201
|
Richard J, Pacheco B, Gohain N, Veillette M, Ding S, Alsahafi N, Tolbert WD, Prévost J, Chapleau JP, Coutu M, Jia M, Brassard N, Park J, Courter JR, Melillo B, Martin L, Tremblay C, Hahn BH, Kaufmann DE, Wu X, Smith AB, Sodroski J, Pazgier M, Finzi A. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine 2016; 12:208-218. [PMID: 27633463 PMCID: PMC5078604 DOI: 10.1016/j.ebiom.2016.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV + sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV + sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1. CD4-mimetics fail to enhance recognition of infected cells by anti-cluster A antibodies (Abs). Co-receptor binding site Abs in conjunction with CD4-mimetics allow binding of Env by anti-cluster A Abs. Co-receptor binding site Abs help CD4-mimetics sensitize HIV-1-infected cells to ADCC.
HIV-1 developed sophisticated strategies to conceal vulnerable epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. CD4-mimetics (CD4mc) were shown to sensitize HIV-1-infected cells to ADCC induced by HIV + sera. Here we show that this response requires a sequential opening of Env at the surface of HIV-1-infected cells. Co-receptor binding site antibodies, also present in HIV + sera, are required to expose ADCC-mediating epitopes recognized by anti-cluster A antibodies upon CD4mc addition. The understanding of the conformational changes required to expose anti-cluster A epitopes might be important in the design of new strategies aimed at fighting HIV-1.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | | | - Neelakshi Gohain
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maxime Veillette
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nirmin Alsahafi
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - William D Tolbert
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY, USA
| | | | - Jongwoo Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Joel R Courter
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bruno Melillo
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Cécile Tremblay
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139-3583, USA; Department of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Marzena Pazgier
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
202
|
Zilker C, Kozlova D, Sokolova V, Yan H, Epple M, Überla K, Temchura V. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:173-182. [PMID: 27593489 DOI: 10.1016/j.nano.2016.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo.
Collapse
Affiliation(s)
- Claudia Zilker
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Diana Kozlova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vladimir Temchura
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
203
|
Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog 2016; 12:e1005817. [PMID: 27579713 PMCID: PMC5007037 DOI: 10.1371/journal.ppat.1005817] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
Collapse
|
204
|
Petro CD, Weinrick B, Khajoueinejad N, Burn C, Sellers R, Jacobs WR, Herold BC. HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates. JCI Insight 2016; 1. [PMID: 27536733 PMCID: PMC4985247 DOI: 10.1172/jci.insight.88529] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A single-cycle herpes simplex virus (HSV) deleted in glycoprotein D (ΔgD-2) elicited high titer HSV-specific antibodies (Abs) that (i) were rapidly transported into the vaginal mucosa; (ii) elicited antibody-dependent cell-mediated cytotoxicity but little neutralization; (iii) provided complete protection against lethal intravaginal challenge; and (iv) prevented establishment of latency in mice. However, clinical isolates may differ antigenically and impact vaccine efficacy. To determine the breadth and further define mechanisms of protection of this vaccine candidate, we tested ΔgD-2 against a panel of clinical isolates in a murine skin challenge model. The isolates were genetically diverse, as evidenced by genomic sequencing and in vivo virulence. Prime and boost immunization (s.c.) with live but not heat- or UV-inactivated ΔgD-2 completely protected mice from challenge with the most virulent HSV-1 and HSV-2 isolates. Furthermore, mice were completely protected against 100 times the lethal dose that typically kills 90% of animals (LD90) of a South African isolate (SD90), and no latent virus was detected in dorsal root ganglia. Immunization was associated with rapid recruitment of HSV-specific FcγRIII- and FcγRIV-activating IgG2 Abs into the skin, resolution of local cytokine and cellular inflammatory responses, and viral clearance by day 5 after challenge. Rapid clearance and the absence of latent virus suggest that ΔgD-2 elicits sterilizing immunity.
Collapse
Affiliation(s)
- Christopher D Petro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian Weinrick
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Clare Burn
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rani Sellers
- Histology and Comparative Pathology Facility, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
205
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
206
|
Wines BD, Vanderven HA, Esparon SE, Kristensen AB, Kent SJ, Hogarth PM. Dimeric FcγR Ectodomains as Probes of the Fc Receptor Function of Anti-Influenza Virus IgG. THE JOURNAL OF IMMUNOLOGY 2016; 197:1507-16. [PMID: 27385782 DOI: 10.4049/jimmunol.1502551] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/03/2016] [Indexed: 02/04/2023]
Abstract
Ab-dependent cellular cytotoxicity, phagocytosis, and Ag presentation are key mechanisms of action of Abs arising in vaccine or naturally acquired immunity, as well of therapeutic mAbs. Cells expressing the low-affinity FcγRs (FcγRII or CD32 and FcγRIII or CD16) are activated for these functions when receptors are aggregated following the binding of IgG-opsonized targets. Despite the diversity of the Fc receptor proteins, IgG ligands, and potential responding cell types, the induction of all FcγR-mediated responses by opsonized targets requires the presentation of multiple Fc regions in close proximity to each other. We demonstrated that such "near-neighbor" Fc regions can be detected using defined recombinant soluble (rs) dimeric low-affinity ectodomains (rsFcγR) that have an absolute binding requirement for the simultaneous engagement of two IgG Fc regions. Like cell surface-expressed FcγRs, the binding of dimeric rsFcγR ectodomains to Ab immune complexes was affected by Ab subclass, presentation, opsonization density, Fc fucosylation, or mutation. The activation of an NK cell line and primary NK cells by human IgG-opsonized influenza A hemagglutinin correlated with dimeric rsFcγRIIIa binding activity but not with Ab titer. Furthermore, the dimeric rsFcγR binding assay sensitively detected greater Fc receptor activity to pandemic H1N1 hemagglutinin after the swine influenza pandemic of 2009 in pooled human polyclonal IgG. Thus these dimeric rsFcγR ectodomains are validated, defined probes that should prove valuable in measuring the immune-activating capacity of IgG Abs elicited by infection or vaccination or experimentally derived IgG and its variants.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sandra E Esparon
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria 3052, Australia; and Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3052, Australia;
| |
Collapse
|
207
|
Kuri-Cervantes L, Fourati S, Canderan G, Sekaly RP. Systems biology and the quest for correlates of protection to guide the development of an HIV vaccine. Curr Opin Immunol 2016; 41:91-97. [PMID: 27392184 DOI: 10.1016/j.coi.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Over the last three decades, a myriad of data has been generated regarding HIV/SIV evolution, immune evasion, immune response, and pathogenesis. Much of this data can be integrated and potentially used to generate a successful vaccine. Although individual approaches have begun to shed light on mechanisms involved in vaccine-conferred protection from infection, true correlates of protection have not yet been identified. The systems biology approach helps unify datasets generated using different techniques and broaden our understanding of HIV immunopathogenesis. Moreover, systems biology is a tool that can provide correlates of protection, which can be targeted for the production of a successful HIV vaccine.
