation. Future studies with the specific lymphatic endothelial cell markers are required to confirm the effect of rMS on lymphangiogenesis.
Collapse
Affiliation(s)
- Dohong Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Kwan-Sik Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|
212
|
Nair DG, Renga V, Lindenberg R, Zhu L, Schlaug G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor Neurol Neurosci 2012; 29:411-20. [PMID: 22124031 DOI: 10.3233/rnn-2011-0612] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE It is thought that following a stroke the contralesional motor region exerts an undue inhibitory influence on the lesional motor region which might limit recovery. Pilot studies have shown that suppressing the contralesional motor region with cathodal transcranial Direct Current Stimulation (tDCS) can induce a short lasting functional benefit; greater and longer lasting effects might be achieved with combining tDCS with simultaneous occupational therapy (OT) and applying this intervention for multiple sessions. METHODS We carried out a randomized, double blind, sham controlled study of chronic stroke patients receiving either 5 consecutive days of cathodal tDCS (for 30 minutes) applied to the contralesional motor region and simultaneous OT, or sham tDCS+OT. RESULTS we showed that cathodal tDCS+OT resulted in significantly more improvement in Range-Of-Motion in multiple joints of the paretic upper extremity and in the Upper-Extremity Fugl-Meyer scores than sham tDCS+OT, and that the effects lasted at least one week post-stimulation. Improvement in motor outcome scores was correlated with decrease in fMRI activation in the contralesional motor region exposed to cathodal stimulation. CONCLUSIONS This suggests that cathodal tDCS combined with OT leads to significant motor improvement after stroke due to a decrease in the inhibitory effect that the contralesional hemisphere exerts onto the lesional hemisphere.
Collapse
Affiliation(s)
- Dinesh G Nair
- Department of Neurology, Neuroimaging and Stroke Recovery Laboratories, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
213
|
Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci 2012; 29:395-409. [PMID: 22124033 DOI: 10.3233/rnn-2011-0611] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stroke is the leading cause of long-term disability. Understanding how people recover from stroke and other brain lesions remain one of the biggest conundrums in neuroscience. As a result, concerted efforts in recent years have focused on investigating the neurophysiological changes that occur in the brain after stroke, and in developing novel strategies to enhance motor recovery. In particular, transcranial magnetic stimulation (TMS) is a non-invasive tool that has been used to investigate the brain plasticity changes resulting from stroke and as a therapeutic modality to safely improve motor function. In this review, we discuss the contributions of TMS to understand how different motor areas, such as the ipsilesional hemisphere, secondary motor areas, and contralesional hemisphere are involved in motor recovery. We also consider recent studies using repetitive TMS (rTMS) in stroke patients to enhance upper extremity function. Although further studies are needed, these investigations provide an important starting point to understand the stimulation parameters and patient characteristics that may influence the optimal response to non-invasive brain stimulation. Future directions of rTMS are discussed in the context of post-stroke motor recovery.
Collapse
Affiliation(s)
- Erik H Hoyer
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD 21287, USA
| | | |
Collapse
|
214
|
Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke 2012; 43:2185-91. [PMID: 22618381 DOI: 10.1161/strokeaha.111.645382] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mechanisms of skill learning are paramount components for stroke recovery. Recent noninvasive brain stimulation studies demonstrated that decreasing activity in the contralesional motor cortex might be beneficial, providing transient functional improvements after stroke. The more crucial question, however, is whether this intervention can also enhance the acquisition of complex motor tasks, yielding longer-lasting functional improvements. In the present study, we tested the capacity of cathodal transcranial direct current stimulation (tDCS) applied over the contralesional motor cortex during training to enhance the acquisition and retention of complex sequential finger movements of the paretic hand. METHOD Twelve well-recovered chronic patients with subcortical stroke attended 2 training sessions during which either cathodal tDCS or a sham intervention were applied to the contralesional motor cortex in a double-blind, crossover design. Two different motor sequences, matched for their degree of complexity, were tested in a counterbalanced order during as well as 90 minutes and 24 hours after the intervention. Potential underlying mechanisms were evaluated with transcranial magnetic stimulation. RESULTS tDCS facilitated the acquisition of a new motor skill compared with sham stimulation (P=0.04) yielding better task retention results. A significant correlation was observed between the tDCS-induced improvement during training and the tDCS-induced changes of intracortical inhibition (R(2)=0.63). CONCLUSIONS These results indicate that tDCS is a promising tool to improve not only motor behavior, but also procedural learning. They further underline the potential of noninvasive brain stimulation as an adjuvant treatment for long-term recovery, at least in patients with mild functional impairment after stroke.
Collapse
Affiliation(s)
- Máximo Zimerman
- Brain Imaging and Neurostimulation Labor, Department of Neurology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
215
|
Seniów J, Bilik M, Leśniak M, Waldowski K, Iwański S, Członkowska A. Transcranial Magnetic Stimulation Combined With Physiotherapy in Rehabilitation of Poststroke Hemiparesis. Neurorehabil Neural Repair 2012; 26:1072-9. [DOI: 10.1177/1545968312445635] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralesional primary motor cortex (M1) may improve recovery in patients with hemiparetic stroke. Objective. To evaluate the effectiveness of applying 1 Hz rTMS to the contralesional M1 in addition to physiotherapy during early rehabilitation for stroke patients with hand hemiparesis in a randomized, sham-controlled, double-blind study. Methods. Forty patients with moderate upper extremity hemiparesis were randomized to receive 3 weeks of motor training (45 minutes daily) preceded by 30 minutes of 1 Hz rTMS applied to the contralesional M1 or 30 minutes of sham rTMS. Functional assessment of the paretic hand using the Wolf Motor Function Test was performed before, immediately after, and 3 months after completing treatment. Results. No statistically significant differences were found between the experimental and the control group for hand function (Wolf Motor Function Test; P = .92) or the level of neurological deficit ( National Institutes of Health Stroke Scale [NIHSS]; P = .82) after treatment. Effect sizes for the experimental ( d = 0.5) and the control group ( d = 0.47) were small. Similar results were observed at the 3-month follow-up. Conclusions. The findings did not suggest that rTMS suppression of the contralesional motor cortex augments the effect of early neurorehabilitation for upper limb hemiparesis. Larger trials that stratify subjects based on residual motor function or physiological measures of excitation and inhibition may identify responders in the future.
