201
|
Jensen MØ, Mouritsen OG. Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys J 2006; 90:2270-84. [PMID: 16399837 PMCID: PMC1403167 DOI: 10.1529/biophysj.105.073965] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022] Open
Abstract
From equilibrium molecular dynamics simulations we have determined single-channel water permeabilities for Escherichia coli aquaporin Z (AqpZ) and aquaglyceroporin GlpF with the channels embedded in lipid bilayers. GlpF's osmotic water permeability constant pf exceeds by 2-3 times that of AqpZ and the diffusive permeability constant (pd) of GlpF is found to exceed that of AqpZ 2-9-fold. Achieving complete water selectivity in AqpZ consequently implies lower transport rates overall relative to the less selective, wider channel of GlpF. For AqpZ, the ratio pf/pd congruent with 12 is close to the average number of water molecules in the channel lumen, whereas for GlpF, pf/pd congruent with 4. This implies that single-file structure of the luminal water is more pronounced for AqpZ, the narrower channel of the two. Electrostatics profiles across the pore lumens reveal that AqpZ significantly reinforces water-channel interactions, and weaker water-water interactions in turn suppress water-water correlations relative to GlpF. Consequently, suppressed water-water correlations across the narrow selectivity filter become a key structural determinant for water permeation causing luminal water to permeate slower across AqpZ.
Collapse
Affiliation(s)
- Morten Ø Jensen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
202
|
Hachez C, Zelazny E, Chaumont F. Modulating the expression of aquaporin genes in planta: A key to understand their physiological functions? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1142-56. [PMID: 16580626 DOI: 10.1016/j.bbamem.2006.02.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/02/2006] [Accepted: 02/14/2006] [Indexed: 12/01/2022]
Abstract
Aquaporins (AQPs) are believed to act as "cellular plumbers", allowing plants to rapidly alter their membrane water permeability in response to environmental cues. This study of AQP regulation at both the RNA and protein levels has revealed a large number of possible mechanisms. Currently, modulation of AQP expression in planta is considered the strategy of choice for elucidating the role of AQPs in plant physiology. This review highlights the fact that this strategy is complicated by many factors, such as the incomplete characterization of transport selectivity of the targeted AQP, the fact that AQPs might act as multifunctional channels with multiple physiological roles, and the number of post-translational regulation mechanisms. The classification of AQPs as constitutive or stress-responsive isoforms is also proposed.
Collapse
Affiliation(s)
- Charles Hachez
- Unité de Biochimie physiologique, Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
203
|
Gonçalves RP, Scheuring S. Manipulating and imaging individual membrane proteins by AFM. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2350] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
204
|
Jiang J, Daniels BV, Fu D. Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel. J Biol Chem 2006; 281:454-60. [PMID: 16239219 DOI: 10.1074/jbc.m508926200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AqpZ is a homotetramer of four water-conducting channels that facilitate rapid water movements across the plasma membrane of Escherichia coli. Here we report a 3.2 angstroms crystal structure of the tetrameric AqpZ (tAqpZ). All channel-lining residues in the four monomeric channels are found orientated in nearly identical positions with one marked exception at the narrowest channel constriction, where the side chain of a highly conserved Arg-189 adopts two distinct conformational orientations. In one of the four monomers, the guanidino group of Arg-189 points toward the periplasmic vestibule, opening up the constriction to accommodate the binding of a water molecule through a tridentate H-bond. In the other three monomers, the Arg-189 guanidino group bends over to form an H-bond with carbonyl oxygen of the Thr-183, thus occluding the channel. Therefore, the tAqpZ structure reveals two distinct Arg-189 confirmations associated with water permeation through the channel constrictions. Alternation between the two Arg-189 conformations disrupts continuous flow of water, thus regulating the open probability of the water pore. Further, the difference in Arg-189 displacements is correlated with a strong electron density found between the first transmembrane helices of two open channels, suggesting that the observed Arg-189 conformations are stabilized by asymmetrical subunit interactions in tAqpZ.