Collapse
Affiliation(s)
- Leticia Kuri-Cervantes
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA.
| |
Collapse
|
208
|
Report of the Cent Gardes HIV Vaccines Conference. Part 1: The antibody response; Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25-27 October 2015. Vaccine 2016; 34:3557-61. [PMID: 27216761 DOI: 10.1016/j.vaccine.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 01/10/2023]
Abstract
The 2015 Cent Gardes Conference on HIV vaccines took place on October 25-27 at the Merieux Foundation Conference Center in Veyrier du Lac, near Annecy, France. The meeting reviewed progress in the development of HIV vaccines and identified new directions of future research. The field has advanced incrementally over the past year but major progress will require additional information from new clinical trials. In this article, we review the presentations on humoral immune responses to HIV, and highlight the difficulty of eliciting broadly neutralizing antibodies by vaccination. Advances in cellular immunity for HIV prevention will be reviewed separately, in a following article.
Collapse
|
209
|
Buckner CM, Kardava L, Zhang X, Gittens K, Justement JS, Kovacs C, McDermott AB, Li Y, Sajadi MM, Chun TW, Fauci AS, Moir S. Maintenance of HIV-Specific Memory B-Cell Responses in Elite Controllers Despite Low Viral Burdens. J Infect Dis 2016; 214:390-8. [PMID: 27122593 DOI: 10.1093/infdis/jiw163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific B-cell responses in infected individuals are maintained by active HIV replication. Suppression of viremia by antiretroviral therapy (ART) leads to quantitative and qualitative changes that remain unclear. Accordingly, B-cell responses were investigated in elite controllers (ECs), who maintain undetectable HIV levels without ART, and in individuals whose viremia was suppressed by ART. Despite a higher HIV burden in the ART group, compared with the EC group, frequencies of HIV-specific B cells were higher in the EC group, compared with those in the ART group. However, the initiation of ART in several ECs was associated with reduced frequencies of HIV-specific B cells, suggesting that responses are at least in part sustained by HIV replication. Furthermore, B-cell responses to tetanus toxin but not influenza hemagglutinin in the ART group were lower than those in the EC group. Thus, the superior HIV-specific humoral response in ECs versus ART-treated individuals is likely due to a more intact humoral immune response in ECs and/or distinct responses to residual HIV replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Kovacs
- Department of Medicine, University of Toronto Maple Leaf Medical Clinic, Toronto, Canada
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland Department of Medicine, Baltimore VA Medical Center, Maryland
| | | | | | | |
Collapse
|
210
|
Storcksdieck genannt Bonsmann M, Niezold T, Hannaman D, Überla K, Tenbusch M. The improved antibody response against HIV-1 after a vaccination based on intrastructural help is complemented by functional CD8+ T cell responses. Vaccine 2016; 34:1744-51. [PMID: 26945099 DOI: 10.1016/j.vaccine.2016.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
Despite more than three decades of intense research, a prophylactic HIV-1 vaccine remains elusive. Four vaccine modalities have been evaluated in clinical efficacy studies, but only one demonstrated at least modest efficacy, which correlated with polyfunctional antibody responses to the HIV surface protein Env. To be most effective, a HIV-1 vaccine probably has to induce both, functional antibody and CD8(+) T cell responses. We therefore analyzed DNA/DNA and DNA/virus-like particle (VLP) regimens for their ability to induce humoral and cellular immune responses. Here, DNA vaccination of mice induced strong CD8(+) responses against Env and Gag. However, the humoral response to Env was dominated by IgG1, a subclass known for its low functionality. In contrast, priming only with the Gag-encoding plasmid followed by a boost with VLPs consisting of Gag and Env improved the quality of the anti-Env antibody response via intrastructural help (ISH) provided by Gag-specific T cells to Env-specific B cells. Furthermore, the Gag-specific CD8(+) T cells induced by the DNA prime immunization could still protect from a lethal infection with recombinant vaccinia virus encoding HIV Gag. Therefore, this immunization regimen represents a promising approach to combine functional antibody responses toward HIV Env with strong CD8(+) responses controlling early viral replication.
Collapse
Affiliation(s)
| | - Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany; Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany.
| |
Collapse
|