Collapse
Affiliation(s)
- Joanna Seniów
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Bilik
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | | | - Anna Członkowska
- Institute of Psychiatry and Neurology, Warsaw, Poland
- Medical University, Warsaw, Poland
| |
Collapse
|
216
|
Byblow WD, Stinear CM, Smith MC, Bjerre L, Flaskager BK, McCambridge AB. Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PLoS One 2012; 7:e33882. [PMID: 22457799 PMCID: PMC3310871 DOI: 10.1371/journal.pone.0033882] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Repetitive mirror symmetric bilateral upper limb may be a suitable priming technique for upper limb rehabilitation after stroke. Here we demonstrate neurophysiological and behavioural after-effects in healthy participants after priming with 20 minutes of repetitive active-passive bimanual wrist flexion and extension in a mirror symmetric pattern with respect to the body midline (MIR) compared to an control priming condition with alternating flexion-extension (ALT). Transcranial magnetic stimulation (TMS) indicated that corticomotor excitability (CME) of the passive hemisphere remained elevated compared to baseline for at least 30 minutes after MIR but not ALT, evidenced by an increase in the size of motor evoked potentials in ECR and FCR. Short and long-latency intracortical inhibition (SICI, LICI), short afferent inhibition (SAI) and interhemispheric inhibition (IHI) were also examined using pairs of stimuli. LICI differed between patterns, with less LICI after MIR compared with ALT, and an effect of pattern on IHI, with reduced IHI in passive FCR 15 minutes after MIR compared with ALT and baseline. There was no effect of pattern on SAI or FCR H-reflex. Similarly, SICI remained unchanged after 20 minutes of MIR. We then had participants complete a timed manual dexterity motor learning task with the passive hand during, immediately after, and 24 hours after MIR or control priming. The rate of task completion was faster with MIR priming compared to control conditions. Finally, ECR and FCR MEPs were examined within a pre-movement facilitation paradigm of wrist extension before and after MIR. ECR, but not FCR, MEPs were consistently facilitated before and after MIR, demonstrating no degradation of selective muscle activation. In summary, mirror symmetric active-passive bimanual movement increases CME and can enhance motor learning without degradation of muscle selectivity. These findings rationalise the use of mirror symmetric bimanual movement as a priming modality in post-stroke upper limb rehabilitation.
Collapse
Affiliation(s)
- Winston D Byblow
- Movement Neuroscience Laboratory, Department of Sport & Exercise Science, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
217
|
Plasticity of adult sensorimotor system in severe brain infarcts: challenges and opportunities. Neural Plast 2012; 2012:970136. [PMID: 22548196 PMCID: PMC3323857 DOI: 10.1155/2012/970136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023] Open
Abstract
Functional reorganization forms the critical mechanism for the recovery of function after brain damage. These processes are driven by inherent changes within the central nervous system (CNS) triggered by the insult and further depend on the neural input the recovering system is processing. Therefore these processes interact with not only the interventions a patient receives, but also the activities and behaviors a patient engages in. In recent years, a wide range of research programs has addressed the association between functional reorganization and the spontaneous and treatment-induced recovery. The bulk of this work has focused on upper-limb and hand function, and today there are new treatments available that capitalize on the neuroplasticity of the brain. However, this is only true for patients with mild to moderated impairments; for those with very limited hand function, the basic understanding is much poorer and directly translates into limited treatment opportunities for these patients. The present paper aims to highlight the knowledge gap on severe stroke with a brief summary of the literature followed by a discussion of the challenges involved in the study and treatment of severe stroke and poor long-term outcome.
Collapse
|
218
|
Talelli P, Wallace A, Dileone M, Hoad D, Cheeran B, Oliver R, VandenBos M, Hammerbeck U, Barratt K, Gillini C, Musumeci G, Boudrias MH, Cloud GC, Ball J, Marsden JF, Ward NS, Di Lazzaro V, Greenwood RG, Rothwell JC. Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil Neural Repair 2012; 26:976-87. [PMID: 22412171 DOI: 10.1177/1545968312437940] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Noninvasive cortical stimulation could represent an add-on treatment to enhance motor recovery after stroke. However, its clinical value, including anticipated size and duration of the treatment effects, remains largely unknown. OBJECTIVE The authors designed a small semi-randomized clinical trial to explore whether long-lasting clinically important gains can be achieved by adding theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (TMS), to a rehabilitation program for the hand. METHODS A total of 41 chronic stroke patients received excitatory TBS to the ipsilesional hemisphere or inhibitory TBS to the contralesional hemisphere in 2 centers; each active group was compared with a group receiving sham TBS. TBS was followed by physical therapy for 10 working days. Patients and therapists were blinded to the type of TBS. Primary outcome measures (9-hole Peg Test [9HPT], Jebsen Taylor Test [JTT], and grip and pinch-grip dynamometry) were assessed 4, 30, and 90 days post treatment. The clinically important difference was defined as 10% of the maximum score. RESULTS There were no differences between the active treatment and sham groups in any of the outcome measures. All patients achieved small sustainable improvements--9HPT, 5% of maximum (confidence interval [CI] = 3%-7%); JTT, 5.7% (CI = 3%-8%); and grip strength, 6% (CI = 2%-10%)--all below the defined clinically important level. CONCLUSIONS Cortical stimulation did not augment the gains from a late rehabilitation program. The effect size anticipated by the authors was overestimated. These results can improve the design of future work on therapeutic uses of TMS.