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | |
Collapse
|
205
|
Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005; 438:633-8. [PMID: 16319884 PMCID: PMC1350984 DOI: 10.1038/nature04321] [Citation(s) in RCA: 494] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 10/12/2005] [Indexed: 11/09/2022]
Abstract
Lens-specific aquaporin-0 (AQP0) functions as a specific water pore and forms the thin junctions between fibre cells. Here we describe a 1.9 A resolution structure of junctional AQP0, determined by electron crystallography of double-layered two-dimensional crystals. Comparison of junctional and non-junctional AQP0 structures shows that junction formation depends on a conformational switch in an extracellular loop, which may result from cleavage of the cytoplasmic amino and carboxy termini. In the centre of the water pathway, the closed pore in junctional AQP0 retains only three water molecules, which are too widely spaced to form hydrogen bonds with each other. Packing interactions between AQP0 tetramers in the crystalline array are mediated by lipid molecules, which assume preferred conformations. We were therefore able to build an atomic model for the lipid bilayer surrounding the AQP0 tetramers, and we describe lipid-protein interactions.
Collapse
Affiliation(s)
- Tamir Gonen
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Hashido M, Ikeguchi M, Kidera A. Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF. FEBS Lett 2005; 579:5549-52. [PMID: 16225876 DOI: 10.1016/j.febslet.2005.09.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/01/2005] [Accepted: 09/08/2005] [Indexed: 11/23/2022]
Abstract
Molecular dynamics simulations were performed for four members of the aquaporin family (AQP1, AQPZ, AQP0, and GlpF) in the explicit membrane environment. The single-channel water permeability, pf, was evaluated to be GlpF approximately AQPZ > AQP1 >> AQP0, while their relative pore sizes were GlpF >> AQP1 > AQPZ >> AQP0. This relation between pf and pore size indicates that water permeability was determined not only by the channel radius, but also another competing factor. Analysis of water dynamics revealed that this factor was the single-file nature of water transport.
Collapse
Affiliation(s)
- Masanori Hashido
- International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi-ku, Japan
| | | | | |
Collapse
|
207
|
Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating. Nature 2005; 439:688-94. [PMID: 16340961 DOI: 10.1038/nature04316] [Citation(s) in RCA: 584] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022]
Abstract
Plants counteract fluctuations in water supply by regulating all aquaporins in the cell plasma membrane. Channel closure results either from the dephosphorylation of two conserved serine residues under conditions of drought stress, or from the protonation of a conserved histidine residue following a drop in cytoplasmic pH due to anoxia during flooding. Here we report the X-ray structure of the spinach plasma membrane aquaporin SoPIP2;1 in its closed conformation at 2.1 A resolution and in its open conformation at 3.9 A resolution, and molecular dynamics simulations of the initial events governing gating. In the closed conformation loop D caps the channel from the cytoplasm and thereby occludes the pore. In the open conformation loop D is displaced up to 16 A and this movement opens a hydrophobic gate blocking the channel entrance from the cytoplasm. These results reveal a molecular gating mechanism which appears conserved throughout all plant plasma membrane aquaporins.
