201
|
Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environ Microbiol 2020; 23:4896-4907. [PMID: 33368933 DOI: 10.1111/1462-2920.15376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Pore-forming toxins (PFTs) are important weapons of multiple bacterial pathogens to establish their infections. PFTs generally form pores in the plasma membrane of target cells; however, the intracellular pathogenic processes triggered after pore-formation remain poorly understood. Using Caenorhabditis elegans as a model and Bacillus thuringiensis nematicidal Cry PFTs, we show here that the localized PFT attack causes a systemic mitochondrial damage, important for the PFT toxicity. We find that PFTs punch pores only in gut cells of nematodes, but unexpectedly mitochondrial disruption is able to occur in distal unperforated regions, such as the head and muscle tissues. We demonstrate that PFTs affect the activity of the mitochondrial respiratory chain (MRC) complex I resulting in the loss of mitochondrial membrane potential (ΔΨm ), which causes further mitochondrial fragmentation and the reduction of total mitochondrial content. Worms with decreased ΔΨm or inhibited MRC activity show higher sensitivity to PFTs. The inhibition of mitochondrial fission or the increase of mitochondrial content markedly improves the survival of animals treated with PFTs. These findings suggest that mitochondrial changes underpin PFT-mediated toxicity against nematodes and that systemic mitochondrial disruption caused by localized pore-formation represents a conserved key intracellular event in the mode of action of PFTs.
Collapse
Affiliation(s)
- Jianwei Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengjuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
202
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
203
|
Liu H, Wang J, Wang D, Kong M, Ning C, Zhang X, Xiao J, Zhang X, Liu J, Zhao X. Cybrid Model Supports Mitochondrial Genetic Effect on Pig Litter Size. Front Genet 2020; 11:579382. [PMID: 33384712 PMCID: PMC7770168 DOI: 10.3389/fgene.2020.579382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
In pigs, mitochondrial DNA (mtDNA) polymorphism and the correlation to reproductive performance across breeds and individuals have been largely reported, however, experimental proof has never been provided. In this study, we analyzed 807 sows for correlation of total number born (TNB) and mitotype, which presented the maximum of 1.73 piglets for mtDNA contribution. Cybrid models representing different mitotypes were generated for identification of the mtDNA effect. Results indicated significant differences on cellular and molecular characteristics among cybrids, including energy metabolic traits, mtDNA copy numbers and transcriptions, mRNA and protein expressions on mitochondrial biogenesis genes and reproduction-related genes. Referring to mitotypes, the cybrids with prolific mitotypes presented significantly higher oxygen consumption rate (OCR) productions, mtDNA transcriptions and copy numbers than those with common mitotypes, while both mRNA and protein expressions of PPARA, TFAM, ER1, ER2, and ESRRG in prolific cybrids were significantly higher than those with common mitotypes. Cybrid models reflected the mtDNA effect on pig litter size, suggesting the potential application of mtDNA polymorphism in pig selection and breeding practices.
Collapse
Affiliation(s)
- Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Minghua Kong
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xing Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Xin Zhang
- Wenshang Professor Workstation of China Agricultural University, Jining, China.,Jining Animal Husbandry Station, Jining, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| |
Collapse
|
204
|
Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touzé N, Cohen MM. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148302. [PMID: 32861697 DOI: 10.1016/j.bbabio.2020.148302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Oznur Ozturk
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Laetitia Cavellini
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Naïma Belgareh-Touzé
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
205
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
206
|
Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance. Pharmacol Res 2020; 161:105118. [DOI: 10.1016/j.phrs.2020.105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
|
207
|
Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res 2020; 69:1077-1085. [PMID: 32767095 PMCID: PMC7410962 DOI: 10.1007/s00011-020-01389-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Decline in mitochondrial function occurs with aging and may increase mortality. We discuss mitochondrial contribution to Covid-19 sepsis, specifically the complex interaction of innate immune function, viral replication, hyper-inflammatory state, and HIF-α/Sirtuin pathways. METHODS Articles from PubMed/Medline searches were reviewed using the combination of terms "SARS-CoV-2, Covid-19, sepsis, mitochondria, aging, and immunometabolism". RESULTS Evidence indicates that mitochondria in senescent cells may be dysfunctional and unable to keep up with hypermetabolic demands associated with Covid-19 sepsis. Mitochondrial proteins may serve as damage-associated molecular pattern (DAMP) activating innate immunity. Disruption in normal oxidative phosphorylation pathways contributes to elevated ROS which activates sepsis cascade through HIF-α/Sirtuin pathway. Viral-mitochondrial interaction may be necessary for replication and increased viral load. Hypoxia and hyper-inflammatory state contribute to increased mortality associated with Covid-19 sepsis. CONCLUSIONS Aging is associated with worse outcomes in sepsis. Modulating Sirtuin activity is emerging as therapeutic agent in sepsis. HIF-α, levels of mitochondrial DNA, and other mitochondrial DAMP molecules may also serve as useful biomarker and need to be investigated. These mechanisms should be explored specifically for Covid-19-related sepsis. Understanding newly discovered regulatory mechanisms may lead to the development of novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Santosh Shenoy
- Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, 4801 E Linwood Blvd, Kansas City, MO, 64128, USA.
| |
Collapse
|
208
|
Sha W, Hu F, Bu S. Mitochondrial dysfunction and pancreatic islet β-cell failure (Review). Exp Ther Med 2020; 20:266. [PMID: 33199991 PMCID: PMC7664595 DOI: 10.3892/etm.2020.9396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β-cells are the only source of insulin in humans. Mitochondria uses pyruvate to produce ATP as an intermediate link between glucose intake and insulin secretion in β-cells, in a process known as glucose-stimulated insulin secretion (GSIS). Previous studies have demonstrated that GSIS is negatively regulated by various factors in the mitochondria, including tRNALeu mutations, high p58 expression, reduced nicotinamide nucleotide transhydrogenase activity, abnormal levels of uncoupling proteins and reduced expression levels of transcription factors A, B1 and B2. Additionally, oxidative stress damages mitochondria and impairs antioxidant defense mechanisms, leading to the increased production of reactive oxygen species, which induces β-cell dysfunction. Inflammation in islets can also damage β-cell physiology. Inflammatory cytokines trigger the release of cytochrome c from the mitochondria via the NF-κB pathway. The present review examined the potential factors underlying mitochondrial dysfunction and their association with islet β-cell failure, which may offer novel insights regarding future strategies for the preservation of mitochondrial function and enhancement of antioxidant activity for individuals with diabetes mellitus.
Collapse
Affiliation(s)
- Wenxin Sha
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
209
|
Fischer CA, Besora-Casals L, Rolland SG, Haeussler S, Singh K, Duchen M, Conradt B, Marr C. MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology. iScience 2020; 23:101601. [PMID: 33083756 PMCID: PMC7554024 DOI: 10.1016/j.isci.2020.101601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6 ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Collapse
Affiliation(s)
- Christian A. Fischer
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Laura Besora-Casals
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Stéphane G. Rolland
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Simon Haeussler
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Kritarth Singh
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Barbara Conradt
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
210
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
211
|
Xin J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, Yangji C, Chen X, Jiang H, Zhong J, Ji Q. Methylome and transcriptome profiles in three yak tissues revealed that DNA methylation and the transcription factor ZGPAT co-regulate milk production. BMC Genomics 2020; 21:731. [PMID: 33081725 PMCID: PMC7576800 DOI: 10.1186/s12864-020-07151-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Domestic yaks play an indispensable role in sustaining the livelihood of Tibetans and other ethnic groups on the Qinghai-Tibetan Plateau (QTP), by providing milk and meat. They have evolved numerous physiological adaptations to high-altitude environment, including strong blood oxygen transportation capabilities and high metabolism. The roles of DNA methylation and gene expression in milk production and high-altitudes adaptation need further exploration. Results We performed genome-wide DNA methylome and transcriptome analyses of breast, lung, and biceps brachii muscle tissues from yaks of different ages. We identified 432,350 differentially methylated regions (DMRs) across the age groups within each tissue. The post-mature breast tissue had considerably more differentially methylated regions (155,957) than that from the three younger age groups. Hypomethylated genes with high expression levels might regulate milk production by influencing protein processing in the endoplasmic reticulum. According to weighted gene correlation network analysis, the “hub” gene ZGPAT was highly expressed in the post-mature breast tissue, indicating that it potentially regulates the transcription of 280 genes that influence protein synthesis, processing, and secretion. The tissue network analysis indicated that high expression of HIF1A regulates energy metabolism in the lung. Conclusions This study provides a basis for understanding the epigenetic mechanisms underlying milk production in yaks, and the results offer insight to breeding programs aimed at improving milk production. Supplementary information Supplementary information accompanies this paper at 10.1186/s12864-020-07151-3.
