201
|
Predictors of success and satisfaction of nonsurgical therapy for stress urinary incontinence. Obstet Gynecol 2012; 120:91-7. [PMID: 22914396 DOI: 10.1097/aog.0b013e31825a6de7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify factors that may predict success and satisfaction in women undergoing nonsurgical therapy for stress urinary incontinence. METHODS Baseline demographic and clinical characteristics of women participating in a multicenter randomized trial of pessary, behavioral, or combined therapy for stress urinary incontinence were evaluated for potential predictors of success and satisfaction. Success and satisfaction outcomes were assessed at 3 months and included the Patient Global Impression of Improvement, stress incontinence subscale of the Pelvic Floor Distress Inventory, and Patient Satisfaction Questionnaire. Logistic regression was performed to identify predictors, adjusting for treatment and other important clinical covariates. Adjusted odds ratios (ORs), 95% confidence intervals (CIs), and associated P values are presented. RESULTS Four hundred forty-six women were randomized. College education or more and no previous urinary incontinence surgery predicted success based on the stress subscale of the Pelvic Floor Distress Inventory (adjusted OR 1.61, 95% CI 1.01-2.55, P=.04 and adjusted OR 3.15, 95% CI 1.04- 9.53, P=.04, respectively). Menopausal status predicted success using the Patient Global Impression of Improvement (adjusted OR 2.52 postmenopausal compared with premenopausal, 95% CI 1.29-4.95; adjusted OR 1.32 unsure menopausal status compared with premenopausal, 95% CI 0.65-2.66; P=.03 across all three groups). Fewer than 14 incontinence episodes per week predicted satisfaction with the Patient Satisfaction Questionnaire (adjusted OR 1.97, 95% CI 1.21-3.19; P=.01). These predictors did not differ across the three treatment groups. CONCLUSION Menopause, higher education, no previous urinary incontinence surgery, and lower incontinence frequency were found to be predictors of success and satisfaction with nonsurgical therapy for stress urinary incontinence. This information may help better-align provider and patient expectations with nonsurgical treatment outcomes.
Collapse
|
202
|
Ahtiainen M, Pöllänen E, Ronkainen PHA, Alen M, Puolakka J, Kaprio J, Sipilä S, Kovanen V. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1249-1260. [PMID: 21845403 PMCID: PMC3448994 DOI: 10.1007/s11357-011-9298-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
A thorough understanding of the role of estrogens on aging-related muscle weakness is lacking. To clarify the molecular mechanisms underlying the effects of hormone replacement therapy (HRT) on skeletal muscle, we analyzed systemic protein and local mRNA levels of factors related to interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) pathways in 30- to 35-year-old (n = 14) women (without hormonal contraceptives) and in 54- to 62-year-old monozygotic female twin pairs discordant for HRT (n = 11 pairs, mean duration of HRT 7.3 ± 3.7 years). Biopsies were taken from vastus lateralis muscle and from abdominal adipose tissue. We found, first, that the systemic levels of IL-6 receptors sIL-6R and sgp130 are sensitive to both age and HRT concomitant with the changes in body composition. The serum levels of sgp130 and sIL-6R were 16% and 52% (p ≤ 0.001 for both variables) higher in postmenopausal women than in premenopausal women, and 10% and 9% lower (p = 0.033 and p < 0.001, respectively) in the HRT using than in their non using co-twins. After adjustment for body fat amount, the differences were no more significant. Second, the transcript analyses emphasize the impact of adipose tissue on systemic levels of IL-6, sgp130 and sIL6R, both at pre- and postmenopausal age. In muscle, the most notable changes were 28% lower gene expression of IGF-1 splice variant Ea (IGF-1Ea) and 40% lower expression of splice variant Ec (IGF-1Ec) in the postmenopausal non-users than in premenopausal women (p = 0.016 and 0.019, respectively), and 28% higher expression of IGF1-receptor in HRT users than in non-users (p = 0.060). The results tend to demonstrate that HRT has positive anti-catabolic effect on aging skeletal muscle.
