201
|
Chen W, Liu L, Li Y, Li S, Li Z, Zhang W, Zhang X, Wu R, Hu D, Sun H, Zhou Y, Fan W, Zhao Y, Zhang Y, Hu Y. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [ 18F]-FDG. Eur J Nucl Med Mol Imaging 2022; 49:4145-4155. [PMID: 35788704 DOI: 10.1007/s00259-022-05893-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the impact of a true half dose of [18F]-FDG on image quality in pediatric oncological patients undergoing total-body PET/CT and investigate short acquisition times with half-dose injected activity. METHODS One hundred pediatric oncological patients who underwent total-body PET/CT using the uEXPLORER scanner after receiving a true half dose of [18F]-FDG (1.85 MBq/kg) were retrospectively enrolled. The PET images were first reconstructed using complete 600-s data and then split into 300-s, 180-s, 60-s, 40-s, and 20-s duration groups (G600 to G20). The subjective analysis was performed using 5-point Likert scales. Objective quantitative metrics included the maximum standard uptake value (SUVmax), SUVmean, standard deviation (SD), signal-to-noise ratio (SNR), and SNRnorm of the background. The variabilities in lesion SUVmean, SUVmax, and tumor-to-background ratio (TBR) were also calculated. RESULTS The overall image quality scores in the G600, G300, G180, and G60 groups were 4.9 ± 0.2, 4.9 ± 0.3, 4.4 ± 0.5, and 3.5 ± 0.5 points, respectively. All the lesions identified in the half-dose images were localized in the G60 images, while 56% of the lesions could be clearly identified in the G20 images. With reduced acquisition time, the SUVmax and SD of the backgrounds were gradually increased, while the TBR values showed no statistically significant differences among the groups (all p > 0.1). Using the half-dose images as a reference, the variability in the lesion SUVmax gradually increased from the G180 to G20 images, while the lesion SUVmean remained stable across all age groups. SNRnorm was highly negatively correlated with age. CONCLUSION Total-body PET/CT with a half dose of [18F]-FDG (1.85 MBq/kg, estimated whole-body effective dose: 1.76-2.57 mSv) achieved good performance in pediatric patients, with sufficient image quality and good lesion conspicuity. Sufficient image quality and lesion conspicuity could be maintained at a fast scanning time of 60 s with half-dose activity.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Runze Wu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Debin Hu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yumo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
202
|
Wang Z, Cao X, LaBella A, Zeng X, Biegon A, Franceschi D, Petersen E, Clayton N, Ulaner GA, Zhao W, Goldan AH. High-resolution and high-sensitivity PET for quantitative molecular imaging of the monoaminergic nuclei: A GATE simulation study. Med Phys 2022; 49:4430-4444. [PMID: 35390182 PMCID: PMC11025683 DOI: 10.1002/mp.15653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Quantitative in vivo molecular imaging of fine brain structures requires high-spatial resolution and high-sensitivity. Positron emission tomography (PET) is an attractive candidate to introduce molecular imaging into standard clinical care due to its highly targeted and versatile imaging capabilities based on the radiotracer being used. However, PET suffers from relatively poor spatial resolution compared to other clinical imaging modalities, which limits its ability to accurately quantify radiotracer uptake in brain regions and nuclei smaller than 3 mm in diameter. Here we introduce a new practical and cost-effective high-resolution and high-sensitivity brain-dedicated PET scanner, using our depth-encoding Prism-PET detector modules arranged in a conformal decagon geometry, to substantially reduce the partial volume effect and enable accurate radiotracer uptake quantification in small subcortical nuclei. METHODS Two Prism-PET brain scanner setups were proposed based on our 4-to-1 and 9-to-1 coupling of scintillators to readout pixels using1.5 × 1.5 × 20 $1.5 \times 1.5 \times 20$ mm3 and0.987 × 0.987 × 20 $0.987 \times 0.987 \times 20$ mm3 crystal columns, respectively. Monte Carlo simulations of our Prism-PET scanners, Siemens Biograph Vision, and United Imaging EXPLORER were performed using Geant4 application for tomographic emission (GATE). National Electrical Manufacturers Association (NEMA) standard was followed for the evaluation of spatial resolution, sensitivity, and count-rate performance. An ultra-micro hot spot phantom was simulated for assessing image quality. A modified Zubal brain phantom was utilized for radiotracer imaging simulations of 5-HT1A receptors, which are abundant in the raphe nuclei (RN), and norepinephrine transporters, which are highly concentrated in the bilateral locus coeruleus (LC). RESULTS The Prism-PET brain scanner with 1.5 mm crystals is superior to that with 1 mm crystals as the former offers better depth-of-interaction (DOI) resolution, which is key to realizing compact and conformal PET scanner geometries. We achieved uniform 1.3 mm full-width-at-half-maximum (FWHM) spatial resolutions across the entire transaxial field-of-view (FOV), a NEMA sensitivity of 52.1 kcps/MBq, and a peak noise equivalent count rate (NECR) of 957.8 kcps at 25.2 kBq/mL using 450-650 keV energy window. Hot spot phantom results demonstrate that our scanner can resolve regions as small as 1.35 mm in diameter at both center and 10 cm away from the center of the transaixal FOV. Both 5-HT1A receptor and norepinephrine transporter brain simulations prove that our Prism-PET scanner enables accurate quantification of radiotracer uptake in small brain regions, with a 1.8-fold and 2.6-fold improvement in the dorsal RN as well as a 3.2-fold and 4.4-fold improvement in the bilateral LC compared to the Biograph Vision and EXPLORER, respectively. CONCLUSIONS Based on our simulation results, the proposed high-resolution and high-sensitivity Prism-PET brain scanner is a promising cost-effective candidate to achieve quantitative molecular neuroimaging of small but important brain regions with PET clinically viable.