Collapse
Affiliation(s)
- Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Hanwen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Cidan Yangji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xiaoying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Qiumei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China. .,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China.
| |
Collapse
|
212
|
Zhang X, Li BY, Fu LJ, Adu-Gyamfi EA, Xu BR, Liu TH, Chen XM, Lan X, Wang YX, Xu HB, Ding YB. Stomatin-like protein 2 (SLP2) regulates the proliferation and invasion of trophoblast cells by modulating mitochondrial functions. Placenta 2020; 100:13-23. [PMID: 32814233 DOI: 10.1016/j.placenta.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Stomatin-like protein 2 (SLP2) is highly expressed in human first trimester trophoblast cells, but its functions in placental morpho-physiology remain unknown. This study aimed to determine the role of SLP2 in the proliferation and invasion of human first trimester trophoblast cells. METHODS Immunofluorescence was used to determine the expression and localization of SLP2 in normal and miscarriage human first trimester placenta. Western blot was used to determine the expression of SLP2, PCNA, Cyclin D3, N-cadherin, Vimentin, PGC1α and PPARα in HTR-8/SVneo cells. SLP2 was knocked down in the HTR-8/SVneo cells by using si-Slp2. Wound healing and migration assays were used to determine the effect of SLP2 knockdown on the migration and invasion in the HTR-8/SVneo cells. Mitochondrial membrane potential, reactive oxygen species (ROS), ATP production and biogenesis were measured to assess the effects of SLP2 knockdown on mitochondrial functions. RESULT SLP2 was strongly expressed in the cytotrophoblasts (CTB), syncytiotrophoblast (STB) and extravillous trophoblasts (EVT) of normal pregnancy placenta as compared to miscarriage placenta. SLP2 was highly expressed in the invasive EVT cell lines, HTR-8/SVneo and HPT-8 compared to the CTB cell line JAR. Knockdown of SLP2 significantly inhibited the migration and invasion of HTR-8/SVneo cells and placental villous explants, and repressed mitochondrial biogenesis and functions in HTR-8/SVneo cells. DISCUSSION Silencing of SLP2 inhibited the proliferation, migration and invasion of HTR-8/SVneo cells via the impairment of mitochondrial functions. This indicates that the downregulation of SLP2 in miscarriage placenta could be part of the pathogenesis and pathophysiology of the disease.
Collapse
Affiliation(s)
- Xue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Bing-Yi Li
- Department of Obstetrics and Gyaanecology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China; Wuhan Medical & Healthcare for Woman and Children, Wuhan, 430015, PR China
| | - Li-Juan Fu
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China; School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bai-Ruo Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Xi Lan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China
| | - Hong-Bing Xu
- Department of Obstetrics and Gyaanecology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, PR China.
| |
Collapse
|
213
|
Li Z, Li X, He X, Jia X, Zhang X, Lu B, Zhao J, Lu J, Chen L, Dong Z, Liu K, Dong Z. Proteomics Reveal the Inhibitory Mechanism of Levodopa Against Esophageal Squamous Cell Carcinoma. Front Pharmacol 2020; 11:568459. [PMID: 33101026 PMCID: PMC7546765 DOI: 10.3389/fphar.2020.568459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
High recurrence rates and poor survival of patients with esophageal squamous cell carcinoma (ESCC) after treatment make ongoing research on chemoprevention drugs for ESCC particularly important. In this study, we screened a large number of FDA-approved drugs and found levodopa, a drug used to treat Parkinson's disease, had an inhibitory effect on the growth of ESCC cells. To elucidate the molecular mechanisms involved, we applied quantitative proteomics to investigate the anti-tumor activity of levodopa on ESCC. The results suggest that levodopa could down-regulate oxidative phosphorylation, non-alcoholic fatty liver disease, and Parkinson's disease pathways. Major mitochondrial respiratory compounds were involved in the pathways, including succinate dehydrogenase subunit D, NADH-ubiquinone oxidoreductase Fe-S protein 4, and mitochondrial cytochrome c oxidase subunit 3. Down-regulation of these proteins was associated with mitochondrial dysfunction. Western blotting and immunofluorescence results confirmed the proteomics findings. Cell viability assays indicated mitochondrial activity was suppressed after levodopa treatment. Reduced mitochondrial membrane potential was detected using JC-1 staining and TMRE assays. Transmission electron microscopy revealed changes in the morphology of mitochondria. Taken together, these results indicate that levodopa inhibited the growth of ESCC through restraining mitochondria function.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Lexia Chen
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
214
|
Fu Y, Wei J, Li B, Gao L, Xia P, Wen Y, Xu S. CGA ameliorates cognitive decline by regulating the PI3K/AKT signaling pathway and neurotransmitter systems in rats with multi-infarct dementia. Exp Ther Med 2020; 20:70. [PMID: 32963600 PMCID: PMC7490799 DOI: 10.3892/etm.2020.9198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Multi infarct dementia (MID) is a form of dementia that is preventable and treatable. However, at present, the drugs used in MID treatment were developed for Alzheimer's disease. While only a limited range of drugs is available, the incidence of MID is increasing year on year. The present study aimed to investigate the effect and underlying mechanisms of a combination of ginsenosides and astragalosides (CGA) on cognitive decline in rats with MID. A rat model of MID was established using micro-thromboembolism, and the behavioral changes in the rats were evaluated using the Morris water maze and open field tests at 60 days post-CGA intervention. The pathological morphology of the hippocampal CA1 area was observed using hematoxylin and eosin staining. The contents of ATP, ADP and AMP were determined using high-performance liquid chromatography. Mitochondrial swelling and changes in the membrane potential in the hippocampus were detected using flow cytometry, and the changes in insulin, glutamate and γ-aminobutyric acid (GABA) content were detected using ELISA. Additionally, the expression of PI3K and AKT proteins was detected using western blot analysis. In a rat model of MID, CGA shortened the escape latency, increased the frequency of platform crossing, improved the disordered vertebral cell arrangement and reduced the cell number in the hippocampal CA1 area. CGA also reduced the degree of mitochondrial swelling, increased the mitochondrial membrane potential, and elevated the energy load and ATP content in the brain of rats with MID. Furthermore, CGA increased the insulin content and upregulated the expression of PI3K and AKT in the brain of rats with MID. In addition, in the rat model of MID, CGA also enhanced the movement time and the frequency of standing, and decreased the concentration of glutamate and GABA in the brain tissue. Amelioration of the cognitive decline in rats with MID by CGA was associated with its regulatory effect on the PI3K/AKT signaling pathway and neurotransmitter systems.