Collapse
Affiliation(s)
- Penelope Talelli
- Sobell Department, UCL Institute of Neurology, London WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Kakuda W, Abo M, Shimizu M, Sasanuma J, Okamoto T, Yokoi A, Taguchi K, Mitani S, Harashima H, Urushidani N, Urashima M. A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients. J Neuroeng Rehabil 2012; 9:4. [PMID: 22264239 PMCID: PMC3271959 DOI: 10.1186/1743-0003-9-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Abstract
Background Both low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) have been recently reported to be clinically beneficial for post-stroke patients with upper limb hemiparesis. Based on these reports, we developed an inpatient combination protocol of these two modalities for the treatment of such patients. The aims of this pilot study were to confirm the safety and feasibility of the protocol in a large number of patients from different institutions, and identify predictors of the clinical response to the treatment. Methods The study subjects were 204 post-stroke patients with upper limb hemiparesis (mean age at admission 58.5 ± 13.4 years, mean time after stroke 5.0 ± 4.5 years, ± SD) from five institutions in Japan. During 15-day hospitalization, each patient received 22 treatment sessions of 20-min low-frequency rTMS and 120-min intensive OT daily. Low-frequency rTMS of 1 Hz was applied to the contralesional hemisphere over the primary motor area. The intensive OT, consisting of 60-min one-to-one training and 60-min self-exercise, was provided after the application of low-frequency rTMS. Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test (WMFT) were performed serially. The physiatrists and occupational therapists involved in this study received training prior to the study to standardize the therapeutic protocol. Results All patients completed the protocol without any adverse effects. The FMA score increased and WMFT log performance time decreased significantly at discharge, relative to the respective values at admission (change in FMA score: median at admission, 47 points; median at discharge, 51 points; p < 0.001. change in WMFT log performance time: median at admission, 3.23; median at discharge, 2.51; p < 0.001). These changes were persistently seen up to 4 weeks after discharge in 79 patients. Linear regression analysis found no significant relationship between baseline parameters and indexes of improvement in motor function. Conclusions The 15-day inpatient rTMS plus OT protocol is a safe, feasible, and clinically useful neurorehabilitative intervention for post-stroke patients with upper limb hemiparesis. The response to the treatment was not influenced by age or time after stroke onset. The efficacy of the intervention should be confirmed in a randomized controlled study including a control group.
Collapse
Affiliation(s)
- Wataru Kakuda
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Lindenberg R, Zhu LL, Schlaug G. Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome. Neurorehabil Neural Repair 2012; 26:479-83. [PMID: 22258156 DOI: 10.1177/1545968311427568] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proof-of-principle studies have demonstrated transient beneficial effects of transcranial direct current stimulation (tDCS) on motor function in stroke patients, mostly after single treatment sessions. OBJECTIVE To assess the efficacy of multiple treatment sessions on motor outcome. METHODS The authors examined the effects of two 5-day intervention periods of bihemispheric tDCS and simultaneous occupational/physical therapy on motor function in a group of 10 chronic stroke patients. RESULTS The first 5-day period yielded an increase in Upper-Extremity Fugl-Meyer (UE-FM) scores by 5.9 ± 2.4 points (16.6% ± 10.6%). The second 5-day period resulted in further meaningful, although significantly lower, gains with an additional improvement of 2.3 ± 1.4 points in UE-FM compared with the end of the first 5-day period (5.5% ± 4.2%). The overall mean change after the 2 periods was 8.2 ± 2.2 points (22.9% ± 11.4%). CONCLUSION The results confirm the efficacy of bihemispheric tDCS in combination with peripheral sensorimotor stimulation. Furthermore, they demonstrate that the effects of multiple treatment sessions in chronic stroke patients may not necessarily lead to a linear response function, which is of relevance for the design of experimental neurorehabilitation trials.
Collapse
Affiliation(s)
- Robert Lindenberg
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
221
|
|
222
|
Abo M, Kakuda W, Watanabe M, Morooka A, Kawakami K, Senoo A. Effectiveness of Low-Frequency rTMS and Intensive Speech Therapy in Poststroke Patients with Aphasia: A Pilot Study Based on Evaluation by fMRI in Relation to Type of Aphasia. Eur Neurol 2012; 68:199-208. [PMID: 22948550 DOI: 10.1159/000338773] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/09/2012] [Indexed: 11/19/2022]
Affiliation(s)
- Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
223
|
Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 2012; 3:88. [PMID: 23162477 PMCID: PMC3495265 DOI: 10.3389/fpsyt.2012.00088] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/22/2012] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION/OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in research and development. Participants/Materials and Methods: This article presents an up-to-date systematic review of the treatment effects of rTMS and tDCS on motor function. A literary search was conducted, utilizing search terms "stroke" and "transcranial stimulation." Items were excluded if they failed to: (1) include stroke patients, (2) study motor outcomes, or (3) include rTMS/tDCS as treatments. Other exclusions included: (1) reviews, editorials, and letters, (2) animal or pediatric populations, (3) case reports or sample sizes ≤2 patients, and (4) primary outcomes of dysphagia, dysarthria, neglect, or swallowing. RESULTS Investigation of PubMed English Database prior to 01/01/2012 produced 695 applicable results. Studies were excluded based on the aforementioned criteria, resulting in 50 remaining studies. They included 1314 participants (1282 stroke patients and 32 healthy subjects) evaluated by motor function pre- and post-tDCS or rTMS. Heterogeneity among studies' motor assessments was high and could not be accounted for by individual comparison. Pooled effect sizes for the impact of post-treatment improvement revealed consistently demonstrable improvements after tDCS and rTMS therapeutic stimulation. Most studies provided limited follow-up for long-term effects. CONCLUSION It is apparent from the available studies that non-invasive stimulation may enhance motor recovery and may lead to clinically meaningful functional improvements in the stroke population. Only mild to no adverse events have been reported. Though results have been positive results, the large heterogeneity across articles precludes firm conclusions.