Collapse
Affiliation(s)
- Zipai Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andy LaBella
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Clayton
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gary A. Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
203
|
Abstract
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.
Collapse
Affiliation(s)
- Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
204
|
Merchant SA, Shaikh MJS, Nadkarni P. Tuberculosis conundrum - current and future scenarios: A proposed comprehensive approach combining laboratory, imaging, and computing advances. World J Radiol 2022; 14:114-136. [PMID: 35978978 PMCID: PMC9258306 DOI: 10.4329/wjr.v14.i6.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/17/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains a global threat, with the rise of multiple and extensively drug resistant TB posing additional challenges. The International health community has set various 5-yearly targets for TB elimination: mathematical modelling suggests that a 2050 target is feasible with a strategy combining better diagnostics, drugs, and vaccines to detect and treat both latent and active infection. The availability of rapid and highly sensitive diagnostic tools (Gene-Xpert, TB-Quick) will vastly facilitate population-level identification of TB (including rifampicin resistance and through it, multi-drug-resistant TB). Basic-research advances have illuminated molecular mechanisms in TB, including the protective role of Vitamin D. Also, Mycobacterium tuberculosis impairs the host immune response through epigenetic mechanisms (histone-binding modulation). Imaging will continue to be key, both for initial diagnosis and follow-up. We discuss advances in multiple imaging modalities to evaluate TB tissue changes, such as molecular imaging techniques (including pathogen-specific positron emission tomography imaging agents), non-invasive temporal monitoring, and computing enhancements to improve data acquisition and reduce scan times. Big data analysis and Artificial Intelligence (AI) algorithms, notably in the AI sub-field called “Deep Learning”, can potentially increase the speed and accuracy of diagnosis. Additionally, Federated learning makes multi-institutional/multi-city AI-based collaborations possible without sharing identifiable patient data. More powerful hardware designs - e.g., Edge and Quantum Computing- will facilitate the role of computing applications in TB. However, “Artificial Intelligence needs real Intelligence to guide it!” To have maximal impact, AI must use a holistic approach that incorporates time tested human wisdom gained over decades from the full gamut of TB, i.e., key imaging and clinical parameters, including prognostic indicators, plus bacterial and epidemiologic data. We propose a similar holistic approach at the level of national/international policy formulation and implementation, to enable effective culmination of TB’s endgame, summarizing it with the acronym “TB - REVISITED”.
Collapse
Affiliation(s)
- Suleman Adam Merchant
- Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai 400022, Maharashtra, India
| | - Mohd Javed Saifullah Shaikh
- Department of Radiology, North Bengal Neuro Centre, Jupiter magnetic resonance imaging, Diagnostic Centre, Siliguri 734003, West Bengal, India
| | - Prakash Nadkarni
- College of Nursing, University of Iowa, Iowa 52242, IA, United States
| |
Collapse
|
205
|
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, Wu Z, Liu J, Li B, Wu H, Cheng Z, Wang S, Zhang Y, Xu B, Li S, Shi H. Expert consensus on oncological [ 18F]FDG total-body PET/CT imaging (version 1). Eur Radiol 2022; 33:615-626. [PMID: 35751696 DOI: 10.1007/s00330-022-08960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfendong Road, Guangzhou, 510060, China
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
206
|
Total-body pediatric PET is ready for prime time. Eur J Nucl Med Mol Imaging 2022; 49:3624-3626. [PMID: 35723695 DOI: 10.1007/s00259-022-05873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
207
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
208
|
Karakatsanis NA, Nehmeh MH, Conti M, Bal G, González AJ, Nehmeh SA. Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6aa1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph VisionTM PET/CT scanner. Approach. Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 × 5 Lutetium Oxyorthosilicate crystals (3.2 × 3.2 × 20 mm3). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all mini-blocks interleaved with gaps of 16 mm (transaxial) × 16 mm (axial) width in checkerboard pattern. For sparse configurations, a ‘limited’ continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012. Main Results. All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (p-value > 0.05). Compared to Vision, SBR and SCB %CRs were similar (p-values > 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (p-values < 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq−1, NECRs of 311 kcps @35 kBq cc−1, 266 kcps @25.8 kBq cc−1, and 260 kcps @27.8 kBq cc−1, and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (p-value > 0.05), yet, up to 1.5 mm worse than Vision (p-values < 0.05). Significance. The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.