Collapse
Affiliation(s)
- Ying Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Bin Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Geriatrics Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Lijuan Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Peng Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yueqiang Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
215
|
Shi D, Xia X, Cui A, Xiong Z, Yan Y, Luo J, Chen G, Zeng Y, Cai D, Hou L, McDermott J, Li Y, Zhang H, Han JDJ. The precursor of PI(3,4,5)P 3 alleviates aging by activating daf-18(Pten) and independent of daf-16. Nat Commun 2020; 11:4496. [PMID: 32901024 PMCID: PMC7479145 DOI: 10.1038/s41467-020-18280-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
Aging is characterized by the loss of homeostasis and the general decline of physiological functions, accompanied by various degenerative diseases and increased rates of mortality. Aging targeting small molecule screens have been performed many times, however, few have focused on endogenous metabolic intermediates-metabolites. Here, using C. elegans lifespan assays, we conducted a worm metabolite screen and identified an eukaryotes conserved metabolite, myo-inositol (MI), to extend lifespan, increase mobility and reduce fat content. Genetic analysis of enzymes in MI metabolic pathway suggest that MI alleviates aging through its derivative PI(4,5)P2. MI and PI(4,5)P2 are precursors of PI(3,4,5)P3, which is negatively related to longevity. The longevity effect of MI is dependent on the tumor suppressor gene, daf-18 (homologous to mouse Pten), independent of its classical pathway downstream genes, akt or daf-16. Furthermore, we found MI effects on aging and lifespan act through mitophagy regulator PTEN induced kinase-1 (pink-1) and mitophagy. MI's anti-aging effect is also conserved in mouse, indicating a conserved mechanism in mammals.
Collapse
Affiliation(s)
- Dawei Shi
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xian Xia
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Aoyuan Cui
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Zhongxiang Xiong
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yizhen Yan
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing Luo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Guoyu Chen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yingying Zeng
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Donghong Cai
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lei Hou
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Hong Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, 100101, Beijing, P.R. China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
216
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
217
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
218
|
Lv W, Jiang J, Li Y, Fu L, Meng F, Li J. MiR-302a-3p aggravates myocardial ischemia-reperfusion injury by suppressing mitophagy via targeting FOXO3. Exp Mol Pathol 2020; 117:104522. [PMID: 32866521 DOI: 10.1016/j.yexmp.2020.104522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to investigate whether the protection of miR-302a-3p in myocardial ischemia-reperfusion injury (MIRI) is mediated through the suppression of mitophagy. METHODS We constructed a mouse I/R model in vivo by the ligation of left anterior descending coronary artery for 45 min followed by 2 h reperfusion, and an in vitro model by treating mouse cardiomyocytes with hypoxia-reoxygenation (H/R). Knockdown experiments were then performed in vivo and in vitro to determine the effects of miR-302a-3p knockdown on the mitophagy, mitochondrial dysfunction and oxidative stress and apoptosis. The potential targets of miR-302a-3p were further studied by bioinformatics analysis, luciferase assays, quantitative real-time PCR and western blotting. RESULTS MiR-302a-3p expression was significantly upregulated in mice subjected to MIRI and in H/R-treated mouse cardiomyocytes. Functional analyses demonstrated that inhibition of miR-302a-3p protected cardiac tissues against I/R-induced apoptosis and mitophagy, mitochondrial damage and mitochondrial oxidative stress. Furthermore, FOXO3 was identified as the direct target of miR-302a-3p. Mechanistically, knockdown of FOXO3 partially reversed the cardioprotective effects of miR-302a-3p inhibitor. CONCLUSION Our study suggested that inhibition of miR-302a-3p promoted mitochondrial autophagy and inhibited oxidative stress by targeting FOXO3 to suppress myocardial apoptosis, representing a potential target for MIRI treatment.
Collapse
Affiliation(s)
- Wei Lv
- Department of Cardiology, Shengjing Hospital of China Medical University, China
| | - Jinping Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, China
| | - Yan Li
- Department of Biotherapy, Cancer Research Institute, The First affiliated hospital, China Medical University, China
| | - Liye Fu
- Department of Biotherapy, Cancer Research Institute, The First affiliated hospital, China Medical University, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, The First affiliated hospital, China Medical University, China
| | - Jun Li
- Department of Urology, The First affiliated hospital, China Medical University, China.
| |
Collapse
|
219
|
Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 2020; 11:4289. [PMID: 32855397 PMCID: PMC7453018 DOI: 10.1038/s41467-020-18039-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Older organs represent an untapped potential to close the gap between demand and supply in organ transplantation but are associated with age-specific responses to injury and increased immunogenicity, thereby aggravating transplant outcomes. Here we show that cell-free mitochondrial DNA (cf-mt-DNA) released by senescent cells accumulates with aging and augments immunogenicity. Ischemia reperfusion injury induces a systemic increase of cf-mt-DNA that promotes dendritic cell-mediated, age-specific inflammatory responses. Comparable events are observed clinically, with the levels of cf-mt-DNA elevated in older deceased organ donors, and with the isolated cf-mt-DNA capable of activating human dendritic cells. In experimental models, treatment of old donor animals with senolytics clear senescent cells and diminish cf-mt-DNA release, thereby dampening age-specific immune responses and prolonging the survival of old cardiac allografts comparable to young donor organs. Collectively, we identify accumulating cf-mt-DNA as a key factor in inflamm-aging and present senolytics as a potential approach to improve transplant outcomes and availability. Organ transplantation involving aged donors is often confounded by reduced post-transplantation organ survival. By studying both human organs and mouse transplantation models, here the authors show that pretreating the donors with senolytics to reduce mitochondria DNA and pro-inflammatory dendritic cells may help promote survival of aged organs.
Collapse
|
220
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
221
|
Effect of Triclosan Exposure on Developmental Competence in Parthenogenetic Porcine Embryo during Preimplantation. Int J Mol Sci 2020; 21:ijms21165790. [PMID: 32806749 PMCID: PMC7461051 DOI: 10.3390/ijms21165790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
Triclosan (TCS) is included in various healthcare products because of its antimicrobial activity; therefore, many humans are exposed to TCS daily. While detrimental effects of TCS exposure have been reported in various species and cell types, the effects of TCS exposure on early embryonic development are largely unknown. The aim of this study was to determine if TCS exerts toxic effects during early embryonic development using porcine parthenogenetic embryos in vitro. Porcine parthenogenetic embryos were cultured in in vitro culture medium with 50 or 100 µM TCS for 6 days. Developmental parameters including cleavage and blastocyst formation rates, developmental kinetics, and the number of blastomeres were assessed. To determine the toxic effects of TCS, apoptosis, oxidative stress, and mitochondrial dysfunction were assessed. TCS exposure resulted in a significant decrease in 2-cell rate and blastocyst formation rate, as well as number of blastomeres, but not in the cleavage rate. TCS also increased the number of apoptotic blastomeres and the production of reactive oxygen species. Finally, TCS treatment resulted in a diffuse distribution of mitochondria and decreased the mitochondrial membrane potential. Our results showed that TCS exposure impaired porcine early embryonic development by inducing DNA damage, oxidative stress, and mitochondrial dysfunction.