Collapse
Affiliation(s)
- Bamidele O Adeyemo
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, Harvard Medical School Boston, MA, USA ; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School Boston, MA, USA
| | | | | | | |
Collapse
|
224
|
Lefaucheur JP, André-Obadia N, Poulet E, Devanne H, Haffen E, Londero A, Cretin B, Leroi AM, Radtchenko A, Saba G, Thai-Van H, Litré CF, Vercueil L, Bouhassira D, Ayache SS, Farhat WH, Zouari HG, Mylius V, Nicolier M, Garcia-Larrea L. [French guidelines on the use of repetitive transcranial magnetic stimulation (rTMS): safety and therapeutic indications]. Neurophysiol Clin 2011; 41:221-95. [PMID: 22153574 DOI: 10.1016/j.neucli.2011.10.062] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022] Open
Abstract
During the past decade, a large amount of work on transcranial magnetic stimulation (TMS) has been performed, including the development of new paradigms of stimulation, the integration of imaging data, and the coupling of TMS techniques with electroencephalography or neuroimaging. These accumulating data being difficult to synthesize, several French scientific societies commissioned a group of experts to conduct a comprehensive review of the literature on TMS. This text contains all the consensual findings of the expert group on the mechanisms of action, safety rules and indications of TMS, including repetitive TMS (rTMS). TMS sessions have been conducted in thousands of healthy subjects or patients with various neurological or psychiatric diseases, allowing a better assessment of risks associated with this technique. The number of reported side effects is extremely low, the most serious complication being the occurrence of seizures. In most reported seizures, the stimulation parameters did not follow the previously published recommendations (Wassermann, 1998) [430] and rTMS was associated to medication that could lower the seizure threshold. Recommendations on the safe use of TMS / rTMS were recently updated (Rossi et al., 2009) [348], establishing new limits for stimulation parameters and fixing the contraindications. The recommendations we propose regarding safety are largely based on this previous report with some modifications. By contrast, the issue of therapeutic indications of rTMS has never been addressed before, the present work being the first attempt of a synthesis and expert consensus on this topic. The use of TMS/rTMS is discussed in the context of chronic pain, movement disorders, stroke, epilepsy, tinnitus and psychiatric disorders. There is already a sufficient level of evidence of published data to retain a therapeutic indication of rTMS in clinical practice (grade A) in chronic neuropathic pain, major depressive episodes, and auditory hallucinations. The number of therapeutic indications of rTMS is expected to increase in coming years, in parallel with the optimisation of stimulation parameters.
Collapse
Affiliation(s)
- J-P Lefaucheur
- EA 4391, faculté de médecine, université Paris-Est-Créteil, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR, Grefkes C. Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 2011; 33:2941-56. [PMID: 22020952 DOI: 10.1002/hbm.21417] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/20/2011] [Accepted: 06/24/2011] [Indexed: 12/16/2022] Open
Abstract
Animal models of stroke demonstrated that white matter ischemia may cause both axonal damage and myelin degradation distant from the core lesion, thereby impacting on behavior and functional outcome after stroke. We here used parameters derived from diffusion magnetic resonance imaging (MRI) to investigate the effect of focal white matter ischemia on functional reorganization within the motor system. Patients (n = 18) suffering from hand motor deficits in the subacute or chronic stage after subcortical stroke and healthy controls (n = 12) were scanned with both diffusion MRI and functional MRI while performing a motor task with the left or right hand. A laterality index was employed on activated voxels to assess functional reorganization across hemispheres. Regression analyses revealed that diffusion MRI parameters of both the ipsilesional corticospinal tract (CST) and corpus callosum (CC) predicted increased activation of the unaffected hemisphere during movements of the stroke-affected hand. Changes in diffusion MRI parameters possibly reflecting axonal damage and/or destruction of myelin sheath correlated with a stronger bilateral recruitment of motor areas and poorer motor performance. Probabilistic fiber tracking analyses revealed that the region in the CC correlating with the fMRI laterality index and motor deficits connected to sensorimotor cortex, supplementary motor area, ventral premotor cortex, superior parietal lobule, and temporoparietal junction. The results suggest that degeneration of transcallosal fibers connecting higher order sensorimotor regions constitute a relevant factor influencing cortical reorganization and motor outcome after subcortical stroke.