Collapse
|
209
|
Zhang Y, Hu P, He Y, Yu H, Tan H, Liu G, Gu J, Shi H. Ultrafast 30-s total-body PET/CT scan: a preliminary study. Eur J Nucl Med Mol Imaging 2022; 49:2504-2513. [PMID: 35578037 DOI: 10.1007/s00259-022-05838-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE The aim of this study is to explore the diagnostic value of the images obtained in ultrafast 30-s acquisition time by the total-body PET/CT (18F-FDG injection dose of about 3.7 MBq/kg), and to evaluate whether they can meet the requirements of clinical diagnosis or not. METHODS This retrospective study explored the clinical value of ultrafast 30-s 18F-FDG total-body PET/CT in 88 oncology patients, using the post-surgical pathological diagnosis as the reference standard. The data were acquired over 300 s and reconstructed using all 300-s data (G300) and only the initial 30 s (G30). Two readers independently assessed all images qualitatively and quantitatively. The diagnostic performance was compared between G300 and G30. RESULTS The G300 average qualitative score was higher than G30 (P < 0.001). G300 and G30 also differed quantitatively in the liver and mediastinum SUVmax, SD, and SNR (all P < 0.001), but had similar sensitivities (89.09% vs. 86.36%, P = 0.250). The G300 group had higher accuracy (79.73%) and a larger area under the curve (0.709) than G30 (77.70% and 0.695, respectively; all P > 0.05). CONCLUSION The 30-s total-body PET/CT could meet clinical diagnostic requirements for malignant tumors in patients intolerant to prolonged horizontal positioning.
Collapse
Affiliation(s)
- Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, China. .,Shanghai Institute of Medical Imaging, Shanghai, China.
| |
Collapse
|
210
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
211
|
Physiologically intense FDG uptake of distal spinal cord on total-body PET/CT. Ann Nucl Med 2022; 36:643-650. [PMID: 35536533 DOI: 10.1007/s12149-022-01747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Physiologically mild-to-moderate FDG uptake of the spinal cord was reported. However, we noticed intense FDG uptake of distal spinal cord in several patients without definite spinal cord lesions on total-body PET/CT. Thus, this study aimed to investigate the frequency, pattern, intensity, and associations of FDG uptake in such cases on total-body PET/CT. METHODS The clinical characteristics of age, gender, body mass index (BMI), lower extremity symptom, diabetes, and fasting blood glucose level, and total-body FDG PET/CT metabolic parameters of maximum standard uptake value (SUVmax), SUVmax of lean body mass (SUVlbm), and SUVmax of body surface area (SUVbsa), were retrospectively analyzed in 527 patients without definite spinal cord lesions. Intense FDG uptake was defined as greater than liver glucometabolism on visual analysis, and T5 cord was selected as cord background. RESULTS Intense FDG uptake of distal spinal cord was observed in 87 out of 527 patients (16.5%) and involved with 2-3 vertebral segments including T11-T12 in 33 cases (38.0%), T12-L1 in 29 (33.3%), and T11-L1 in 25 (28.7%). No lesions were demonstrated on follow-up physical examinations, MRI or contrast-enhanced CT in these 87 cases with intense FDG accumulation in the distal spinal cord. The median SUVmax, SUVlbm, and SUVbsa of distal spinal cord with intense FDG uptake were 3.8 (2.7-5.5), 2.9 (2.2-4.3), and 1.0 (0.7-1.6), respectively. Significant differences in SUVmax, SUVlbm, and SUVbsa of distal cord and cord background were found between the groups with and without intense FDG uptake (P < 0.05). Moreover, significant differences in ratios of distal spinal cord-to-cord background, to mediastinal blood pool, and to liver were observed between two groups (P < 0.05). Intense FDG uptake of distal cord was associated with age, diabetic status, and blood glucose level. CONCLUSIONS Intense FDG uptake of distal spinal cord on total-body PET/CT may be physiological, more common in younger age, patients without diabetes, or lower fasting blood glucose.
Collapse
|
212
|
Xue S, Guo R, Bohn KP, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, Sznitman R, El Fakhri G, Rominger A, Li B, Shi K. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET. Eur J Nucl Med Mol Imaging 2022; 49:1843-1856. [PMID: 34950968 PMCID: PMC9015984 DOI: 10.1007/s00259-021-05644-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE A critical bottleneck for the credibility of artificial intelligence (AI) is replicating the results in the diversity of clinical practice. We aimed to develop an AI that can be independently applied to recover high-quality imaging from low-dose scans on different scanners and tracers. METHODS Brain [18F]FDG PET imaging of 237 patients scanned with one scanner was used for the development of AI technology. The developed algorithm was then tested on [18F]FDG PET images of 45 patients scanned with three different scanners, [18F]FET PET images of 18 patients scanned with two different scanners, as well as [18F]Florbetapir images of 10 patients. A conditional generative adversarial network (GAN) was customized for cross-scanner and cross-tracer optimization. Three nuclear medicine physicians independently assessed the utility of the results in a clinical setting. RESULTS The improvement achieved by AI recovery significantly correlated with the baseline image quality indicated by structural similarity index measurement (SSIM) (r = -0.71, p < 0.05) and normalized dose acquisition (r = -0.60, p < 0.05). Our cross-scanner and cross-tracer AI methodology showed utility based on both physical and clinical image assessment (p < 0.05). CONCLUSION The deep learning development for extensible application on unknown scanners and tracers may improve the trustworthiness and clinical acceptability of AI-based dose reduction.