Collapse
|
222
|
Lovejoy DA, Hogg DW. Information Processing in Affective Disorders: Did an Ancient Peptide Regulating Intercellular Metabolism Become Co‐Opted for Noxious Stress Sensing? Bioessays 2020; 42:e2000039. [DOI: 10.1002/bies.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| | - David W. Hogg
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| |
Collapse
|
223
|
Mise K, Galvan DL, Danesh FR. Shaping Up Mitochondria in Diabetic Nephropathy. ACTA ACUST UNITED AC 2020; 1:982-992. [PMID: 34189465 DOI: 10.34067/kid.0002352020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondrial medicine has experienced significant progress in recent years and is expected to grow significantly in the near future, yielding many opportunities to translate novel bench discoveries into clinical medicine. Multiple lines of evidence have linked mitochondrial dysfunction to a variety of metabolic diseases, including diabetic nephropathy (DN). Mitochondrial dysfunction presumably precedes the emergence of key histologic and biochemical features of DN, which provides the rationale to explore mitochondrial fitness as a novel therapeutic target in patients with DN. Ultimately, the success of mitochondrial medicine is dependent on a better understanding of the underlying biology of mitochondrial fitness and function. To this end, recent advances in mitochondrial biology have led to new understandings of the potential effect of mitochondrial dysfunction in a myriad of human pathologies. We have proposed that molecular mechanisms that modulate mitochondrial dynamics contribute to the alterations of mitochondrial fitness and progression of DN. In this comprehensive review, we highlight the possible effects of mitochondrial dysfunction in DN, with the hope that targeting specific mitochondrial signaling pathways may lead to the development of new drugs that mitigate DN progression. We will outline potential tools to improve mitochondrial fitness in DN as a novel therapeutic strategy. These emerging views suggest that the modulation of mitochondrial fitness could serve as a key target in ameliorating progression of kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
224
|
Liu J, Li L, Yang Y, Hong B, Chen X, Xie Q, Han H. Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning. Front Neurosci 2020; 14:599. [PMID: 32792893 PMCID: PMC7394701 DOI: 10.3389/fnins.2020.00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Together, mitochondria and the endoplasmic reticulum (ER) occupy more than 20% of a cell's volume, and morphological abnormality may lead to cellular function disorders. With the rapid development of large-scale electron microscopy (EM), manual contouring and three-dimensional (3D) reconstruction of these organelles has previously been accomplished in biological studies. However, manual segmentation of mitochondria and ER from EM images is time consuming and thus unable to meet the demands of large data analysis. Here, we propose an automated pipeline for mitochondrial and ER reconstruction, including the mitochondrial and ER contact sites (MAMs). We propose a novel recurrent neural network to detect and segment mitochondria and a fully residual convolutional network to reconstruct the ER. Based on the sparse distribution of synapses, we use mitochondrial context information to rectify the local misleading results and obtain 3D mitochondrial reconstructions. The experimental results demonstrate that the proposed method achieves state-of-the-art performance.
Collapse
Affiliation(s)
- Jing Liu
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Li
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bei Hong
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qiwei Xie
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Data Mining Lab, Beijing University of Technology, Beijing, China
| | - Hua Han
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
225
|
Liu L, Chen Y, Zhang Q, Li C. Silencing of KCNA1 suppresses the cervical cancer development via mitochondria damage. Channels (Austin) 2020; 13:321-330. [PMID: 31354026 PMCID: PMC6682364 DOI: 10.1080/19336950.2019.1648627] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Voltage-gated potassium channel subfamily A member 1 (KCNA1/Kv1.1) is an important component of type A potassium channels, which has been found to be involved in various tumors. This study aimed to identify the role of KCNA1 in cervical cancer and explore the related mechanism. The levels of KCNA1 in cervical cancer tissues and cell lines were examined by Western blot and qPCR. Cell proliferation and invasion were assessed by CCK-8 and transwell assays, respectively. Protein levels of Hedgehog (Hhg), Wnt and Notch were detected by Western blot. The mitochondrial capacity was examined by immunostaining with MitoTracker Red CMXRos. KCNA1 was highly expressed in cervical cancer tissues and cell lines, and correlated with poor prognosis. In addition, depletion of KCNA1 suppressed growth, proliferation, migration and invasion of HeLa cells. Moreover, KCNA1 could regulate the Hhg, Wnt and Notch signaling pathways and cause mitochondrial dysfunction. The present study has demonstrated that KCNA1 is an oncogene excessively expressed in cervical cancer, and promotes tumor progression by regulating the Hhg, Wnt and Notch signaling pathways and the mitochondrial capacity. Therefore, our results provide a theoretical basis for the discovery of novel clinical treatment against cervical cancer.
Collapse
Affiliation(s)
- Li Liu
- a Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China.,b Department of Obstetrics and Gynecology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Yumei Chen
- b Department of Obstetrics and Gynecology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Qingyuan Zhang
- c Department of Neurology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Changzhong Li
- a Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| |
Collapse
|
226
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
227
|
Macedo F, Romanatto T, Gomes de Assis C, Buis A, Kowaltowski AJ, Aguilaniu H, Marques da Cunha F. Lifespan-extending interventions enhance lipid-supported mitochondrial respiration in Caenorhabditis elegans. FASEB J 2020; 34:9972-9981. [PMID: 32609395 DOI: 10.1096/fj.201901880r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 11/11/2022]
Abstract
Dietary restriction and reduced reproduction have been linked to long lifespans in the vast majority of species tested. Although decreased mitochondrial mass and/or function are hallmarks of aging, little is known about the mechanisms by which these organelles contribute to physiological aging or to the effects of lifespan-extending interventions, particularly with respect to oxidative phosphorylation and energy production. Here, we employed the nematode Caenorhabditis elegans to examine the effects of inhibition of germline proliferation and dietary restriction, both of which extend the lifespan of C. elegans, on mitochondrial respiratory activity in whole animals and isolated organelles. We found that oxygen consumption rates and mitochondrial mass were reduced in wild-type (WT) C. elegans subjected to bacterial deprivation (BD) compared with animals fed ad libitum (AL). In contrast, BD decreased the rate of oxygen uptake but not mitochondrial mass in germline-less glp-1(e2144ts) mutants. Interestingly, mitochondria isolated from animals subjected to BD and/or inhibition of germline proliferation showed no differences in complex I-mediated respiratory activity compared to control mitochondria, whereas both interventions enhanced the efficiency with which mitochondria utilized lipids as respiratory substrates. Notably, the combination of BD and inhibition of germline proliferation further increased mitochondrial lipid oxidation compared to either intervention alone. We also detected a striking correlation between lifespan extension in response to BD and/or inhibition of germline proliferation and the capacity of C. elegans to generate ATP from lipids. Our results thus suggest that the ability to oxidize lipids may be determinant in enhanced longevity.
Collapse
Affiliation(s)
- Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Talita Romanatto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Gomes de Assis
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexia Buis
- Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Aguilaniu
- Institut de Génomique Fonctionnelle de Lyon, Lyon, France.,Instituto Serrapilheira, Rio de Janeiro, Brazil.,Centre National de la Recherche Scientifique, France
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
228
|
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF, Orekhov AN. The Role of Mitochondria in Cardiovascular Diseases. BIOLOGY 2020; 9:biology9060137. [PMID: 32630516 PMCID: PMC7344641 DOI: 10.3390/biology9060137] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in cardiovascular diseases is receiving ever growing attention. As a central player in the regulation of cellular metabolism and a powerful controller of cellular fate, mitochondria appear to comprise an interesting potential therapeutic target. With the development of DNA sequencing methods, mutations in mitochondrial DNA (mtDNA) became a subject of intensive study, since many directly lead to mitochondrial dysfunction, oxidative stress, deficient energy production and, as a result, cell dysfunction and death. Many mtDNA mutations were found to be associated with chronic human diseases, including cardiovascular disorders. In particular, 17 mtDNA mutations were reported to be associated with ischemic heart disease in humans. In this review, we discuss the involvement of mitochondrial dysfunction in the pathogenesis of atherosclerosis and describe the mtDNA mutations identified so far that are associated with atherosclerosis and its risk factors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System & Central Laboratory of Pathology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya st., 125315 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)-415-9594
| |
Collapse
|
229
|
Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res 2020; 41:1-5. [PMID: 32583708 DOI: 10.1080/10799893.2020.1784938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main therapeutic strategy currently used for acute myocardial infarction (AMI) is to open occluded coronary arteries, a process defined as blood reperfusion. However, blood reperfusion will increase cardiac mortality, tissue damage and cardiac dysfunction in patients with AMI, which is mechanically defined as "ischemia/reperfusion (I/R) injury". It is currently believed that mitochondrial dynamics plays a key role in myocardial I/R, especially excessive mitochondrial fission, which is the main cause of cardiac dysfunction. Therefore, in the process of I/R injury, effective drug intervention and correct treatment strategies can be used to regulate mitochondrial dynamic balance to combat ischemia-reperfusion injury, which can play a huge role in improving the prognosis of patients. This review summarized the effects of mitochondrial fission and mitochondrial fusion balance on myocardial and mitochondrial functional changes during myocardial I/R injury. Finally, combined with the previous injury mechanisms, this review also briefly described some drug intervention that may be beneficial to clinical practice to improve the postoperative quality of life of patients with AMI.