Collapse
Affiliation(s)
- Maarit Ahtiainen
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Okamoto Y, Okamoto T, Yuka K, Hirano Y, Isobe T, Minami M. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging. J Med Imaging Radiat Oncol 2012; 56:622-7. [PMID: 23210581 DOI: 10.1111/j.1754-9485.2012.02450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/29/2012] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. METHODS Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. RESULTS Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). CONCLUSIONS Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI.
Collapse
Affiliation(s)
- Yoshikazu Okamoto
- Department of Radiology, Institute of Clinical Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
204
|
“SR stress” in mixed hindlimb muscles of aging male rats. Biogerontology 2012; 13:547-55. [DOI: 10.1007/s10522-012-9399-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/28/2012] [Indexed: 11/27/2022]
|
205
|
Kristiansen E, Tomten SE, Hanstad DV, Roberts GC. Coaching communication issues with elite female athletes: two Norwegian case studies. Scand J Med Sci Sports 2012; 22:e156-67. [PMID: 22925166 DOI: 10.1111/j.1600-0838.2012.01521.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
The aim of this study was to examine the careers of two successful female elite athletes who later stagnated, and to identify possible factors that might have led to their demotivation. Individual interviews and a focus group interview were conducted. Using a multidisciplinary approach, the stories of April and Hazel raised several issues related to coaching, coach education, and the development of female athletes. Their individual profiles revealed that their perception of the lack of long-term development was caused by coach miscommunication, having to cope with sudden fame, and injuries provoked by overtraining. The coach-athlete relationship was discussed with a focus on the inexperience of some coaches, the number of coaches the athletes had to deal with, sociolinguistic issues, and the differing criteria of success communicated. Finally, the importance of their national governing bodies to focus on knowledge transfer, the supervision of coaches, and the infrastructure to monitor athletes were discussed.
Collapse
|
206
|
Norman K, Stobäus N, Reiß J, Schulzke J, Valentini L, Pirlich M. Effect of sexual dimorphism on muscle strength in cachexia. J Cachexia Sarcopenia Muscle 2012; 3:111-6. [PMID: 22476918 PMCID: PMC3374022 DOI: 10.1007/s13539-012-0060-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/15/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Reduced muscle strength is a cardinal feature in cachexia. We investigated whether weight loss is associated differently with muscle strength in men and women in a large cohort of hospitalized patients. METHODS One thousand five hundred hospitalized patients (whereof 718 men, mean age 57.6 ± 16.0 years, mean body mass index (BMI) 24.6 ± 4.8 kg/m²) were included in the study. Non-edematous involuntary weight loss was determined with Subjective Global Assessment; isometric maximal muscle strength was evaluated by hand grip strength. Mid-upper arm circumference and triceps skinfold were used to calculate arm muscle area. Interrelationship between sex and weight loss was evaluated by regression analysis performed with the general linear model (GLM) allowing adjustment for continuous and categorical variables and corrected for age, arm muscle area (AMA), BMI, and diagnosis category (benign/malignant disease) as potentially confounding covariates. RESULTS Both men and women exhibited a significant stepwise decrease of hand grip strength with increasing weight loss. Age, sex, moderate and severe weight loss, BMI, and AMA were significant predictors of hand grip strength. The GLM moreover revealed a significant sex × weight loss effect, since grip strength was similarly decreased in moderate weight loss in men and women when compared to control patients without weight loss (8.5% in men and 10.5% in women, not significant (n.s.)), but the further reduction of grip strength in severe weight loss was significantly different between men and women (10.6% vs. 4.1%, P = 0.033). CONCLUSIONS Our findings indicate sex-specific differences in muscle strength response to weight loss.