Collapse
Affiliation(s)
- Song Xue
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | - Karl Peter Bohn
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Jared Matzke
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Marco Viscione
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | - Chenwei Sun
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | | | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Axel Rominger
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
213
|
Choi CH, Hong SM, Felder J, Tellmann L, Scheins J, Kops ER, Lerche C, Shah NJ. A Novel J-Shape Antenna Array for Simultaneous MR-PET or MR-SPECT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1104-1113. [PMID: 34860648 DOI: 10.1109/tmi.2021.3132576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Simultaneous MR-PET/-SPECT is an emerging technology that capitalises on the invaluable advantages of both modalities, allowing access to numerous sensitive tracers and superior soft-tissue contrast alongside versatile functional imaging capabilities. However, to optimise these capabilities, concurrent acquisitions require the MRI antenna located inside the PET/SPECT field-of-view to be operated without compromising any aspects of system performance or image quality compared to the stand-alone instrumentation. Here, we report a novel gamma-radiation-transparent antenna concept. The end-fed J-shape antenna is particularly adept for hybrid ultra-high field MR-PET/-SPECT applications as it enables all highly attenuating materials to be placed outside the imaging field-of-view. Furthermore, this unique configuration also provides advantages in stand-alone MR applications by reducing the amount of coupling between the cables and the antenna elements, and by lowering the potential specific absorption rate burden. The use of this new design was experimentally verified according to the important features for both ultra-high field MRI and the 511 keV transmission scan. The reconstructed attenuation maps evidently showed much lower attenuation ( ∼ 15 %) for the proposed array when compared to the conventional dipole antenna array since there were no high-density components. In MR, it was observed that the signal-to-noise ratio from the whole volume obtained using the proposed array was comparable to that acquired by the conventional array which was also in agreement with the simulation results. The unique feature, J-shape array, would enable simultaneous MR-PET/-SPECT experiments to be conducted without unduly compromising any aspects of system performance and image quality compared to the stand-alone instrumentation.
Collapse
|
214
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
215
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
216
|
Enhancing fibroblast activation protein (FAP)-targeted radionuclide therapy with albumin binding, and beyond. Eur J Nucl Med Mol Imaging 2022; 49:1773-1777. [PMID: 35332379 PMCID: PMC9074086 DOI: 10.1007/s00259-022-05766-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
217
|
Short-Axis PET Image Quality Improvement by Attention CycleGAN Using Total-Body PET. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4247023. [PMID: 35368959 PMCID: PMC8975633 DOI: 10.1155/2022/4247023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
The quality of positron emission tomography (PET) imaging is positively correlated with scanner sensitivity, which is closely related to the axial field of view (FOV). Conventional short-axis PET scanners (200–350 mm FOV) reduce the imaging quality during fast scanning (2–3 minutes) due to the limitation of FOV, which reduce the reliability of diagnosis. To overcome hardware limitations and improve the image quality of short-axis PET scanners, we propose a supervised deep learning model, CycleAGAN, which is based on a cycle-consistent adversarial network (CycleGAN). We introduced the attention mechanism into the generator and focus on channel and spatial representative features and supervised learning using pairs of data to maintain the spatial consistency of the generated images with the ground truth. The imaging information of 386 patients from Henan Provincial People's Hospital was prospectively included as the dataset in this study. The training data come from the total-body PET scanner uEXPLORER. The proposed CycleAGAN is compared with traditional gray-level-based methods and learning-based methods. The results confirm that CycleAGAN achieved the best results on SSIM and NRMSE and achieved the closest distribution to ground truth in expert rating. The proposed method is not only able to improve the image quality of PET scanners with 320 mm FOV but also achieved good results on shorter FOV scanners. Patients and radiologists can benefit from the computer-aided diagnosis (CAD) system integrated with CycleAGAN.
Collapse
|
218
|
Alzghool OM, van Dongen G, van de Giessen E, Schoonmade L, Beaino W. α-Synuclein Radiotracer Development and In Vivo Imaging: Recent Advancements and New Perspectives. Mov Disord 2022; 37:936-948. [PMID: 35289424 PMCID: PMC9310945 DOI: 10.1002/mds.28984] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
α-Synucleinopathies including idiopathic Parkinson's disease, dementia with Lewy bodies and multiple systems atrophy share overlapping symptoms and pathological hallmarks. Selective neurodegeneration and Lewy pathology are the main hallmarks of α-synucleinopathies. Currently, there is no imaging biomarker suitable for a definitive early diagnosis of α-synucleinopathies. Although dopaminergic deficits detected with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) radiotracers can support clinical diagnosis by confirming the presence of dopaminergic neurodegeneration, dopaminergic imaging cannot visualize the preceding disease process, nor distinguish α-synucleinopathies from tauopathies with dopaminergic neurodegeneration, especially at early symptomatic disease stage when clinical presentation is often overlapping. Aggregated α-synuclein (αSyn) could be a suitable imaging biomarker in α-synucleinopathies, because αSyn aggregation and therefore, Lewy pathology is evidently an early driver of α-synucleinopathies pathogenesis. Additionally, several antibodies and small molecule compounds targeting aggregated αSyn are in development for therapy. However, there is no way to directly measure if or how much they lower the levels of aggregated αSyn in the brain. There is clearly a paramount diagnostic and therapeutic unmet medical need. To date, aggregated αSyn and Lewy pathology inclusion bodies cannot be assessed ante-mortem with SPECT or PET imaging because of the suboptimal binding characteristics and/or physicochemical properties of current radiotracers. The aim of this narrative review is to highlight the suitability of aggregated αSyn as an imaging biomarker in α-synucleinopathies, the current limitations with and lessons learned from αSyn radiotracer development, and finally to propose antibody-based ligands for imaging αSyn aggregates as a complementary tool rather than an alternative to small molecule ligands. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Obada M Alzghool
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Turku PET Centre, University of Turku, Turku, Finland
| | - Guus van Dongen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Linda Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wissam Beaino
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
219
|
Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med 2022; 63:342-352. [PMID: 35232879 DOI: 10.2967/jnumed.121.263518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Learning Objectives: On successful completion of this activity, participants should be able to describe (1) describe principles of PET tracer kinetic analysis for oncologic applications; (2) list methods used for PET kinetic analysis for oncology; and (3) discuss application of kinetic modeling for cancer-specific diagnostic needs.Financial Disclosure: This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through March 2025PET enables noninvasive imaging of regional in vivo cancer biology. By engineering a radiotracer to target specific biologic processes of relevance to cancer (e.g., cancer metabolism, blood flow, proliferation, and tumor receptor expression or ligand binding), PET can detect cancer spread, characterize the cancer phenotype, and assess its response to treatment. For example, imaging of glucose metabolism using the radiolabeled glucose analog 18F-FDG has widespread applications to all 3 of these tasks and plays an important role in cancer care. However, the current clinical practice of imaging at a single time point remote from tracer injection (i.e., static imaging) does not use all the information that PET cancer imaging can provide, especially to address questions beyond cancer detection. Reliance on tracer measures obtained only from static imaging may also lead to misleading results. In this 2-part continuing education paper, we describe the principles of tracer kinetic analysis for oncologic PET (part 1), followed by examples of specific implementations of kinetic analysis for cancer PET imaging that highlight the added benefits over static imaging (part 2). This review is designed to introduce nuclear medicine clinicians to basic concepts of kinetic analysis in oncologic imaging, with a goal of illustrating how kinetic analysis can augment our understanding of in vivo cancer biology, improve our approach to clinical decision making, and guide the interpretation of quantitative measures derived from static images.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
220
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
221
|
Islam MR, Shahmohammadi Beni M, Ng CY, Miyake M, Rahman M, Ito S, Gotoh S, Yamaya T, Watabe H. Proton range monitoring using 13N peak for proton therapy applications. PLoS One 2022; 17:e0263521. [PMID: 35167589 PMCID: PMC8846528 DOI: 10.1371/journal.pone.0263521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.
Collapse
Affiliation(s)
- M. Rafiqul Islam
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Institute of Nuclear Medical Physics, AERE, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Mehrdad Shahmohammadi Beni
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
- Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chor-yi Ng
- Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Masayasu Miyake
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
| | - Mahabubur Rahman
- Nuclear Safety Security Safeguard Division, Bangladesh Atomic Energy Regularity Authority, Dhaka, Bangladesh
| | | | | | - Taiga Yamaya
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Watabe
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
222
|
Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard R, Kobe C. Influences on PET Quantification and Interpretation. Diagnostics (Basel) 2022; 12:451. [PMID: 35204542 PMCID: PMC8871060 DOI: 10.3390/diagnostics12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
Various factors have been identified that influence quantitative accuracy and image interpretation in positron emission tomography (PET). Through the continuous introduction of new PET technology-both imaging hardware and reconstruction software-into clinical care, we now find ourselves in a transition period in which traditional and new technologies coexist. The effects on the clinical value of PET imaging and its interpretation in routine clinical practice require careful reevaluation. In this review, we provide a comprehensive summary of important factors influencing quantification and interpretation with a focus on recent developments in PET technology. Finally, we discuss the relationship between quantitative accuracy and subjective image interpretation.
Collapse
Affiliation(s)
- Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany;
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam (CCA), Amsterdam University Medical Center, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| |
Collapse
|
223
|
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics (Basel) 2022; 12:diagnostics12020426. [PMID: 35204517 PMCID: PMC8871405 DOI: 10.3390/diagnostics12020426] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on the development of total-body PET scanning in a variety of fields such as clinical oncology, cardiology, personalized medicine, drug development and toxicology, and inflammatory/infectious disease. Given its ultrahigh detection sensitivity, enhanced temporal resolution, and long scan range (1940 mm), total-body PET scanning can not only image faster than traditional techniques with less administered radioactivity but also perform total-body dynamic acquisition at a longer delayed time point. These unique characteristics create several opportunities to improve image quality and can provide a deeper understanding regarding disease detection, diagnosis, staging/restaging, response to treatment, and prognostication. By reviewing the advantages of total-body PET scanning and discussing the potential clinical applications for this innovative technology, we can address specific issues encountered in routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Sanaz Katal
- Independent Researcher, Melbourne 3000, Australia;
| | - Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
224
|
Al-Sarhani H, Gottumukkala RV, Grasparil ADS, Tung EL, Gee MS, Greer MLC. Screening of cancer predisposition syndromes. Pediatr Radiol 2022; 52:401-417. [PMID: 33791839 DOI: 10.1007/s00247-021-05023-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Pediatric patients with cancer predisposition syndromes are at increased risk of developing malignancies compared with their age-matched peers, necessitating regular surveillance. Screening protocols differ among syndromes and are composed of a number of elements, imaging being one. Surveillance can be initiated in infants, children and adolescents with a tumor known or suspected of being related to a cancer predisposition syndrome or where genetic testing identifies a germline pathogenic gene variant in an asymptomatic child. Pre-symptomatic detection of malignant neoplasms offers potential to improve treatment options and survival outcomes, but the benefits and risks of screening need to be weighed, particularly with variable penetrance in many cancer predisposition syndromes. In this review we discuss the benefits and risks of surveillance imaging and the importance of integrating imaging and non-imaging screening elements. We explore the principles of surveillance imaging with particular reference to whole-body MRI, considering the strategies to minimize false-negative and manage false-positive whole-body MRI results, the value of standardized nomenclature when reporting risk stratification to better guide patient management, and the need for timely communication of results to allay anxiety. Cancer predisposition syndrome screening is a multimodality, multidisciplinary and longitudinal process, so developing formalized frameworks for surveillance imaging programs should enhance diagnostic performance while improving the patient experience.