Collapse
Affiliation(s)
- Ling E Wang
- Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
226
|
Yoon KJ, Lee YT, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res 2011; 214:549-56. [PMID: 21904929 DOI: 10.1007/s00221-011-2853-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 08/26/2011] [Indexed: 01/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been studied increasingly in recent years to determine whether it has a therapeutic benefit on recovery after stroke. However, the underlying mechanisms of rTMS in stroke recovery remain unclear. Here, we evaluated the effect of rTMS on functional recovery and its underlying mechanism by assessing proteins associated with neural plasticity and anti-apoptosis in the peri-lesional area using a subacute cerebral ischemic rat model. Twenty cerebral ischemic rats were randomly assigned to the rTMS or the sham group at post-op day 4. A total of 3,500 impulses with 10 Hz frequency were applied to ipsilesional cortex over a 2-week period. Functional outcome was measured before (post-op day 4) and after rTMS (post-op day 18). The rTMS group showed more functional improvement on the beam balance test and had stronger Bcl-2 and weaker Bax expression on immunohistochemistry compared with the sham group. The expression of NMDA and MAP-2 showed no significant difference between the two groups. These results suggest that rTMS in subacute cerebral ischemia has a therapeutic effect on functional recovery and is associated with an anti-apoptotic mechanism in the peri-ischemic area rather than with neural plasticity.
Collapse
Affiliation(s)
- Kyung Jae Yoon
- Department of Rehabilitation Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, #108, Pyung-dong, Jongno-gu, Seoul 110-746, South Korea
| | | | | |
Collapse
|
227
|
Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther 2011; 133:98-107. [PMID: 21924290 DOI: 10.1016/j.pharmthera.2011.09.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 01/19/2023]
Abstract
Since its commercial advent in 1985, transcranial magnetic stimulation (TMS), a technique for stimulating neurons in the cerebral cortex through the scalp, safely and with minimal discomfort, has captured the imaginations of scientists, clinicians and lay observers. Initially a laboratory tool for neurophysiologists studying the human motor system, TMS now has a growing list of applications in clinical and basic neuroscience. Although we understand many of its effects at the system level, detailed knowledge of its actions, particularly as a modulator of neural activity, has lagged, due mainly to the lack of suitable non-human models. Nevertheless, these gaps have not blocked the therapeutic application of TMS in brain disorders. Moderate success has been achieved in treating disorders such as depression, where the U.S. Food and Drug Administration has cleared a TMS system for therapeutic use. In addition, there are small, but promising, bodies of data on the treatment of schizophrenic auditory hallucinations, tinnitus, anxiety disorders, neurodegenerative diseases, hemiparesis, and pain syndromes. Some other nascent areas of study also exist. While the fate of TMS as a therapeutic modality depends on continued innovation and experimentation, economic and other factors may be decisive.
Collapse
Affiliation(s)
- Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
228
|
Obsessive Compulsive Disorder as a functional interhemispheric imbalance at the thalamic level. Med Hypotheses 2011; 77:445-7. [DOI: 10.1016/j.mehy.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
|
229
|
Schlaug G, Marchina S, Wan CY. The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychol Rev 2011; 21:288-301. [PMID: 21842404 DOI: 10.1007/s11065-011-9181-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 11/29/2022]
Abstract
Aphasia is a common symptom after left hemispheric stroke. Neuroimaging techniques over the last 10-15 years have described two general trends: Patients with small left hemisphere strokes tend to recruit perilesional areas, while patients with large left hemisphere lesions recruit mainly homotopic regions in the right hemisphere. Non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have been employed to facilitate recovery by stimulating lesional and contralesional regions. The majority of these brain stimulation studies have attempted to block homotopic regions in the right posterior inferior frontal gyrus (IFG) to affect a presumed disinhibited right IFG (triangular portion). Other studies have used anodal or excitatory tDCS to stimulate the contralesional (right) fronto-temporal region or parts of the intact left IFG and perilesional regions to improve speech-motor output. It remains unclear whether the interhemispheric disinhibition model, which is the basis for motor cortex stimulation studies, also applies to the language system. Future studies could address a number of issues, including: the effect of lesion location on current density distribution, timing of the intervention with regard to stroke onset, whether brain stimulation should be combined with behavioral therapy, and whether multiple brain sites should be stimulated. A better understanding of the predictors of recovery from natural outcome studies would also help to inform study design, and the selection of clinically meaningful outcome measures in future studies.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Department of Neurology, Neuroimaging and Stroke Recovery Laboratories, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA 02215, USA.
| | | | | |
Collapse
|
230
|
Ricci R, Ramsey D, Johnson K, Borckardt JJ, Vallejo M, Roberts DR, George MS. A pilot feasibility study of daily rTMS to modify corticospinal excitability during lower limb immobilization. Ther Clin Risk Manag 2011; 4:1127-34. [PMID: 19209293 PMCID: PMC2621395 DOI: 10.2147/tcrm.s2719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Short term immobilization of the lower limb is associated with increased corticospinal excitability at 24 hours post cast removal. We wondered whether daily stimulation of the motor cortex might decrease brain reorganization during casting. We tested the feasibility of this approach. Using transcranial magnetic stimulation (TMS), resting motor threshold and recruitment curves were obtained at baseline in 6 healthy participants who then had leg casts placed for 10 days. On 7 of the 10 days subjects received 20 minutes of 1 Hz repetitive TMS (rTMS). TMS measures were then recorded immediately after and 24 hours post cast removal. Four of 6 subjects completed the study. At the group level there were no changes in excitability following cast removal. At the individual level, two participants did not show any change, 1 participant had higher and one lower excitability 24 hours after cast removal. Daily rTMS over motor cortex is feasible during casting and may modify neuroplastic changes occurring during limb disuse. A prospective double blind study is warranted to test whether daily rTMS might improve outcome in subjects undergoing casting, and perhaps in other forms of limb disuse such as those following brain injury or weightlessness in space flight.