Collapse
Affiliation(s)
- Kristina Norman
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-University Medicine Berlin, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
207
|
Gonçalves TMSV, de Vasconcelos LMR, da Silva WJ, Del Bel Cury AA, Garcia RCMR. Influence of female hormonal fluctuation on maximum occlusal force. Braz Dent J 2012; 22:497-501. [PMID: 22189646 DOI: 10.1590/s0103-64402011000600010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/10/2011] [Indexed: 05/26/2023] Open
Abstract
Hormonal fluctuations during the menstrual cycle may influence on muscular tensions and probably alter occlusal force. The aim of this study was to evaluate whether hormonal levels affect maximum occlusal force (MOF) of healthy women throughout the different phases of the menstrual cycle. Sixty complete dentate subjects who were not under use of oral contraceptives were selected to participate in this study. MOF was bilaterally evaluated on the molar region, during 3 complete menstrual cycles, using 5.65 mm-wide sensors. Measurements were carried out during each of the following menstrual cycle phases: menstrual, follicular, periovulatory and luteal, presumed by ovulation test. Data were analyzed by one-way ANOVA and Tukey-Kramer test (p<0.05). Comparisons among menstrual cycle phases showed no differences on MOF (p = 0.27). Under the conditions of this study, it may be concluded that hormonal fluctuations during the menstrual cycle do not affect MOF of a sample of healthy women.
Collapse
|
208
|
Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M. The role of androgens and estrogens on healthy aging and longevity. J Gerontol A Biol Sci Med Sci 2012; 67:1140-52. [PMID: 22451474 DOI: 10.1093/gerona/gls068] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with a loss of sex hormone in both men (andropause) and women (menopause). In men, reductions in testosterone can trigger declines in muscle mass, bone mass, and in physical function. In women, the impact of the loss of sex hormones, such as estradiol, on bone is well elucidated, but evidence is limited on whether the loss of estradiol negatively affects muscle mass and physical function. However, deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons. Thus, consideration should be given as to whether targeted hormone replacement therapies may prove effective at treating clinical conditions, such as age-related sarcopenia, cancer cachexia, and/or acute or chronic illnesses. If initiated carefully in the appropriate clinical population, hormone replacement therapies in men and women may prevent and reverse muscle and bone loss and functional declines and perhaps promote healthy aging and longevity.
Collapse
Affiliation(s)
- Astrid M Horstman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | |
Collapse
|
209
|
FitzGerald LZ, Robbins WA, Kesner JS, Xun L. Reproductive hormones and interleukin-6 in serious leisure male athletes. Eur J Appl Physiol 2012; 112:3765-73. [DOI: 10.1007/s00421-012-2356-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/14/2012] [Indexed: 12/15/2022]
|
210
|
Hakim CH, Duan D. Gender differences in contractile and passive properties of mdx extensor digitorum longus muscle. Muscle Nerve 2012; 45:250-6. [PMID: 22246882 DOI: 10.1002/mus.22275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe, muscle-wasting disease caused by mutations in the dystrophin gene. The mdx mouse is the first and perhaps the most commonly used animal model for study of DMD. Both male and female mdx mice are used. However, it is not completely clear whether gender influences contraction and the passive mechanical properties of mdx skeletal muscle. METHODS We compared isometric tetanic forces and passive forces of the extensor digitorum longus muscle between male and female mdx mice. RESULTS At age 6 months, female mdx mice showed better-preserved specific tetanic force. Interestingly, at 20 months of age, female mdx muscle appeared stiffer. CONCLUSIONS Our results suggest that gender may profoundly influence physiological measurement outcomes in mdx mice.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, One Hospital Drive, Columbia, Missouri 65212, USA
| | | |
Collapse
|
211
|
Wend K, Wend P, Krum SA. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging. Front Endocrinol (Lausanne) 2012; 3:19. [PMID: 22654856 PMCID: PMC3356020 DOI: 10.3389/fendo.2012.00019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/23/2012] [Indexed: 12/04/2022] Open
Abstract
The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.