Collapse
Affiliation(s)
- Haifa Al-Sarhani
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ravi V Gottumukkala
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Don S Grasparil
- Department of Radiological Sciences, Cardinal Santos Medical Center, San Juan City, Philippines
| | - Eric L Tung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
225
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
226
|
Sanchez D, Gomez S, Mauricio J, Freixas L, Sanuy A, Guixe G, Lopez A, Manera R, Marin J, Perez JM, Picatoste E, Pujol C, Sanmukh A, Rato P, Vela O, Gascon D. HRFlexToT: A High Dynamic Range ASIC for Time-of-Flight Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3066426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
227
|
Alavi A, Saboury B, Nardo L, Zhang V, Wang M, Li H, Raynor WY, Werner TJ, Høilund-Carlsen PF, Revheim ME. Potential and Most Relevant Applications of Total Body PET/CT Imaging. Clin Nucl Med 2022; 47:43-55. [PMID: 34874348 DOI: 10.1097/rlu.0000000000003962] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT The introduction of total body (TB) PET/CT instruments over the past 2 years has initiated a new and exciting era in medical imaging. These instruments have substantially higher sensitivity (up to 68 times) than conventional modalities and therefore allow imaging the entire body over a short period. However, we need to further refine the imaging protocols of this instrument for different indications. Total body PET will allow accurate assessment of the extent of disease, particularly, including the entire axial and appendicular skeleton. Furthermore, delayed imaging with this instrument may enhance the sensitivity of PET for some types of cancer. Also, this modality may improve the detection of venous thrombosis, a common complication of cancer and chemotherapy, in the extremities and help prevent pulmonary embolism. Total body PET allows assessment of atherosclerotic plaques throughout the body as a systematic disease. Similarly, patients with widespread musculoskeletal disorders including both oncologic and nononcologic entities, such as degenerative joint disease, rheumatoid arthritis, and osteoporosis, may benefit from the use of TB-PET. Finally, quantitative global disease assessment provided by this approach will be superior to conventional measurements, which do not reflect overall disease activity. In conclusion, TB-PET imaging may have a revolutionary impact on day-to-day practice of medicine and may become the leading imaging modality in the future.
Collapse
Affiliation(s)
- Abass Alavi
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Sacramento, CA
| | - Vincent Zhang
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Henan, China
| | - Hongdi Li
- United Imaging Healthcare, Houston, TX
| | - William Y Raynor
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Thomas J Werner
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
228
|
Nadig V, Herrmann K, Mottaghy FM, Schulz V. Hybrid total-body pet scanners-current status and future perspectives. Eur J Nucl Med Mol Imaging 2022; 49:445-459. [PMID: 34647154 PMCID: PMC8803785 DOI: 10.1007/s00259-021-05536-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
Purpose Since the 1990s, PET has been successfully combined with MR or CT systems. In the past years, especially PET systems have seen a trend towards an enlarged axial field of view (FOV), up to a factor of ten. Methods Conducting a thorough literature research, we summarize the status quo of contemporary total-body (TB) PET/CT scanners and give an outlook on possible future developments. Results Currently, three human TB PET/CT systems have been developed: The PennPET Explorer, the uExplorer, and the Biograph Vision Quadra realize aFOVs between 1 and 2 m and show a tremendous increase in system sensitivity related to their longer gantries. Conclusion The increased system sensitivity paves the way for short-term, low-dose, and dynamic TB imaging as well as new examination methods in almost all areas of imaging.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
- German Cancer Consortium (DKTK) - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.
- Physics Institute III B, RWTH Aachen University, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.
| |
Collapse
|
229
|
Konstantinou G, Lecoq P, Benlloch JM, Gonzalez AJ. Metascintillators for Ultrafast Gamma Detectors: A Review of Current State and Future Perspectives. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3069624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
230
|
Omidvari N, Cheng L, Leung EK, Abdelhafez YG, Badawi RD, Ma T, Qi J, Cherry SR. Lutetium background radiation in total-body PET-A simulation study on opportunities and challenges in PET attenuation correction. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:963067. [PMID: 36172601 PMCID: PMC9513593 DOI: 10.3389/fnume.2022.963067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The current generation of total-body positron emission tomography (PET) scanners offer significant sensitivity increase with an extended axial imaging extent. With the large volume of lutetium-based scintillation crystals that are used as detector elements in these scanners, there is an increased flux of background radiation originating from 176Lu decay in the crystals and higher sensitivity for detecting it. Combined with the ability of scanning the entire body in a single bed position, this allows more effective utilization of the lutetium background as a transmission source for estimating 511 keV attenuation coefficients. In this study, utilization of the lutetium background radiation for attenuation correction in total-body PET was studied using Monte Carlo simulations of a 3D whole-body XCAT phantom in the uEXPLORER PET scanner, with particular focus on ultralow-dose PET scans that are now made possible with these scanners. Effects of an increased acceptance angle, reduced scan durations, and Compton scattering on PET quantification were studied. Furthermore, quantification accuracy of lutetium-based attenuation correction was compared for a 20-min scan of the whole body on the uEXPLORER, a one-meter-long, and a conventional 24-cm-long scanner. Quantification and lesion contrast were minimally affected in both long axial field-of-view scanners and in a whole-body 20-min scan, the mean bias in all analyzed organs of interest were within a ±10% range compared to ground-truth activity maps. Quantification was affected in certain organs, when scan duration was reduced to 5 min or a reduced acceptance angle of 17° was used. Analysis of the Compton scattered events suggests that implementing a scatter correction method for the transmission data will be required, and increasing the energy threshold from 250 keV to 290 keV can reduce the computational costs and data rates, with negligible effects on PET quantification. Finally, the current results can serve as groundwork for transferring lutetium-based attenuation correction into research and clinical practice.