Collapse
Affiliation(s)
- Susanna Törnroth-Horsefield
- Department of Chemistry and Bioscience, Chalmers University of Technology, P O Box 462, SE-40530 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Jensen MØ, Röthlisberger U, Rovira C. Hydroxide and proton migration in aquaporins. Biophys J 2005; 89:1744-59. [PMID: 15951380 PMCID: PMC1366678 DOI: 10.1529/biophysj.104.058206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/10/2005] [Indexed: 11/18/2022] Open
Abstract
Hypothetical hydroxide and proton migration along the linear water chain in Aquaporin GlpF from Escherichia coli are studied by ab initio Car-Parrinello molecular dynamics simulations. It is found that the protein stabilizes a bipolar single file of water. The single file features a contiguous set of water-water hydrogen bonds in which polarization of the water molecules vary with position along the channel axis. Deprotonation of the water chain promotes the reorientation of water molecules while the hydroxide ion rapidly migrates by sequentially accepting protons from the neighboring water molecules. The hydroxide ion is not attracted by a conserved, channel-lining arginine residue, but is immobilized at two centrally located, conserved Asparagine-Proline-Alanine motifs where fourfold coordination stabilizes the ion. Hydroxide transition from the channel vestibules into the channel lumen is strongly influenced by electrostatic coupling to two conserved oppositely aligned macrodipoles. This suggests that the macrodipole's negative poles play a role in preventing hydroxide ions from entering into the channel's inner vestibules. Water protonation within the lumen facilitates water reorientation and subsequent proton expelling occurs. In the periplasmic half-channel, expelling occurs via the Grotthuss mechanism. Protonation within the cytoplasmic half-channel implies wire-breakage at the Asn-Pro-Ala motifs. The proton is here diffusively rejected as (H(5)O(2))(+).
Collapse
Affiliation(s)
- Morten Ø Jensen
- MEMPHYS Center for Biomembrane Physics, Department of Physics, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
209
|
Gustavsson S, Lebrun AS, Nordén K, Chaumont F, Johanson U. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. PLANT PHYSIOLOGY 2005; 139:287-95. [PMID: 16113222 PMCID: PMC1203378 DOI: 10.1104/pp.105.063198] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A gene encoding a novel fifth type of major intrinsic protein (MIP) in plants has been identified in the moss Physcomitrella patens. Phylogenetic analyses show that this protein, GlpF-like intrinsic protein (GIP1;1), is closely related to a subclass of glycerol transporters in bacteria that in addition to glycerol are highly permeable to water. A likely explanation of the occurrence of this bacterial-like MIP in P. patens is horizontal gene transfer. The expressed P. patens GIP1;1 gene contains five introns and encodes a unique C-loop extension of approximately 110 amino acid residues that has no obvious similarity with any other known protein. Based on alignments and structural comparisons with other MIPs, GIP1;1 is suggested to have retained the permeability for glycerol but not for water. Studies on heterologously expressed GIP1;1 in Xenopus laevis oocytes confirm the predicted substrate specificity. Interestingly, proteins of one of the plant-specific subgroups of MIPs, the NOD26-like intrinsic proteins, are also facilitating the transport of glycerol and have previously been suggested to have evolved from a horizontally transferred bacterial gene. Further studies on localization and searches for GIP1;1 homologs in other plants will clarify the function and significance of this new plant MIP.
Collapse
Affiliation(s)
- Sofia Gustavsson
- Department of Plant Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | |
Collapse
|
210
|
Kukulski W, Schenk AD, Johanson U, Braun T, de Groot BL, Fotiadis D, Kjellbom P, Engel A. The 5A structure of heterologously expressed plant aquaporin SoPIP2;1. J Mol Biol 2005; 350:611-6. [PMID: 15964017 DOI: 10.1016/j.jmb.2005.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 11/29/2022]
Abstract
SoPIP2;1 is one of the major integral proteins in spinach leaf plasma membranes. In the Xenopus oocyte expression system its water channel activity is regulated by phosphorylation at the C terminus and in the first cytosolic loop. To assess its structure, SoPIP2;1 was heterologously expressed in Pichia pastoris as a His-tagged protein and in the non-tagged form. Both forms were reconstituted into 2D crystals in the presence of lipids. Tubular crystals and double-layered crystalline sheets of non-tagged SoPIP2;1 were observed and analyzed by cryo-electron microscopy. Crystalline sheets were highly ordered and diffracted electrons to a resolution of 2.96A. High-resolution projection maps of tilted specimens provided a 3D structure at 5A resolution. Superposition of the SoPIP2;1 potential map with the atomic model of AQP1 demonstrates the generally well conserved overall structure of water channels. Differences concerning the extracellular loop A explain the particular crystal contacts between oppositely oriented membrane sheets of SoPIP2;1 2D crystals, and may have a function in rapid volume changes observed in stomatal guard cells or mesophyll protoplasts. This crystal packing arrangement provides access to the phosphorylated C terminus as well as the loop B phosphorylation site for studies of channel gating.