Collapse
Affiliation(s)
- Korinna Wend
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Peter Wend
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Susan A. Krum
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
212
|
Hausswirth C, Le Meur Y. Physiological and nutritional aspects of post-exercise recovery: specific recommendations for female athletes. Sports Med 2012; 41:861-82. [PMID: 21923203 DOI: 10.2165/11593180-000000000-00000] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gender-based differences in the physiological response to exercise have been studied extensively for the last four decades, and yet the study of post-exercise, gender-specific recovery has only been developing in more recent years. This review of the literature aims to present the current state of knowledge in this field, focusing on some of the most pertinent aspects of physiological recovery in female athletes and how metabolic, thermoregulatory, or inflammation and repair processes may differ from those observed in male athletes. Scientific investigations on the effect of gender on substrate utilization during exercise have yielded conflicting results. Factors contributing to the lack of agreement between studies include differences in subject dietary or training status, exercise intensity or duration, as well as the variations in ovarian hormone concentrations between different menstrual cycle phases in female subjects, as all are known to affect substrate metabolism during sub-maximal exercise. If greater fatty acid mobilization occurs in females during prolonged exercise compared with males, the inverse is observed during the recovery phase. This could explain why, despite mobilizing lipids to a greater extent than males during exercise, females lose less fat mass than their male counterparts over the course of a physical training programme. Where nutritional strategies are concerned, no difference appears between males and females in their capacity to replenish glycogen stores; optimal timing for carbohydrate intake does not differ between genders, and athletes must consume carbohydrates as soon as possible after exercise in order to maximize glycogen store repletion. While lipid intake should be limited in the immediate post-exercise period in order to favour carbohydrate and protein intake, in the scope of the athlete's general diet, lipid intake should be maintained at an adequate level (30%). This is particularly important for females specializing in long-duration events. With protein balance, it has been shown that a negative nitrogen balance is more often observed in female athletes than in male athletes. It is therefore especially important to ensure that this remains the case during periods of caloric restriction, especially when working with female athletes showing a tendency to limit their caloric intake on a daily basis. In the post-exercise period, females display lower thermolytic capacities than males. Therefore, the use of cooling recovery methods following exercise, such as cold water immersion or the use of a cooling vest, appear particularly beneficial for female athletes. In addition, a greater decrease in arterial blood pressure is observed after exercise in females than in males. Given that the return to homeostasis after a brief intense exercise appears linked to maintaining good venous return, it is conceivable that female athletes would find a greater advantage to active recovery modes than males. This article reviews some of the major gender differences in the metabolic, inflammatory and thermoregulatory response to exercise and its subsequent recovery. Particular attention is given to the identification of which recovery strategies may be the most pertinent to the design of training programmes for athletic females, in order to optimize the physiological adaptations sought for improving performance and maintaining health.
Collapse
Affiliation(s)
- Christophe Hausswirth
- National Institute of Sport, for Expertise and Performance (INSEP), Research Department, Paris, France.
| | | |
Collapse
|
213
|
McHale MJ, Sarwar ZU, Cardenas DP, Porter L, Salinas AS, Michalek JE, McManus LM, Shireman PK. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones. Am J Physiol Regul Integr Comp Physiol 2011; 302:R331-9. [PMID: 22116509 DOI: 10.1152/ajpregu.00427.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.