Collapse
Affiliation(s)
- Negar Omidvari
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States,CORRESPONDENCE: Negar Omidvari,
| | - Li Cheng
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Edwin K. Leung
- Department of Radiology, University of California, Davis, Davis, CA, United States,United Imaging Healthcare America Inc., Houston, TX, United States
| | - Yasser G. Abdelhafez
- Department of Radiology, University of California, Davis, Davis, CA, United States,Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Asyut, Egypt
| | - Ramsey D. Badawi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States,Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Tianyu Ma
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Simon R. Cherry
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States,Department of Radiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
231
|
Tiwari A, Merrick M, Graves SA, Sunderland J. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE discovery MI PET front-end architecture. Med Phys 2021; 49:1139-1152. [PMID: 34954831 DOI: 10.1002/mp.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The development of total-body PET scanners is of growing interest in the PET community. Investigation into the imaging properties of a hypothetical extended axial field-of-view (AFOV) GE Healthcare SiPM-based Discovery MI (DMI) system architecture has not yet been performed. In this work, we assessed its potential as a whole-body scanner using Monte Carlo simulations. The aim of this work was to (1) develop and validate a Monte Carlo model of a 4-ring scanner and (2) extend its AFOV up to 2 m to evaluate performance gain through NEMA-based evaluation. METHODS The DMI 4-ring geometry and its pulse digitization scheme were modeled within the GATE Monte Carlo platform using published literature. The GATE scanner model was validated by comparing results against published NEMA performance measurements. Following the validation of the 4-ring model, the model was extended to simulate 8, 20, 30, and 40-ring systems. Spatial resolution, sensitivity, NECR, and scatter fraction were characterized with modified NEMA NU-2 2018 standards; however, the image quality measurements were not acquired due to computational limitations. Spatial resolutions were simulated for all scanner ring configurations using point sources to examine the effects of parallax errors. NEMA count rates were estimated using a standard 70 cm scatter phantom and an extended version of scatter phantom of length 200 cm with (1-800) MBq of 18 F for all scanners. Sensitivity was evaluated using NEMA methods with a 70 cm standard and a 200 cm long line source. RESULTS The average FWHM of the radial/tangential/axial spatial resolution reconstructed with filtered back-projection at 1 and 10 cm from the scanner center were 3.94/4.10/4.41 mm and 5.29/4.89/5.90 mm for the 4-ring scanner. Sensitivity was determined to be 14.86 cps/kBq at the center of the FOV for the 4-ring scanner using a 70 cm line source. Sensitivity enhancement up to 21-fold and 60-fold were observed for 1 m and 2 m AFOV scanners compared to 4-ring scanner using a 200 cm long line source. Spatial resolution simulations in a 2 m AFOV scanner suggest a maximum degradation of ∼23.8% in the axial resolution compared to the 4-ring scanner. However, the transverse resolution was found to be relatively constant when increasing the axial acceptance angle up to ±70°. The peak NECR was 212.92 kcps at 22.70 kBq/mL with a scatter fraction of 38.9% for a 4-ring scanner with a 70 cm scatter phantom. Comparison of peak NECR using the 200 cm long scatter phantom relative to the 4-ring scanner resulted in a NECR gain of 15 for the 20-ring and 28 for the 40-ring geometry. Spatial resolution, sensitivity, and scatter fraction showed an agreement within ∼7% compared with published measured values. CONCLUSIONS The 4-ring DMI scanner simulation was successfully validated against published NEMA measurements. Sensitivity and NECR performance of extended 1 and 2 meters AFOV scanners based upon the DMI architecture were subsequently simulated. Increases in sensitivity and count-rate performance are consistent with prior simulation studies utilizing extensions of the Siemens mCT architecture and published NEMA measurements with the uEXPLORER system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashok Tiwari
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA
| | - Michael Merrick
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Stephen A Graves
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - John Sunderland
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| |
Collapse
|
232
|
Abstract
Abstract
In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.