Collapse
Affiliation(s)
- David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
230
|
Maitiabola G, Tian F, Sun H, Zhang L, Gao X, Xue B, Wang X. Proteome characteristics of liver tissue from patients with parenteral nutrition-associated liver disease. Nutr Metab (Lond) 2020; 17:43. [PMID: 32518576 PMCID: PMC7268697 DOI: 10.1186/s12986-020-00453-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Parenteral nutrition (PN)-associated liver disease (PNALD) is a common and life-threatening complication in patients receiving PN. However, its definitive etiology is not yet clear. Therefore, performed proteomic analyses of human liver tissue to explore the same. Methods Liver tissue was derived and compared across selected patients with (n = 3) /without (n = 4) PNALD via isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics. Bioinformatics analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to explore the mechanisms of PNALD based on differentially expressed proteins (DEPs). The essential proteins that were differentially expressed between the two groups were explored and verified by western blotting. Results A total of 112 proteins were found to be differentially expressed, of which 73 were downregulated, and 39 were upregulated in the PNALD group. Bioinformatics analysis showed DEPs to be associated with mitochondrial oxidative phosphorylation (mainly involved in mitochondrial respiratory chain complex I assembly), hepatic glycolipid metabolism (involved primarily in glycogen formation and gluconeogenesis), and oxidative stress (mainly involved in antioxidant change). Conclusion Overall, our results indicated that mitochondrial energy metabolism impairment, hepatic glycolipid metabolism disorder, and excessive oxidative stress injury might explain the comprehensive mechanism underlying PNALD. Moreover, we have provided multiple potential targets for further exploring the PNALD mechanism.
Collapse
Affiliation(s)
- Gulisudumu Maitiabola
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Feng Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Haifeng Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Xuejin Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| |
Collapse
|
231
|
Mitochondria, spermatogenesis, and male infertility - An update. Mitochondrion 2020; 54:26-40. [PMID: 32534048 DOI: 10.1016/j.mito.2020.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The incorporation of mitochondria in the eukaryotic cell is one of the most enigmatic events in the course of evolution. This important organelle was thought to be only the powerhouse of the cell, but was later learnt to perform many other indispensable functions in the cell. Two major contributions of mitochondria in spermatogenesis concern energy production and apoptosis. Apart from this, mitochondria also participate in a number of other processes affecting spermatogenesis and fertility. Mitochondria in sperm are arranged in the periphery of the tail microtubules to serve to energy demand for motility. Apart from this, the role of mitochondria in germ cell proliferation, mitotic regulation, and the elimination of germ cells by apoptosis are now well recognized. Eventually, mutations in the mitochondrial genome have been reported in male infertility, particularly in sluggish sperm (asthenozoospermia); however, heteroplasmy in the mtDNA and a complex interplay between the nucleus and mitochondria affect their penetrance. In this article, we have provided an update on the role of mitochondria in various events of spermatogenesis and male fertility and on the correlation of mitochondrial DNA mutations with male infertility.
Collapse
|
232
|
Liu D, Wang Q, He W, Chen X, Wei Z, Huang K. Two-way immune effects of deoxynivalenol in weaned piglets and porcine alveolar macrophages: Due mainly to its exposure dosage. CHEMOSPHERE 2020; 249:126464. [PMID: 32229367 DOI: 10.1016/j.chemosphere.2020.126464] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungal species that occur frequently in cereals and animal forages throughout the world, posing a serious threat to humans and animals. Although some studies showed the immunotoxicity of mycotoxins, little research focused on the two-way effects of mycotoxins on immune response in vitro and vivo. Here, we explored the effects of deoxynivalenol (DON), one of the most widely distributed mycotoxins, on immune function of piglets and porcine alveolar macrophages (PAMs), and found it exhibited bidirectional immune effects due to different exposure doses. Our results revealed that low doses of DON increased the expressions of TNF-α and IL-6 in piglets and PAMs, promoted the chemotaxis and phagocytosis of PAMs and transformed macrophages to M1 phenotype (P < 0.05). Conversely, high doses of DON increased the expressions of TGF-β and IL-10 in piglets and PAMs, inhibited the chemotaxis and phagocytosis of PAMs and induced macrophages M2-type polarization (P < 0.05). Mechanistically, DON exposure significantly activated the TLR4/NFκB pathway at low doses and induced mitophagy-mediated mitochondrial dysfunction at high doses in vitro and vivo. TLR4 interference and mitophagy activator, CCCP, were used to further confirm their roles. Therefore, we concluded that DON exposure at low doses caused immunostimulation via activating TLR4/NFκB, whereas it was immunoinhibitory at high doses through blocking mitophagy. Our study suggested that both high and low doses mycotoxins contamination might be harmful, and further back up the necessity to take a vigilant attitude to minimize humans and animals intake of mycotoxins in the environment.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Qing Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhanyong Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
233
|
Cheng XY, Biswas S, Li J, Mao CJ, Chechneva O, Chen J, Li K, Li J, Zhang JR, Liu CF, Deng WB. Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria. Transl Neurodegener 2020; 9:13. [PMID: 32345341 PMCID: PMC7325238 DOI: 10.1186/s40035-020-00190-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/23/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the neurodegeneration diseases characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra region of the brain. Substantial evidence indicates that at the cellular level mitochondrial dysfunction is a key factor leading to pathological features such as neuronal death and accumulation of misfolded α-synuclein aggregations. Autologous transplantation of healthy purified mitochondria has shown to attenuate phenotypes in vitro and in vivo models of PD. However, there are significant technical difficulties in obtaining large amounts of purified mitochondria with normal function. In addition, the half-life of mitochondria varies between days to a few weeks. Thus, identifying a continuous source of healthy mitochondria via intercellular mitochondrial transfer is an attractive option for therapeutic purposes. In this study, we asked whether iPSCs derived astrocytes can serve as a donor to provide functional mitochondria and rescue injured DA neurons after rotenone exposure in an in vitro model of PD. METHODS We generated DA neurons and astrocytes from human iPSCs and hESCs. We established an astroglial-neuronal co-culture system to investigate the intercellular mitochondrial transfer, as well as the neuroprotective effect of mitochondrial transfer. We employed immunocytochemistry and FACS analysis to track mitochondria. RESULTS We showed evidence that iPSCs-derived astrocytes or astrocytic conditioned media (ACM) can rescue DA neurons degeneration via intercellular mitochondrial transfer in a rotenone induced in vitro PD model. Specifically, we showed that iPSCs-derived astrocytes from health spontaneously release functional mitochondria into the media. Mito-Tracker Green tagged astrocytic mitochondria were detected in the ACM and were shown to be internalized by the injured neurons via a phospho-p38 depended pathway. Transferred mitochondria were able to significantly reverse DA neurodegeneration and axonal pruning following exposure to rotenone. When rotenone injured neurons were cultured in presence of ACM depleted of mitochondria (by ultrafiltration), the neuroprotective effects were abolished. CONCLUSIONS Our studies provide the proof of principle that iPSCs-derived astrocytes can act as mitochondria donor to the injured DA neurons and attenuate pathology. Using iPSCs derived astrocytes as a donor can provide a novel strategy that can be further developed for cellular therapy for PD.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