Collapse
Affiliation(s)
- Matthew J McHale
- Department of Surgery, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Diffusion property differences of the lower leg musculature between athletes and non-athletes using 1.5T MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:277-84. [DOI: 10.1007/s10334-011-0294-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/04/2011] [Accepted: 10/25/2011] [Indexed: 12/20/2022]
|
215
|
Divari S, Mulasso C, Uslenghi F, Cannizzo FT, Spada F, De Maria R, Brina N, Biolatti B. Progesterone receptor up-regulation: a diagnostic tool for the illicit use of oestrogens in adult beef cattle. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1677-86. [PMID: 22014147 DOI: 10.1080/19440049.2011.609492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The monitoring of gene regulation via mRNA levels to detect anabolic sex steroid administration in cattle is a novel approach to detecting the illicit treatment of livestock in meat production. A previous study revealed that progesterone receptor (PR) gene expression levels were increased in the bulbourethral glands and prostates of 17β-oestradiol-treated prepubertal calves, suggesting that the PR can be used as a specific molecular biomarker for oestrogen treatment. The aim of this study was to verify the specificity and applicability of the PR to detect the illegal use of 17β-oestradiol in sexually mature beef cattle. Accessory sex glands were sampled from 42 male beef cattle that were divided into six experimental groups, including two control groups, K1 and K2. Group A cattle were treated with 17β-oestradiol (five weekly intramuscular doses of 20 mg), and group B cattle were treated with dexamethasone (40 daily doses of 0.7 mg per os). Group C cattle received an implant of Revalor-200 (200 mg of trenbolone acetate and 20 mg of 17β-oestradiol), and group D cattle received Revalor-200 plus dexamethasone (0.7 mg daily per os). 17β-Oestradiol, either alone or in combination with other steroids, up-regulated the PR gene and protein expression, even in the absence of detectable histological changes in the accessory sex glands, confirming the high sensitivity of PR gene expression as an indirect diagnostic screening tool to detect illicit oestrogen treatment in sexually mature male bovine.
Collapse
Affiliation(s)
- S Divari
- Department of Animal Pathology, School of Veterinary Medicine, University of Turin, Grugliasco, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Tiidus PM. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: evidence from human and animal studies. Eurasian J Med 2011; 43:109-14. [PMID: 25610174 PMCID: PMC4261347 DOI: 10.5152/eajm.2011.24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022] Open
Abstract
Age related loss of skeletal muscle mass and strength accelerates with the onset of menopause in women. Recent evidence from human and animal studies provides compelling evidence for the role of estrogen based hormone replacement therapy (HRT) in maintaining and enhancing muscle mass and strength and protecting against muscle damage. The physiological mechanisms by which estrogen can positively influence skeletal muscle mass and strength and protect against post-damage inflammation and disruption are also beginning to emerge. These less well known benefits of estrogen for skeletal muscle coupled with other benefits of estrogen to bone and metabolic health in older females provide further incentives for HRT use to enhance overall health in post-menopausal women. New research also attests to the safety of shorter term HRT in younger post-menopausal females. Overall the benefits of HRT to muscle health and function could assist in offsetting age related loss of muscle mass and function and delay age related morbidity and their use for overall health benefits in aging females should continue to be evaluated.
Collapse
Affiliation(s)
- Peter M. Tiidus
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
217
|
De Jager N, Hudson NJ, Reverter A, Wang YH, Nagaraj SH, Cafe LM, Greenwood PL, Barnard RT, Kongsuwan KP, Dalrymple BP. Chronic exposure to anabolic steroids induces the muscle expression of oxytocin and a more than fiftyfold increase in circulating oxytocin in cattle. Physiol Genomics 2011; 43:467-78. [PMID: 21325062 DOI: 10.1152/physiolgenomics.00226.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular mechanisms in skeletal muscle associated with anabolic steroid treatment of cattle are unclear and we aimed to characterize transcriptional changes. Cattle were chronically exposed (68 ± 20 days) to a steroid hormone implant containing 200 mg trenbolone acetate and 20 mg estradiol (Revalor-H). Biopsy samples from 48 cattle (half treated) from longissimus dorsi (LD) muscle under local anesthesia were collected. Gene expression levels were profiled by microarray, covering 16,944 unique bovine genes: 121 genes were differentially expressed (DE) due to the implant (99.99% posterior probability of not being false positives). Among DE genes, a decrease in expression of a number of fat metabolism-associated genes, likely reflecting the lipid storage activity of intramuscular adipocytes, was observed. The expression of IGF1 and genes related to the extracellular matrix, slow twitch fibers, and cell cycle (including SOX8, a satellite cell marker) was increased in the treated muscle. Unexpectedly, a very large 21- (microarray) to 97 (real time quantitative PCR)-fold higher expression of the mRNA encoding the neuropeptide hormone oxytocin was observed in treated muscle. We also observed an ∼50-fold higher level of circulating oxytocin in the plasma of treated animals at the time of biopsy. Using a coexpression network strategy OXTR was identified as more likely than IGF1R to be a major mediator of the muscle response to Revalor-H. A re-investigation of in vivo cattle LD muscle samples during early to mid-fetal development identified a >128-fold increased expression of OXT, coincident with myofiber differentiation and fusion. We propose that oxytocin may be involved in mediating the anabolic effects of Revalor-H treatment.