Collapse
Affiliation(s)
- W Kukulski
- Maurice E. Müller Institute for Microscopy, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Wang Y, Schulten K, Tajkhorshid E. What Makes an Aquaporin a Glycerol Channel? A Comparative Study of AqpZ and GlpF. Structure 2005; 13:1107-18. [PMID: 16084383 DOI: 10.1016/j.str.2005.05.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/30/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
The recent availability of high-resolution structures of two structurally highly homologous, but functionally distinct aquaporins from the same species, namely Escherichia coli AqpZ, a pure water channel, and GlpF, a glycerol channel, presents a unique opportunity to understand the mechanism of substrate selectivity in these channels. Comparison of the free energy profile of glycerol conduction through AqpZ and GlpF reveals a much larger barrier in AqpZ (22.8 kcal/mol) than in GlpF (7.3 kcal/mol). In either channel, the highest barrier is located at the selectivity filter. Analysis of substrate-protein interactions suggests that steric restriction of AqpZ is the main contribution to this large barrier. Another important difference is the presence of a deep energy well at the periplasmic vestibule of GlpF, which was not found in AqpZ. The latter difference can be attributed to the more pronounced structural asymmetry of GlpF, which may play a role in attracting glycerol.
Collapse
Affiliation(s)
- Yi Wang
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
212
|
Gagnon DG, Holt A, Bourgeois F, Wallendorff B, Coady MJ, Lapointe JY. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:173-84. [PMID: 15904891 DOI: 10.1016/j.bbamem.2005.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/29/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.
Collapse
Affiliation(s)
- Dominique G Gagnon
- Groupe d'étude des protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succ. centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
213
|
Schenk AD, Werten PJL, Scheuring S, de Groot BL, Müller SA, Stahlberg H, Philippsen A, Engel A. The 4.5Å Structure of Human AQP2. J Mol Biol 2005; 350:278-89. [PMID: 15922355 DOI: 10.1016/j.jmb.2005.04.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 04/02/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Located in the principal cells of the collecting duct, aquaporin-2 (AQP2) is responsible for the regulated water reabsorption in the kidney and is indispensable for the maintenance of body water balance. Disregulation or malfunctioning of AQP2 can lead to severe diseases such as nephrogenic diabetes insipidus, congestive heart failure, liver cirrhosis and pre-eclampsia. Here we present the crystallization of recombinantly expressed human AQP2 into two-dimensional protein-lipid arrays and their structural characterization by atomic force microscopy and electron crystallography. These crystals are double-layered sheets that have a diameter of up to 30 microm, diffract to 3 A(-1) and are stacked by contacts between their cytosolic surfaces. The structure determined to 4.5 A resolution in the plane of the membrane reveals the typical aquaporin fold but also a particular structure between the stacked layers that is likely to be related to the cytosolic N and C termini.
Collapse
Affiliation(s)
- Andreas D Schenk
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Lolkema JS, Sobczak I, Slotboom DJ. Secondary transporters of the 2HCT family contain two homologous domains with inverted membrane topology and trans re-entrant loops. FEBS J 2005; 272:2334-44. [PMID: 15853816 DOI: 10.1111/j.1742-4658.2005.04665.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.
Collapse
Affiliation(s)
- Juke S Lolkema
- Molecular Microbiology, Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands.
| | | | | |
Collapse
|
215
|
Abstract
The determination of the structure of several members of the K+ channel and aquaporin family represents a unique opportunity to explain the mechanism of these biomolecular systems. With their ability to go beyond static structures, molecular dynamics simulations offer a unique route for relating functional properties to membrane channel structure. The recent progress in this area is reviewed.