Collapse
|
231
|
Jin K, Xie L, Sun F, Mao X, Greenberg DA. Corpus callosum and experimental stroke: studies in callosotomized rats and acallosal mice. Stroke 2011; 42:2584-8. [PMID: 21737800 DOI: 10.1161/strokeaha.111.613349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Interhemispheric inhibition via the corpus callosum has been proposed as an exacerbating factor in outcome from stroke. METHODS We measured infarct volume and behavioral outcome after middle cerebral artery occlusion in callosotomized rats and acallosal mice. RESULTS Neither callosotomy in rats nor callosal agenesis in mice improved infarct volume or behavioral outcome after middle cerebral artery occlusion. CONCLUSIONS These findings argue against a role for transcallosal projections in exacerbating focal cerebral ischemia.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|
232
|
Theilig S, Podubecka J, Bösl K, Wiederer R, Nowak DA. Functional neuromuscular stimulation to improve severe hand dysfunction after stroke: Does inhibitory rTMS enhance therapeutic efficiency? Exp Neurol 2011; 230:149-55. [DOI: 10.1016/j.expneurol.2011.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/19/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
233
|
Baseline Severity of Upper Limb Hemiparesis Influences the Outcome of Low-Frequency rTMS Combined With Intensive Occupational Therapy in Patients Who Have Had a Stroke. PM R 2011; 3:516-22; quiz 522. [DOI: 10.1016/j.pmrj.2011.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/15/2011] [Accepted: 02/13/2011] [Indexed: 11/18/2022]
|
234
|
Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134:1264-76. [PMID: 21414995 PMCID: PMC3097886 DOI: 10.1093/brain/awr033] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/09/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022] Open
Abstract
The motor system comprises a network of cortical and subcortical areas interacting via excitatory and inhibitory circuits, thereby governing motor behaviour. The balance within the motor network may be critically disturbed after stroke when the lesion either directly affects any of these areas or damages-related white matter tracts. A growing body of evidence suggests that abnormal interactions among cortical regions remote from the ischaemic lesion might also contribute to the motor impairment after stroke. Here, we review recent studies employing models of functional and effective connectivity on neuroimaging data to investigate how stroke influences the interaction between motor areas and how changes in connectivity relate to impaired motor behaviour and functional recovery. Based on such data, we suggest that pathological intra- and inter-hemispheric interactions among key motor regions constitute an important pathophysiological aspect of motor impairment after subcortical stroke. We also demonstrate that therapeutic interventions, such as repetitive transcranial magnetic stimulation, which aims to interfere with abnormal cortical activity, may correct pathological connectivity not only at the stimulation site but also among distant brain regions. In summary, analyses of connectivity further our understanding of the pathophysiology underlying motor symptoms after stroke, and may thus help to design hypothesis-driven treatment strategies to promote recovery of motor function in patients.
Collapse
Affiliation(s)
- Christian Grefkes
- Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, Gleueler Street 50, 50931 Köln, Germany.
| | | |
Collapse
|
235
|
Valero-Cabré A, Pascual-Leone A, Coubard OA. [Transcranial magnetic stimulation (TMS) in basic and clinical neuroscience research]. Rev Neurol (Paris) 2011; 167:291-316. [PMID: 21420698 PMCID: PMC3093091 DOI: 10.1016/j.neurol.2010.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 10/11/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Non-invasive brain stimulation methods such as transcranial magnetic stimulation (TMS) are starting to be widely used to make causality-based inferences about brain-behavior interactions. Moreover, TMS-based clinical applications are under development to treat specific neurological or psychiatric conditions, such as depression, dystonia, pain, tinnitus and the sequels of stroke, among others. BACKGROUND TMS works by inducing non-invasively electric currents in localized cortical regions thus modulating their activity levels according to settings, such as frequency, number of pulses, train and regime duration and intertrain intervals. For instance, it is known for the motor cortex that low frequency or continuous patterns of TMS pulses tend to depress local activity whereas high frequency and discontinuous TMS patterns tend to enhance it. Additionally, local cortical effects of TMS can result in dramatic patterns in distant brain regions. These distant effects are mediated via anatomical connectivity in a magnitude that depends on the efficiency and sign of such connections. PERSPECTIVES An efficient use of TMS in both fields requires however, a deep understanding of its operational principles, its risks, its potential and limitations. In this article, we will briefly present the principles through which non-invasive brain stimulation methods, and in particular TMS, operate. CONCLUSION Readers will be provided with fundamental information needed to critically discuss TMS studies and design hypothesis-driven TMS applications for cognitive and clinical neuroscience research.
Collapse
Affiliation(s)
- A Valero-Cabré
- CNRS UMR 7225-Inserm S975-UPMC, groupe de dynamiques cérébrales plasticité et rééducation, centre de recherche de l'institut du cerveau et la moelle, 47, boulevard de l'Hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
236
|
Kakuda W, Abo M, Kobayashi K, Momosaki R, Yokoi A, Fukuda A, Ito H, Tominaga A, Umemori T, Kameda Y. Anti-spastic effect of low-frequency rTMS applied with occupational therapy in post-stroke patients with upper limb hemiparesis. Brain Inj 2011; 25:496-502. [DOI: 10.3109/02699052.2011.559610] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
237
|
Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011; 22:233-51, ix. [PMID: 21435574 PMCID: PMC3547606 DOI: 10.1016/j.nec.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.