Collapse
Affiliation(s)
- Nadia De Jager
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
- School of Chemistry and Molecular Biosciences, Faculty of Science and
| | - Nicholas J. Hudson
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| | - Antonio Reverter
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| | - Yong-Hong Wang
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| | - Shivashankar H. Nagaraj
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| | - Linda M. Cafe
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Industry & Investment NSW, Beef Industry Centre, University of New England, Armidale, New South Wales, Australia
| | - Paul L. Greenwood
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Industry & Investment NSW, Beef Industry Centre, University of New England, Armidale, New South Wales, Australia
| | - Ross T. Barnard
- School of Molecular and Microbial Sciences, Centre for Infectious Disease Research, University of Queensland, St. Lucia, Queensland; and
| | - Kritaya P. Kongsuwan
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| | - Brian P. Dalrymple
- Australian Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct
| |
Collapse
|
218
|
Moustafa AM, Boshra V. The possible role of L-carnitine on the skeletal muscle of ovariectomized rats. J Mol Histol 2011; 42:217-25. [DOI: 10.1007/s10735-011-9326-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/12/2011] [Indexed: 12/30/2022]
|
219
|
Palasuwan A, Suksom D, Margaritis I, Soogarun S, Rousseau AS. Effects of tai chi training on antioxidant capacity in pre- and postmenopausal women. J Aging Res 2011; 2011:234696. [PMID: 21584229 PMCID: PMC3092538 DOI: 10.4061/2011/234696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/03/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022] Open
Abstract
The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity—an aerobic training-responsive antioxidant enzyme—and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.
Collapse
Affiliation(s)
- Attakorn Palasuwan
- Faculté des Sciences du Sport, Université de Nice Sophia-Antipolis, 261 Route de Grenoble, 06205 Nice, France
| | | | | | | | | |
Collapse
|
220
|
Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F. Nutrition and human health from a sex-gender perspective. Mol Aspects Med 2011; 32:1-70. [PMID: 21356234 DOI: 10.1016/j.mam.2011.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Nutrition exerts a life-long impact on human health, and the interaction between nutrition and health has been known for centuries. The recent literature has suggested that nutrition could differently influence the health of male and female individuals. Until the last decade of the 20th century, research on women has been neglected, and the results obtained in men have been directly translated to women in both the medicine and nutrition fields. Consequently, most modern guidelines are based on studies predominantly conducted on men. However, there are many sex-gender differences that are the result of multifactorial inputs, including gene repertoires, sex steroid hormones, and environmental factors (e.g., food components). The effects of these different inputs in male and female physiology will be different in different periods of ontogenetic development as well as during pregnancy and the ovarian cycle in females, which are also age dependent. As a result, different strategies have evolved to maintain male and female body homeostasis, which, in turn, implies that there are important differences in the bioavailability, metabolism, distribution, and elimination of foods and beverages in males and females. This article will review some of these differences underlying the impact of food components on the risk of developing diseases from a sex-gender perspective.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
221
|
Gentry BA, Ferreira JA, Phillips CL, Brown M. Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 2011; 43:49-57. [PMID: 21082689 DOI: 10.1002/mus.21796] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Absence of functional myostatin (MSTN) during fetal development results in adult skeletal muscle hypertrophy and hyperplasia. To more fully characterize MSTN loss in hindlimb muscles, the morphology and contractile function of the soleus, plantaris, gastrocnemius, tibialis anterior, and quadriceps muscles in male and female null (Mstn(-/-)), heterozygous (Mstn(+/-)), and wild-type (Mstn(+/+)) mice were investigated. Muscle weights of Mstn(-/-) mice were greater than those of Mstn(+/+) and Mstn(+/-) mice. Fiber cross-sectional area (CSA) was increased in female Mstn(-/-) soleus and gastrocnemius muscles and in the quadriceps of male Mstn(-/-) mice; peak tetanic force in Mstn(-/-) mice did not parallel the increased muscle weight or CSA. Male Mstn(-/-) muscle exhibited moderate degeneration. Visible pathology in male mice and decreased contractile strength relative to increased muscle weight suggest MSTN loss results in muscle impairment, which is dose-, sex-, and muscle-dependent.