- Shriners Hospital for Children of Northern California, Sacramento, CA 95817 USA
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004 China
- Key Laboratory of Hui Medicine Modernization, Ministry of Education, Yinchuan, 750004 China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Olga Chechneva
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Kai Li
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Jiao Li
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Wen-Bin Deng
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
- Shriners Hospital for Children of Northern California, Sacramento, CA 95817 USA
| |
Collapse
|
234
|
Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J 2020; 34:8204-8216. [PMID: 32294300 DOI: 10.1096/fj.201903166r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Chronic excessive ethanol consumption has distinct toxic and adverse effects on a variety of tissues. In skeletal muscle, ethanol causes alcoholic myopathy, which is characterized by myofiber atrophy and the loss of muscle strength. Alcoholic myopathy is more prevalent than all inherited muscle diseases combined. Current evidence indicates that ethanol directly impairs muscle organization and function. However, the underlying mechanism by which ethanol causes toxicity in muscle is poorly understood. Here, we show that the nematode Caenorhabditis elegans exhibits the key features of alcoholic myopathy when exposed to ethanol. As in mammals, ethanol exposure impairs muscle strength and induces the expression of protective genes, including oxidative stress response genes. In addition, ethanol exposure causes the fragmentation of mitochondrial networks aligned with myofibril lattices. This ethanol-induced mitochondrial fragmentation is dependent on the mitochondrial fission factor DRP-1 (dynamin-related protein 1) and its receptor proteins on the outer mitochondrial membrane. Our data indicate that this fragmentation contributes to the activation of the mitochondrial unfolded protein response (UPR). We also found that robust, perpetual mitochondrial UPR activation effectively reduces muscle weakness caused by ethanol exposure. Our results strongly suggest that the modulation of mitochondrial stress responses may provide a method to ameliorate alcohol toxicity and damage to muscle.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Seema Sheoran
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongkyun Kim
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
235
|
Yang L, He T, Xiong F, Chen X, Fan X, Jin S, Geng Z. Identification of key genes and pathways associated with feed efficiency of native chickens based on transcriptome data via bioinformatics analysis. BMC Genomics 2020; 21:292. [PMID: 32272881 PMCID: PMC7146967 DOI: 10.1186/s12864-020-6713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Improving feed efficiency is one of the important breeding targets for poultry industry. The aim of current study was to investigate the breast muscle transcriptome data of native chickens divergent for feed efficiency. Residual feed intake (RFI) value was calculated for 1008 closely related chickens. The 5 most efficient (LRFI) and 5 least efficient (HRFI) birds were selected for further analysis. Transcriptomic data were generated from breast muscle collected post-slaughter. RESULTS The differently expressed genes (DEGs) analysis showed that 24 and 325 known genes were significantly up- and down-regulated in LRFI birds. An enrichment analysis of DEGs showed that the genes and pathways related to inflammatory response and immune response were up-regulated in HRFI chickens. Moreover, Gene Set Enrichment Analysis (GSEA) was also employed, which indicated that LRFI chickens increased expression of genes related to mitochondrial function. Furthermore, protein network interaction and function analyses revealed ND2, ND4, CYTB, RAC2, VCAM1, CTSS and TLR4 were key genes for feed efficiency. And the 'phagosome', 'cell adhesion molecules (CAMs)', 'citrate cycle (TCA cycle)' and 'oxidative phosphorylation' were key pathways contributing to the difference in feed efficiency. CONCLUSIONS In summary, a series of key genes and pathways were identified via bioinformatics analysis. These key genes may influence feed efficiency through deep involvement in ROS production and inflammatory response. Our results suggested that LRFI chickens may synthesize ATP more efficiently and control reactive oxygen species (ROS) production more strictly by enhancing the mitochondrial function in skeletal muscle compared with HRFI chickens. These findings provide some clues for understanding the molecular mechanism of feed efficiency in birds and will be a useful reference data for native chicken breeding.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Tingting He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Fengliang Xiong
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xianzhen Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China. .,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
236
|
Messina F, Cecconi F, Rodolfo C. Do You Remember Mitochondria? Front Physiol 2020; 11:271. [PMID: 32292356 PMCID: PMC7119339 DOI: 10.3389/fphys.2020.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Dementia is one among the consequences of aging, and amnesia is often one of the most common symptoms. The lack of memory, as a consequence of both “healthy” aging or neurodegenerative conditions, such as in Alzheimer’s disease, has a dramatic impact on the patient’s lifestyle. In fact, the inability to recall information made by a previous experience could not only alter the interaction with the environment, but also lead to a loss of identity. Mitochondria are key regulators of brain’s activity; thanks to their “dynamic organelles” nature they constantly rearrange in the cell body and move along axons and dendrites, changing in dimension, shape, and location, accordingly to the cell’s energy requirements. Indeed, the energy they can provide is essential to maintain synaptic plasticity and to ensure transmission through presynaptic terminals and postsynaptic spines. Stressful conditions, like the ones found in neurodegenerative diseases, seriously impair mitochondria bioenergetic, leading to both loss of proper neuronal interaction and of neuron themselves. Here, we highlighted the current knowledge about the role of mitochondria and mitochondrial dynamics in relation to neurodegenerative disorders linked to aging. Furthermore, we discuss the obstacles as well as the future perspectives aimed to enlarge our knowledge about mitochondria as target for new therapeutic strategies to slow down aging and neurodegenerative disease’s symptoms.
Collapse
Affiliation(s)
- Flavia Messina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Paediatric Haematology, Oncology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
237
|
Hao M, Tang Q, Wang B, Li Y, Ding J, Li M, Xie M, Zhu H. Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling. Acta Biochim Biophys Sin (Shanghai) 2020; 52:231-240. [PMID: 32072182 DOI: 10.1093/abbs/gmz162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Bone cancer pain (BCP) is induced by primary bone cancer and secondary bone metastasis. During BCP pathogenesis, activated spinal astrocytes release proinflammatory cytokines, which participate in pain information transmission. In this study, we found that BCP rats showed disruption of trabecular bone structure, mechanical allodynia, and spinal inflammation. Moreover, reduced adenosine monophosphate-activated protein kinase (AMPK) activity, increased mitochondrial fission-associated protein Drp1 GTPase activity accompanied by the dysfunction of mitochondrial function, and abnormal BAX and Bcl-2 expression were found in the spinal cord of BCP rats. Notably, these alterations are reversed by resveratrol (Res) administration. Cell experiment results demonstrated that Res promotes mitochondrial function by activating AMPK, decreasing Drp1 activity, and inhibiting tumor necrosis factor-α-induced mitochondrial membrane potential reduction. Taken together, these results indicate that Res suppresses BCP in rats by attenuation of the inflammatory responses through the AMPK/Drp1 signaling pathway.