Collapse
Affiliation(s)
- Benoit Roux
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
216
|
Li H, Qian L, Chen Z, Thibault D, Liu G, Liu T, Thanassi DG. The Outer Membrane Usher Forms a Twin-pore Secretion Complex. J Mol Biol 2004; 344:1397-407. [PMID: 15561151 DOI: 10.1016/j.jmb.2004.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/24/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
The PapC usher is an outer membrane protein required for assembly and secretion of P pili in uropathogenic Escherichia coli. P pilus biogenesis occurs by the chaperone/usher pathway, a terminal branch of the general secretory pathway. Periplasmic chaperone-subunit complexes target to the PapC usher for fiber assembly and secretion through the usher to the cell surface. The molecular details of pilus biogenesis at the usher, and protein secretion across the outer membrane in general, are unclear. We studied the structure and oligomeric state of PapC by gel filtration, dynamic light scattering, and electron microscopy and image analysis. Two-dimensional crystals of wild-type PapC and a C-terminal deletion mutant of PapC were produced by reconstituting detergent purified usher into E.coli lipids. PapC formed a dimer both in detergent solution and in the phospholipid bilayer. Cryo-electron microscopy revealed that the usher forms a twin-pore complex. Removal of the C-terminal domain did not change the basic shape of the PapC molecule, but altered the dimeric association of the usher, suggesting that the C terminus forms part of the dimerization interface. The overall molecular size (11 nm), pore size (2 nm), and twin-pore configuration of PapC resemble that of the Tom40 complex, a mitochondrial outer membrane protein translocase.
Collapse
Affiliation(s)
- Huilin Li
- Biology Department, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Saladino AC, Xu Y, Tang P. Homology modeling and molecular dynamics simulations of transmembrane domain structure of human neuronal nicotinic acetylcholine receptor. Biophys J 2004; 88:1009-17. [PMID: 15574706 PMCID: PMC1305108 DOI: 10.1529/biophysj.104.053421] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A three-dimensional model of the transmembrane domain of a neuronal-type nicotinic acetylcholine receptor (nAChR), (alpha4)2(beta2)3, was constructed from a homology structure of the muscle-type nAChR recently determined by cryo-electron microscopy. The neuronal channel model was embedded in a fully hydrated DMPC lipid bilayer, and molecular-dynamics simulations were performed for 5 ns. A comparative analysis of the neuronal- versus muscle-type nAChR models revealed many conserved pore-lining residues, but an important difference was found near the periplasmic mouth of the pore. A flickering salt-bridge of alpha4-E266 with its adjacent beta2-K260 was observed in the neuronal-type channel during the course of the molecular-dynamics simulations. The narrowest region, with a pore radius of approximately 2 A formed by the salt-bridges, does not seem to be the restriction site for a continuous water passage. Instead, two hydrophobic rings, formed by alpha4-V259, alpha4-L263, and the homologous residues in the beta2-subunits, act as the gates for water flow, even though the region has a slightly larger pore radius. The model offers new insight into the water transport across the (alpha4)2(beta2)3 nAChR channel, and may lead to a better understanding of the structures, dynamics, and functions of this family of ion channels.