Collapse
Affiliation(s)
- Umer Najib
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Dylan Edwards
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Non-Invasive Brain Stimulation and the Human Motor Control Laboratory, Burke Medical Research Institute, Inc, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Alexander Rotenberg
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Institut Guttman de Neurorehabilitació, Institut Universitari, Universitat Autonoma de Barcelona, Camí de Can Ruti s/n, 08916 Badalona, Spain
| |
Collapse
|
238
|
Kakuda W, Abo M, Kobayashi K, Momosaki R, Yokoi A, Fukuda A, Ito H, Tominaga A. Combination treatment of low-frequency rTMS and occupational therapy with levodopa administration: an intensive neurorehabilitative approach for upper limb hemiparesis after stroke. Int J Neurosci 2011; 121:373-8. [PMID: 21426243 DOI: 10.3109/00207454.2011.560314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The combination treatment of low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy was applied with concomitant oral administration of levodopa in five post-stroke patients with upper limb hemiparesis (age at treatment: 56-66 years; interval between onset of stroke and treatment: 18-143 months) as a 15-day inpatient protocol. Daily levodopa administration of 100 mg was initiated 1 week before admission and continued until 4 weeks after discharge. Low-frequency rTMS of 1 Hz was applied to the contralesional hemisphere for 40 min daily (two 20-min sessions) combined with intensive occupational therapy consisting of 60-min one-on-one training and 60-min self-exercise. Motor function of the affected upper limb was serially evaluated with the Fugl-Meyer Assessment and the Wolf Motor Function Test. At the end of the treatment, all patients showed improved motor function in the affected upper limbs. In some patients, the improvement was maintained until 4 weeks after discharge. No patient showed any adverse effect from the intervention. Our proposed protocol featuring levodopa administration, low-frequency rTMS, and intensive occupational therapy could provide a safe and feasible intervention for upper limb hemiparesis after stroke.
Collapse
Affiliation(s)
- Wataru Kakuda
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Bashir S, Mizrahi I, Weaver K, Fregni F, Pascual-Leone A. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. PM R 2011; 2:S253-68. [PMID: 21172687 DOI: 10.1016/j.pmrj.2010.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 01/21/2023]
Abstract
Despite intensive efforts to improve outcomes after acquired brain injury, functional recovery is often limited. One reason for this limitation is the challenge in assessing and guiding plasticity after brain injury. In this context, transcranial magnetic stimulation (TMS), a noninvasive tool of brain stimulation, could play a major role. TMS has been shown to be a reliable tool for measuring plastic changes in the motor cortex associated with interventions in the motor system, such as motor training and motor cortex stimulation. In addition, as illustrated by the experience in promoting recovery from stroke, TMS is a promising therapeutic tool to minimize motor, speech, cognitive, and mood deficits. In this review, we will focus on stroke to discuss how TMS can provide insights into the mechanisms of neurologic recovery and how it can be used for measurement and modulation of plasticity after an acquired brain insult.
Collapse
Affiliation(s)
- Shahid Bashir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
240
|
Abstract
Current understanding of brain plasticity has lead to new approaches in ischemic stroke rehabilitation. Stroke units that combine good medical and nursing care with task-oriented intense training in an environment that provides confidence, stimulation and motivation significantly improve outcome. Repetitive trans-cranial magnetic stimulation (rTMS), and trans-cranial direct current stimulation (tDCS) are applied in rehabilitation of motor function. The long-term effect, optimal way of stimulation and possibly efficacy in cognitive rehabilitation need evaluation. Methods based on multisensory integration of motor, cognitive, and perceptual processes including action observation, mental training, and virtual reality are being tested. Different approaches of intensive aphasia training are described. Recent data on intensive melodic intonation therapy indicate that even patients with very severe non-fluent aphasia can regain speech through homotopic white matter tract plasticity. Music therapy is applied in motor and cognitive rehabilitation. To avoid the confounding effect of spontaneous improvement, most trials are preformed ≥3 months post stroke. Randomized controlled trials starting earlier after strokes are needed. More attention should be given to stroke heterogeneity, cognitive rehabilitation, and social adjustment and to genetic differences, including the role of BDNF polymorphism in brain plasticity.
Collapse
Affiliation(s)
- B B Johansson
- Department of Clinical Neuroscience, Wallenberg Neuroscience Center, Lund University, Sweden.
| |
Collapse
|
241
|
Fricke K, Seeber AA, Thirugnanasambandam N, Paulus W, Nitsche MA, Rothwell JC. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J Neurophysiol 2011; 105:1141-9. [DOI: 10.1152/jn.00608.2009] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several mechanisms have been proposed that control the amount of plasticity in neuronal circuits and guarantee dynamic stability of neuronal networks. Homeostatic plasticity suggests that the ease with which a synaptic connection is facilitated/suppressed depends on the previous amount of network activity. We describe how such homeostatic-like interactions depend on the time interval between two conditioning protocols and on the duration of the preconditioning protocol. We used transcranial direct current stimulation (tDCS) to produce short-lasting plasticity in the motor cortex of healthy humans. In the main experiment, we compared the aftereffect of a single 5-min session of anodal or cathodal tDCS with the effect of a 5-min tDCS session preceded by an identical 5-min conditioning session administered 30, 3, or 0 min beforehand. Five-minute anodal tDCS increases excitability for about 5 min. The same duration of cathodal tDCS reduces excitability. Increasing the duration of tDCS to 10 min prolongs the duration of the effects. If two 5-min periods of tDCS are applied with a 30-min break between them, the effect of the second period of tDCS is identical to that of 5-min stimulation alone. If the break is only 3 min, then the second session has the opposite effect to 5-min tDCS given alone. Control experiments show that these shifts in the direction of plasticity evolve during the 10 min after the first tDCS session and depend on the duration of the first tDCS but not on intracortical inhibition and facilitation. The results are compatible with a time-dependent “homeostatic-like” rule governing the response of the human motor cortex to plasticity probing protocols.