Collapse
Affiliation(s)
- Miaomiao Hao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiong Tang
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Banghua Wang
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Yisheng Li
- Department of Radiology, Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Jieqiong Ding
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingyue Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Min Xie
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Haili Zhu
- Research Center of Basic Medical Sciences, Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
238
|
Ferreira AFF, Binda KH, Singulani MP, Pereira CPM, Ferrari GD, Alberici LC, Real CC, Britto LR. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson's disease. Behav Brain Res 2020; 387:112607. [PMID: 32199987 DOI: 10.1016/j.bbr.2020.112607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is typicaly caractherized by loss of dopaminergic neurons, as well as the presence of mitochondrial impairments. Although physical exercise is known to promote many beneficial effects in healthy subjects, such as enhancing mitocondrial biogenesis and function, it is not clear if these effects are evident after exercise in individuals with PD. The aim of this study was to investigate the effects of two different protocol durations on motor behavior (aphomorphine and gait tests), mitochondrial biogenesis signaling (PGC-1α, NRF-1 and TFAM), structure (oxidative phosphorylation system protein levels) and respiratory chain activity (complex I) in a unilateral PD rat model. For this, male Wistar rats were injected with 6-hydroxydopamine unilaterally into the striatum and submitted to an intermitent moderate treadmill exercise for one or four weeks. In the gait test, only stride width data revealed an improvement after one week of exercise. On the other hand, after 4 weeks of the exercise protocol all gait parameters analyzed and the aphomorphine test demonstrated a recovery. Analysis of protein revealed that one week of exercise was able to prevent PGC-1α and NRF-1 expression decrease in PD animals. In addition, after four weeks of physical exercise, besides PGC-1α and NRF-1, reduction in TFAM and complex I protein levels and increased complex I activity were also prevented in PD animals. Thus, our results suggest a neuroprotective and progressive effect of intermittent treadmill exercise, which could be related to its benefits on mitochondrial biogenesis signaling and respiratory chain modulation of the dopaminergic system in PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Carolina Parga Martins Pereira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Duarte Ferrari
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
239
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 646] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
240
|
Bai W, Wang H, Bai H. Identification of Candidate Genes and Therapeutic Agents for Light Chain Amyloidosis Based on Bioinformatics Approach. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 12:387-396. [PMID: 32099441 PMCID: PMC6997413 DOI: 10.2147/pgpm.s228574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Objective Systemic amyloid light chain (AL) amyloidosis is a rare plasma cell disease. However, the regulatory mechanisms of AL amyloidosis have not been thoroughly uncovered, identification of candidate genes and therapeutic agents for this disease is crucial to provide novel insights into exploring the regulatory mechanisms underlying AL amyloidosis. Methods The gene expression profile of GSE73040, including 9 specimens from AL amyloidosis patients and 5 specimens from normal control, was downloaded from GEO datasets. Differentially expressed genes (DEGs) were sorted with regard to AL amyloidosis versus normal control group using Limma package. The gene enrichment analyses including GO and KEGG pathway were performed using DAVID website subsequently. Furthermore, the protein–protein interaction (PPI) network for DEGs was constructed by Cytoscape software and STRING database. DEGs were mapped to the connectivity map datasets to identify potential molecular agents of AL amyloidosis. Results A total of 1464 DEGs (727 up-regulated, 737 down-regulated) were identified in AL amyloidosis samples versus control samples, these dysregulated genes were associated with the dysfunction of ribosome biogenesis and immune response. PPI network and module analysis uncovered that several crucial genes were defined as candidate genes, including ITGAM, ITGB2, ITGAX, IMP3 and FBL. More importantly, we identified the small molecular agents (AT-9283, Ritonavir and PKC beta-inhibitor) as the potential drugs for AL amyloidosis. Conclusion Using bioinformatics approach, we have identified candidate genes and pathways in AL amyloidosis, which can extend our understanding of the cause and molecular mechanisms, and these crucial genes and pathways could act as biomarkers and therapeutic targets for AL amyloidosis.
Collapse
Affiliation(s)
- Wenxiang Bai
- Comprehensive Cancer Center, Xiangshui People's Hospital, Xiangshui 224600, People's Republic of China.,Department of Respiratory Medicine, Xiangshui People's Hospital, Xiangshui, 224600, People's Republic of China
| | - Honghua Wang
- Comprehensive Cancer Center, Xiangshui People's Hospital, Xiangshui 224600, People's Republic of China
| | - Hua Bai
- Comprehensive Cancer Center, Xiangshui People's Hospital, Xiangshui 224600, People's Republic of China.,Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| |
Collapse
|
241
|
Yen CA, Ruter DL, Turner CD, Pang S, Curran SP. Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans. eLife 2020; 9:e52899. [PMID: 32022684 PMCID: PMC7032928 DOI: 10.7554/elife.52899] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.
Collapse
Affiliation(s)
- Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Dana L Ruter
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Christian D Turner
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Shanshan Pang
- School of Life Sciences, Chongqing UniversityChongqingChina
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
242
|
Zhao Z, Cheng W, Qu W, Wang K. Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner. Biomed Pharmacother 2020; 124:109855. [PMID: 31986410 DOI: 10.1016/j.biopha.2020.109855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
MGN-3 is an arabinoxylan from rice bran that has been shown to be an excellent antioxidant and radioprotector. This study examined the protective effects of MGN-3 on radiation-induced intestinal injury. Mice were treated with MGN-3 prior to irradiation, then continued to receive MGN-3 for 4 weeks thereafter. MGN-3 increased the activity of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, Ⅳ and Ⅴ, the intercellular ATP content, the mitochondria-encoded gene expression and mitochondrial copy numbers in the jejunal and colonic mucosa. MGN-3 reduced the oxidative stress levels and inflammatory response indicators in the serum and jejunal and colonic mucosa. Antioxidant indicators such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity were significantly increased in the serum and jejunal and colonic mucosa in the MGN-3 group. Moreover, MGN-3 decreased the gene abundances and enzymatic activities of caspase-3, 8, 9 and 10 in the jejunal and colonic mucosa. The endotoxin, diamine peroxidase, d-lactate and zonulin levels were significantly reduced in the serum and jejunal and colonic mucosa in the MGN-3 group. MGN-3 also markedly upregulated the gene abundances of ZO-1, occludin, claudin-1 and mucin 2. MGN-3 effectively attenuated radiation-induced changes in the intestinal epithelial mitochondrial function, oxidative stress, inflammatory response, apoptosis, intestinal permeability and barrier function in mice. These findings add to our understanding of the potential mechanisms by which MGN-3 alleviates radioactive intestinal injury.
Collapse
Affiliation(s)
- Zhenguo Zhao
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Wei Cheng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Kai Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China.
| |
Collapse
|
243
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
244
|
Shen Q, Mahoney D, Peltzer J, Rahman F, Krueger KJ, Hiebert JB, Pierce JD. Using the NIH symptom science model to understand fatigue and mitochondrial bioenergetics. ACTA ACUST UNITED AC 2020; 7. [PMID: 33628458 DOI: 10.7243/2056-9157-7-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The symptom of fatigue is prevalent among patients with chronic diseases and conditions such as congestive heart failure and cancer. It has a significant debilitating impact on patients' physical health, quality of life, and well-being. Early detection and appropriate assessment of fatigue is essential for diagnosing, treating, and monitoring disease progression. However, it is often challenging to manage the symptom of fatigue without first investigating the underlying biological mechanisms. In this narrative review, we conceptualize the symptom of fatigue and its relationship with mitochondrial bioenergetics using the National Institute of Health Symptom Science Model (NIH-SSM). In particular, we discuss mental and physical measures to assess fatigue, the importance of adenosine triphosphate (ATP) in cellular and organ functions, and how impaired ATP production contributes to fatigue. Specific methods to measure ATP are described. Recommendations are provided concerning how to integrate biological mechanisms with the symptom of fatigue for future research and clinical practice to help alleviate symptoms and improve patients' quality of life.
Collapse
Affiliation(s)
- Qiuhua Shen
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Diane Mahoney
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Jill Peltzer
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Faith Rahman
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Kathryn J Krueger
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - John B Hiebert
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Janet D Pierce
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| |
Collapse
|
245
|
Magnani ND, Marchini T, Calabró V, Alvarez S, Evelson P. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Front Endocrinol (Lausanne) 2020; 11:568305. [PMID: 33071976 PMCID: PMC7538663 DOI: 10.3389/fendo.2020.568305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is associated with the release of soluble mediators that drive cellular activation and migration of inflammatory leukocytes to the site of injury, together with endothelial expression of adhesion molecules, and increased vascular permeability. It is a stepwise tightly regulated process that has been evolved to cope with a wide range of different inflammatory stimuli. However, under certain physiopathological conditions, the inflammatory response overwhelms local regulatory mechanisms and leads to systemic inflammation that, in turn, might affect metabolism in distant tissues and organs. In this sense, as mitochondria are able to perceive signals of inflammation is one of the first organelles to be affected by a dysregulation in the systemic inflammatory response, it has been associated with the progression of the physiopathological mechanisms. Mitochondria are also an important source of ROS (reactive oxygen species) within most mammalian cells and are therefore highly involved in oxidative stress. ROS production might contribute to mitochondrial damage in a range of pathologies and is also important in a complex redox signaling network from the organelle to the rest of the cell. Therefore, a role for ROS generated by mitochondria in regulating inflammatory signaling was postulated and mitochondria have been implicated in multiple aspects of the inflammatory response. An inflammatory condition that affects mitochondrial function in different organs is the exposure to air particulate matter (PM). Both after acute and chronic pollutants exposure, PM uptake by alveolar macrophages have been described to induce local cell activation and recruitment, cytokine release, and pulmonary inflammation. Afterwards, inflammatory mediators have been shown to be able to reach the bloodstream and induce a systemic response that affects metabolism in distant organs different from the lung. In this proinflammatory environment, impaired mitochondrial function that leads to bioenergetic dysfunction and enhanced production of oxidants have been shown to affect tissue homeostasis and organ function. In the present review, we aim to discuss the latest insights into the cellular and molecular mechanisms that link systemic inflammation and mitochondrial dysfunction in different organs, taking the exposure to air pollutants as a case model.