Collapse
MESH Headings
- Amino Acid Sequence
- Computer Simulation
- Diffusion
- Dimyristoylphosphatidylcholine/chemistry
- Lipid Bilayers/chemistry
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Motion
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Neurons/chemistry
- Neurons/metabolism
- Porosity
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Nicotinic/analysis
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/ultrastructure
- Sequence Analysis, Protein/methods
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Water/chemistry
Collapse
Affiliation(s)
- Alexander C Saladino
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
218
|
Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schjoerring JK. Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 2004; 574:31-6. [PMID: 15358535 DOI: 10.1016/j.febslet.2004.08.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 07/30/2004] [Accepted: 08/03/2004] [Indexed: 11/24/2022]
Abstract
Using functional complementation and a yeast mutant deficient in ammonium (NH4+) transport (Deltamep1-3), three wheat (Triticum aestivum) TIP2 aquaporin homologues were isolated that restored the ability of the mutant to grow when 2 mM NH4+ was supplied as the sole nitrogen source. When expressed in Xenopus oocytes, TaTIP2;1 increased the uptake of NH4+ analogues methylammonium and formamide. Furthermore, expression of TaTIP2;1 increased acidification of the oocyte-bathing medium containing NH4+ in accordance with NH3 diffusion through the aquaporin. Homology modeling of TaTIP2;1 in combination with site directed mutagenesis suggested a new subgroup of NH3-transporting aquaporins here called aquaammoniaporins. Mammalian AQP8 sharing the aquaammoniaporin signature also complemented NH4+ transport deficiency in yeast.
Collapse
Affiliation(s)
- Thomas P Jahn
- Plant Nutrition Laboratory, Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM. The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc Natl Acad Sci U S A 2004; 101:14045-50. [PMID: 15377788 PMCID: PMC521118 DOI: 10.1073/pnas.0405274101] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 11/18/2022] Open
Abstract
We determined the x-ray structure of bovine aquaporin 0 (AQP0) to a resolution of 2.2 A. The structure of this eukaryotic, integral membrane protein suggests that the selectivity of AQP0 for water transport is based on the identity and location of signature amino acid residues that are hallmarks of the water-selective arm of the AQP family of proteins. Furthermore, the channel lumen is narrowed only by two, quasi-2-fold related tyrosine side chains that might account for reduced water conductance relative to other AQPs. The channel is functionally open to the passage of water because there are eight discreet water molecules within the channel. Comparison of this structure with the recent electron-diffraction structure of the junctional form of sheep AQP0 at pH 6.0 that was interpreted as closed shows no global change in the structure of AQP0 and only small changes in side-chain positions. We observed no structural change to the channel or the molecule as a whole at pH 10, which could be interpreted as the postulated pH-gating mechanism of AQP0-mediated water transport at pH >6.5. Contrary to the electron-diffraction structure, the comparison shows no evidence of channel gating induced by association of the extracellular domains of AQP0 at pH 6.0. Our structure aids the analysis of the interaction of the extracellular domains and the possibility of a cell-cell adhesion role for AQP0. In addition, our structure illustrates the basis for formation of certain types of cataracts that are the result of mutations.
Collapse
Affiliation(s)
- William E C Harries
- Macromolecular Structure Group, Department of Biochemistry and Biophysics, University of California, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | | | | | |
Collapse
|
220
|
Miloshevsky GV, Jordan PC. Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study. Biophys J 2004; 87:3690-702. [PMID: 15377535 PMCID: PMC1304883 DOI: 10.1529/biophysj.104.043315] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinetic Monte Carlo reaction-path-following technique is applied to determine the lowest-energy water pathway and the coordinating amino acids in bAQP1 and GlpF channels, both treated as rigid. In bAQP1, water molecules pass through the pore between the asparagine-proline-alanine (NPA) and selectivity filter (SF) sites one at a time. The water chain is interrupted at the SF where one water forms three stable hydrogen bonds with protein atoms. In this SF, water's conformation depends on the protonation locus of H182. In GlpF, two water molecules bond simultaneously to the NPA asparagines and pass through the SF in zigzag fashion. No water single-file forms in rigid GlpF. To accommodate a single file of waters requires narrowing the GlpF pore. Our results reveal that in both proteins a proposed bipolar water arrangement is