Collapse
Affiliation(s)
- Bettina A Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
222
|
ROWLANDS DAVIDS, WADSWORTH DANIELP. Effect of High-Protein Feeding on Performance and Nitrogen Balance in Female Cyclists. Med Sci Sports Exerc 2011; 43:44-53. [DOI: 10.1249/mss.0b013e3181e93316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
223
|
PASCHALIS VASSILIS, NIKOLAIDIS MICHALISG, THEODOROU ANASTASIOSA, PANAYIOTOU GEORGE, FATOUROS IOANNISG, KOUTEDAKIS YIANNIS, JAMURTAS ATHANASIOSZ. A Weekly Bout of Eccentric Exercise Is Sufficient to Induce Health-Promoting Effects. Med Sci Sports Exerc 2011; 43:64-73. [DOI: 10.1249/mss.0b013e3181e91d90] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
224
|
Krueger C, Hoffmann FM. Identification of retinoic acid in a high content screen for agents that overcome the anti-myogenic effect of TGF-beta-1. PLoS One 2010; 5:e15511. [PMID: 21152098 PMCID: PMC2994897 DOI: 10.1371/journal.pone.0015511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1. METHODOLOGY/PRINCIPAL FINDINGS A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells. CONCLUSIONS/SIGNIFICANCE Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1.
Collapse
Affiliation(s)
- Chateen Krueger
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - F. Michael Hoffmann
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
225
|
van Londen GJ, Perera S, Vujevich K, Rastogi P, Lembersky B, Brufsky A, Vogel V, Greenspan SL. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res Treat 2010; 125:441-6. [PMID: 21046232 DOI: 10.1007/s10549-010-1223-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/09/2010] [Indexed: 11/29/2022]
Abstract
Aromatase inhibitors (AIs) have become the standard adjuvant therapy of postmenopausal breast cancer survivors. AIs induce a reduction of bioavailable estrogens by inhibiting aromatase, which would be expected to induce alterations in body composition, more extensive than induced by menopause. The objectives are to examine the impact of AIs on (1) DXA-scan derived body composition and (2) gonadal hormone levels. This is a sub-analysis of a 2-year double-blind, placebo-controlled, randomized trial of 82 women with nonmetastatic breast cancer, newly menopausal following chemotherapy, who were randomized to risedronate (35 mg once weekly) versus placebo, and stratified for their usage of AI versus no AI. Outcomes included DXA-scan derived body composition and gonadal hormone levels. As a group, total body mass increased in women over 24 months. Women on AIs gained a significant amount of lean body mass compared to baseline as well as to no-AI users (P < 0.05). Women not on an AI gained total body fat compared to baseline and AI users (P < 0.05). Free testosterone significantly increased and sex hormone binding globulin (SHBG) significantly decreased in women on AIs compared to no AIs at 24 months (P < 0.01) while total estradiol and testosterone levels remained stable. Independent of AI usage, chemotherapy-induced postmenopausal breast cancer patients demonstrated an increase of total body mass. AI users demonstrated maintenance of total body fat, an increase in lean body mass and free testosterone levels, and a decrease in SHBG levels compared to no-AI users. The mechanisms and implications of these changes need to be studied further.
Collapse
Affiliation(s)
- G J van Londen
- Medicine, University of Pittsburgh, Kaufmann Medical Bldg, Pittsburgh, PA, 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Tiidus PM. Skeletal Muscle Damage and Repair: Classic Paradigms and Recent Developments. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/10582452.2010.502620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|