Collapse
Affiliation(s)
- Natalia D. Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Silvia Alvarez
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- *Correspondence: Pablo Evelson
| |
Collapse
|
246
|
Lundberg M, Millischer V, Backlund L, Martinsson L, Stenvinkel P, Sellgren CM, Lavebratt C, Schalling M. Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Front Psychiatry 2020; 11:586083. [PMID: 33132941 PMCID: PMC7553080 DOI: 10.3389/fpsyt.2020.586083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Bipolar disorder is a severe psychiatric disorder which affects more than 1% of the world's population and is a leading cause of disability among young people. For the past 50 years, lithium has been the drug of choice for maintenance treatment of bipolar disorder due to its potent ability to prevent both manic and depressive episodes as well as suicide. However, though lithium has been associated with a multitude of effects within different cellular pathways and biological systems, its specific mechanism of action in stabilizing mood remains largely elusive. Mitochondrial dysfunction and telomere shortening have been implicated in both the pathophysiology of bipolar disorder and as targets of lithium treatment. Interestingly, it has in recent years become clear that these phenomena are intimately linked, partly through reactive oxygen species signaling and the subcellular translocation and non-canonical actions of telomerase reverse transcriptase. In this review, we integrate the current understanding of mitochondrial dysfunction, oxidative stress and telomere shortening in bipolar disorder with documented effects of lithium. Moreover, we propose that lithium's mechanism of action is intimately connected with the interdependent regulation of mitochondrial bioenergetics and telomere maintenance.
Collapse
Affiliation(s)
- Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Martinsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
247
|
Song L, Liu T, Song Y, Sun Y, Li H, Xiao N, Xu H, Ge J, Bai C, Wen H, Zhang Y, Hui R, Chen J. mtDNA Copy Number Contributes to All-Cause Mortality of Lacunar Infarct in a Chinese Prospective Stroke Population. J Cardiovasc Transl Res 2019; 13:783-789. [PMID: 31828536 DOI: 10.1007/s12265-019-09943-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The study aimed to investigate the relationship between mtDNA copy number and the risk of all-cause mortality in stroke. One thousand four hundred eighty-four stroke patients were documented including 273 deaths (127 thrombosis, 52 lacunar, 94 hemorrhage). Patients in the third quartile had the lowest mortality rates in overall stroke and the three subtypes. The lowest quartile of mtDNA copy number (Q1 < 85.85) indicated an increased risk of all-cause mortality in stroke patients (adjusted HR, 1.52; 95% CI, 1.08-2.14; p = 0.017). In the subtype analysis, the risk of all-cause mortality appeared only in lacunar infarct, and the patients in the Q1 (< 87.76) and Q4 (> 150.61) mtDNA copy number groups showed significantly higher risks of HRs (Q1, adjusted HR, 3.87, 95% CI, 1.52-9.83; Q4, adjusted HR, 3.08, 95% CI, 1.16-8.18). Stroke patients with lacunar infarct in mtDNA copy number < 87.76 or > 150.61 were at a high risk of poor outcomes in all-cause mortality.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
248
|
Bargelloni L, Babbucci M, Ferraresso S, Papetti C, Vitulo N, Carraro R, Pauletto M, Santovito G, Lucassen M, Mark FC, Zane L, Patarnello T. Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures. Commun Biol 2019; 2:443. [PMID: 31815198 PMCID: PMC6884616 DOI: 10.1038/s42003-019-0685-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Antarctic fish belonging to Notothenioidei represent an extraordinary example of radiation in the cold. In addition to the absence of hemoglobin, icefish show a number of other striking peculiarities including large-diameter blood vessels, high vascular densities, mitochondria-rich muscle cells, and unusual mitochondrial architecture. In order to investigate the bases of icefish adaptation to the extreme Southern Ocean conditions we sequenced the complete genome of the icefish Chionodraco myersi. Comparative analyses of the icefish genome with those of other teleost species, including two additional white-blooded and five red-blooded notothenioids, provided a new perspective on the evolutionary loss of globin genes. Muscle transcriptome comparative analyses against red-blooded notothenioids as well as temperate fish revealed the peculiar regulation of genes involved in mitochondrial function in icefish. Gene duplication and promoter sequence divergence were identified as genome-wide patterns that likely contributed to the broad transcriptional program underlying the unique features of icefish mitochondria.
Collapse
Affiliation(s)
- Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Chiara Papetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
- Department of Biology, University of Padova, Via G. Colombo 3, 35131 Padua, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Gianfranco Santovito
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Magnus Lucassen
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz. Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570 Germany
| | - Felix Christopher Mark
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz. Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570 Germany
| | - Lorenzo Zane
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
249
|
Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat 2019; 15:3255-3272. [PMID: 31819453 PMCID: PMC6878920 DOI: 10.2147/ndt.s188906] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent condition associated with high rates of disability, as well as suicidal ideation and behavior. Current treatments for MDD have significant limitations in efficacy and side effect burden. FDA-approved devices for MDD are burdensome (due to repeated in-office procedures) and are most suitable for severely ill subjects. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. In this paper, we review a novel neuromodulation strategy, transcranial photobiomodulation (t-PBM) with near-infrared light (NIR). The scope of our review includes the known biological mechanisms of t-PBM, as well as its efficacy in animal models of depression and in patients with MDD. Theoretically, t-PBM penetrates into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow. Animal and human studies, using a variety of t-PBM settings and experimental models, suggest that t-PBM may have significant efficacy and good tolerability in MDD. In aggregate, these data support the need for large confirmatory studies for t-PBM as a novel, likely safe, and easy-to-administer antidepressant treatment.
Collapse
Affiliation(s)
- Paula Askalsky
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Dan V Iosifescu
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
250
|
Jiang W, Zhao H, Zhang L, Wu B, Zha Z. Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats. Biomed Pharmacother 2019; 121:109629. [PMID: 31733573 DOI: 10.1016/j.biopha.2019.109629] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), a global environmental pollutant, has been reported to have the potential to induced organs toxicity. This study explored the potential benefits of astaxanthin (ATX), a natural antioxidant, against BPA toxicity in the kidney, and explored whether mitochondria are involved in this condition. Male Wistar rats were fed with a vehicle, BPA, BPA plus ATX, ATX and were evaluated after five weeks. ATX treatment significantly reversed BPA-induced changes in body weight, kidney/body weight, and renal function related markers. When treated simultaneously with ATX, the imbalance of the oxidative-antioxidant status caused by BPA was also alleviated. The high expression of BPA-induced pro-inflammatory cytokines were inhibited by ATX treatment. ATX treatment also lessened the effects of BPA-induced caspase-3, -8, -9 and -10 gene expression and enzyme activity. The benefits of ATX were associated with enhanced mitochondrial function, which led to increased mitochondrial-encoded gene expression, mitochondrial copy number, and increased mitochondrial respiratory chain complex enzyme activity. Our results demonstrate the efficacy of ATX in protecting BPA-induced kidney damage, in part by regulating oxidative imbalance and improving mitochondrial function. Collectively, these findings provide a new perspective for the rational use of ATX in the treatment of BPA-induced kidney disease.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Urology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Hu Zhao
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Lijin Zhang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Bin Wu
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Zhenlei Zha
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| |
Collapse
|