thermally disrupted in the NPA region, especially in the cytoplasmic part of the pore. The equilibrium hydrogen-bonded chain is occasionally interrupted in the hydrophobic zones adjacent to the NPA motifs. The permeation of alkali cations through bAQP1 and GlpF is barred due to a large free-energy barrier in the NPA region as well as a large energy barrier blocking entry from the cytoplasm. Permeation of halides is prevented due to two large energy barriers in the cytoplasmic and periplasmic pores as well as a large free-energy barrier barring entry from the periplasm. Our results, based on modeling charge permeation, support an electrostatic rather than orientational basis for proton exclusion. Binding within the aquaporin pore cannot compensate sufficiently for dehydration of the protonic charge; there is also an electrostatic barrier in the NPA region blocking proton transport. The highly ordered single file of waters, which is drastically interrupted at the SF of bAQP1, may also contribute to proton block.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
221
|
Senes A, Engel DE, DeGrado WF. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 2004; 14:465-79. [PMID: 15313242 DOI: 10.1016/j.sbi.2004.07.007] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Helical integral membrane proteins share several structural determinants that are widely conserved across their universe. The discovery of common motifs has furthered our understanding of the features that are important to stability in the membrane environment, while simultaneously providing clues about proteins that lack high-resolution structures. Motif analysis also helps to target mutagenesis studies, and other experimental and computational work. Three types of transmembrane motifs have recently seen interesting developments: the GxxxG motif and its like; polar and hydrogen bonding motifs; and proline motifs.
Collapse
Affiliation(s)
- Alessandro Senes
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | |
Collapse
|
222
|
Gonen T, Sliz P, Kistler J, Cheng Y, Walz T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 2004; 429:193-7. [PMID: 15141214 DOI: 10.1038/nature02503] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 03/19/2004] [Indexed: 11/09/2022]
Abstract
The lens-specific water pore aquaporin-0 (AQP0) is the only aquaporin known to form membrane junctions in vivo. We show here that AQP0 from the lens core, containing some carboxy-terminally cleaved AQP0, forms double-layered crystals that recapitulate in vivo junctions. We present the structure of the AQP0 membrane junction as determined by electron crystallography. The junction is formed by three localized interactions between AQP0 molecules in adjoining membranes, mainly mediated by proline residues conserved in AQP0s from different species but not present in most other aquaporins. Whereas all previously determined aquaporin structures show the pore in an open conformation, the water pore is closed in AQP0 junctions. The water pathway in AQP0 also contains an additional pore constriction, not seen in other known aquaporin structures, which may be responsible for pore gating.
Collapse
Affiliation(s)
- Tamir Gonen
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
223
|
Beckstein O, Sansom MSP. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys Biol 2004; 1:42-52. [PMID: 16204821 DOI: 10.1088/1478-3967/1/1/005] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial mechanosensitive channels (MscL and MscS) and perhaps in some potassium channels (e.g. KcsA, MthK and KvAP). Simplified pore models allow one to investigate the primary characteristics of a conduction pathway, namely its geometry (shape, pore length, and radius), the chemical character of the pore wall surface, and its local flexibility and surface roughness. Our extended (about 0.1 micros) molecular dynamic simulations show that a short hydrophobic pore is closed to water for radii smaller than 0.45 nm. By increasing the polarity of the pore wall (and thus reducing its hydrophobicity) the transition radius can be decreased until for hydrophilic pores liquid water is stable down to a radius comparable to a water molecule's radius. Ions behave similarly but the transition from conducting to non-conducting pores is even steeper and occurs at a radius of 0.65 nm for hydrophobic pores. The presence of water vapour in a constriction zone indicates a barrier for ion permeation. A thermodynamic model can explain the behaviour of water in nanopores in terms of the surface tensions, which leads to a simple measure of 'hydrophobicity' in this context. Furthermore, increased local flexibility decreases the permeability of polar species. An increase in temperature has the same effect, and we hypothesize that both effects can be explained by a decrease in the effective solvent-surface attraction which in turn leads to an increase in the solvent-wall surface free energy.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|