Collapse
Affiliation(s)
- K. Fricke
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, United Kingdom; and
- Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - A. A. Seeber
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, United Kingdom; and
- Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | | | - W. Paulus
- Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - M. A. Nitsche
- Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - J. C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, United Kingdom; and
| |
Collapse
|
242
|
Abstract
Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain-computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.
Collapse
Affiliation(s)
- Michael A Dimyan
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-1428, USA
| | | |
Collapse
|
243
|
Kang EK, Kim YK, Sohn HM, Cohen LG, Paik NJ. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restor Neurol Neurosci 2011; 29:141-52. [PMID: 21586821 PMCID: PMC4886370 DOI: 10.3233/rnn-2011-0587] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Previous reports have suggested that noninvasive cortical stimulation could influence speech production in patients with chronic stroke. Here, we evaluated the hypothesis that cathodal transcranial DC stimulation (ctDCS), a technique that decreases excitability of stimulated cortical sites, applied over a healthy right Broca's homologue area could improve picture naming in patients with post-stroke aphasia. METHODS Ten right-handed patients with post-stroke aphasia were enrolled in this double blind, counterbalanced sham-controlled, crossover study. Each patient received an intervention of ctDCS (2 mA for 20 min) and of sham tDCS (2 mA for 1 min) daily for 5 consecutive days in a randomized crossover manner with a minimum interval of one week between interventions, over a healthy right Broca's homologue area using a left supraorbital anode and simultaneous daily sessions of conventional word-retrieval training. The primary endpoint measure of this study was a standardized, validated Korean version of the Boston Naming Test, which is a measure of picture naming skills. RESULTS ctDCS was not found to have any adverse effects. Furthermore, significantly improved picture naming (p = 0.02) was observed at 1 hour following the last (5th) ctDCS treatment session, but no changes were observed after sham tDCS. CONCLUSION These results demonstrate that cathodal tDCS over the right healthy Broca's homologue area with a left supraorbital anodal location can improve picture naming task performance in post-stroke aphasia.
Collapse
Affiliation(s)
- Eun Kyoung Kang
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Rehabilitation Medicine, Seoul Bukbu Geriatric Hospital, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hae Min Sohn
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Leonardo G. Cohen
- Human Cortical Physiology Section and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
244
|
Barthélemy D, Grey MJ, Nielsen JB, Bouyer L. Involvement of the corticospinal tract in the control of human gait. PROGRESS IN BRAIN RESEARCH 2011; 192:181-97. [PMID: 21763526 DOI: 10.1016/b978-0-444-53355-5.00012-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Given the inherent mechanical complexity of human bipedal locomotion, and that complete spinal cord lesions in human leads to paralysis with no recovery of gait, it is often suggested that the corticospinal tract (CST) has a more predominant role in the control of walking in humans than in other animals. However, what do we actually know about the contribution of the CST to the control of gait? This chapter will provide an overview of this topic based on the premise that a better understanding of the role of the CST in gait will be essential for the design of evidence-based approaches to rehabilitation therapy, which will enhance gait ability and recovery in patients with lesions to the central nervous system (CNS). We review evidence for the involvement of the primary motor cortex and the CST during normal and perturbed walking and during gait adaptation. We will also discuss knowledge on the CST that has been gained from studies involving CNS lesions, with a particular focus on recent data acquired in people with spinal cord injury.
Collapse
Affiliation(s)
- Dorothy Barthélemy
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
245
|
Abstract
The past decade of neuroscience research has provided considerable evidence that the adult brain can undergo substantial reorganization following injury. For example, following an ischemic lesion, such as occurs following a stroke, there is a cascade of molecular, genetic, physiological and anatomical events that allows the remaining structures in the brain to reorganize. Often, these events are associated with recovery, suggesting that they contribute to it. Indeed, the term plasticity in stroke research has had a positive connotation historically. But more recently, efforts have been made to differentiate beneficial from detrimental changes. These notions are timely now that neurorehabilitative research is developing novel treatments to modulate, increase, or inhibit plasticity in targeted brain regions. We will review basic principles of plasticity and some of the new and exciting approaches that are currently being investigated to shape plasticity following injury in the central nervous system.
Collapse
Affiliation(s)
- Numa Dancause
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
246
|
Rizzo V, Bove M, Naro A, Tacchino A, Mastroeni C, Avanzino L, Crupi D, Morgante F, Siebner H, Quartarone A. Associative cortico-cortical plasticity may affect ipsilateral finger opposition movements. Behav Brain Res 2011; 216:433-9. [DOI: 10.1016/j.bbr.2010.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 11/29/2022]
|
247
|
Cortical Stimulation as an Adjuvant to Upper Limb Rehabilitation After Stroke. PM R 2010; 2:S269-78. [DOI: 10.1016/j.pmrj.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022]
|
248
|
Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev 2010. [DOI: 10.1002/14651858.cd008862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
249
|
The effects of paired associative stimulation on knee extensor motor excitability of individuals post-stroke: a pilot study. Clin Neurophysiol 2010; 122:1211-8. [PMID: 21130032 DOI: 10.1016/j.clinph.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. METHODS PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (% FLEXVM) was examined before and after PAS. RESULTS Inhibitory PAS reduced VM MEP amplitudes in the target limb (p<0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb % FLEXVM was not altered by inhibitory PAS. CONCLUSIONS These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. SIGNIFICANCE The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke.
Collapse
|
250
|
Low-frequency repetitive transcranial magnetic stimulation and intensive occupational therapy for poststroke patients with upper limb hemiparesis: preliminary study of a 15-day protocol. Int J Rehabil Res 2010; 33:339-45. [DOI: 10.1097/mrr.0b013e32833cdf10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|