Collapse
|
233
|
Li C, Han C, Duan S, Li P, Alam I, Xiao Z. Visualizing T cell responses: The T cell PET imaging toolbox. J Nucl Med 2021; 63:183-188. [PMID: 34887338 DOI: 10.2967/jnumed.121.261976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
T lymphocytes are key mediators of the adaptive immune response. Inappropriate or imbalanced T cell responses are underlying factors in cancer progression, allergy and other immune disorders. Monitoring the spatiotemporal dynamics of T cells and their functional status has the potential to provide unique biological insights in health and disease. Non-invasive positron emission tomography (PET) imaging represents an ideal whole-body modality for achieving this goal. With the appropriate PET imaging probes, T cell dynamics can be monitored in vivo, with high specificity and sensitivity. Herein, we provide a comprehensive overview of the applications of this state-of-the-art T cell PET imaging toolbox, and the potential it has to improve the clinical management of cancer immunotherapy and T cell- driven diseases. We also discuss future directions and prospects for clinical translation.
Collapse
Affiliation(s)
- Chao Li
- Harbin Medical University, China
| | | | | | - Ping Li
- Department of Radiology and Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University
| | - Israt Alam
- MIPS, Department of Radiology, Stanford University School of Medicine
| | | |
Collapse
|
234
|
Raynor WY, Borja AJ, Rojulpote C, Høilund-Carlsen PF, Alavi A. 18F-sodium fluoride: An emerging tracer to assess active vascular microcalcification. J Nucl Cardiol 2021; 28:2706-2711. [PMID: 32390112 DOI: 10.1007/s12350-020-02138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chaitanya Rojulpote
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
235
|
Young JD, Jauregui-Osoro M, Wong WL, Cooper MS, Cook G, Barrington SF, Ma MT, Blower PJ, Aboagye EO. An overview of nuclear medicine research in the UK and the landscape for clinical adoption. Nucl Med Commun 2021; 42:1301-1312. [PMID: 34284442 PMCID: PMC8584216 DOI: 10.1097/mnm.0000000000001461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Nuclear medicine contributes greatly to the clinical management of patients and experimental medicine. This report aims to (1) outline the current landscape of nuclear medicine research in the UK, including current facilities and recent or ongoing clinical studies and (2) provide information about the available pathways for clinical adoption and NHS funding (commissioning) of radiopharmaceuticals. METHODS Evidence was obtained through database searches for UK-based nuclear medicine clinical studies and by conducting a questionnaire-based survey of UK radiopharmaceutical production facilities. A recent history of clinical commissioning, either through recommendations from the National Institute for Health and Care Excellence (NICE) or through NHS specialised services commissioning, was compiled from publicly available documents and policies. RESULTS The collected data highlighted the UK's active nuclear medicine research community and recent investment in new facilities and upgrades. All commissioning routes favour radiopharmaceuticals that have marketing authorisation and since 2017 there has been a requirement to demonstrate both clinical and cost-effectiveness. Whilst radiopharmaceuticals for molecular radiotherapy are well suited to these commissioning pathways, diagnostic radiotracers have not historically been assessed in this manner. CONCLUSIONS We hope that by collating this information we will provide stimulus for future discussion and consensus statements around this topic.
Collapse
Affiliation(s)
- Jennifer D. Young
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
- National Cancer Imaging Translational Accelerator, Cancer Research UK
| | - Maite Jauregui-Osoro
- National Cancer Imaging Translational Accelerator, Cancer Research UK
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, London
| | - Wai-Lup Wong
- Department of Nuclear Medicine, Mount Vernon Cancer Centre, Mount Vernon Hospital, Northwood
| | - Margaret S. Cooper
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
| | - Gary Cook
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
- National Cancer Imaging Translational Accelerator, Cancer Research UK
- King’s College London and Guy’s and St Thomas’ PET Centre, King’s College London, King’s Health Partners, London, UK
| | - Sally F. Barrington
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
- King’s College London and Guy’s and St Thomas’ PET Centre, King’s College London, King’s Health Partners, London, UK
| | - Michelle T. Ma
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
- National Cancer Imaging Translational Accelerator, Cancer Research UK
| | - Philip J. Blower
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London
- National Cancer Imaging Translational Accelerator, Cancer Research UK
| | - Eric O. Aboagye
- National Cancer Imaging Translational Accelerator, Cancer Research UK
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, London
| |
Collapse
|
236
|
Beuthien-Baumann B, Sachpekidis C, Gnirs R, Sedlaczek O. Adapting Imaging Protocols for PET-CT and PET-MRI for Immunotherapy Monitoring. Cancers (Basel) 2021; 13:6019. [PMID: 34885129 PMCID: PMC8657132 DOI: 10.3390/cancers13236019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Hybrid imaging with positron emission tomography (PET) in combination with computer tomography (CT) is a well-established diagnostic tool in oncological staging and restaging. The combination of PET with magnetic resonance imaging (MRI) as a clinical scanner was introduced approximately 10 years ago. Although MRI provides superb soft tissue contrast and functional information without the radiation exposure of CT, PET-MRI is not as widely introduced in oncologic imaging as PET-CT. One reason for this hesitancy lies in the relatively long acquisition times for a PET-MRI scan, if the full diagnostic potential of MRI is exploited. In this review, we discuss the possible advantages of combined imaging protocols of PET-CT and PET-MRI, within the context of staging and restaging of patients under immunotherapy, in order to achieve "multi-hybrid imaging" in one single patient visit.
Collapse
Affiliation(s)
- Bettina Beuthien-Baumann
- Radiologie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.G.); (O.S.)
| | - Christos Sachpekidis
- Klinische Kooperationseinheit Nuklearmedizin, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Regula Gnirs
- Radiologie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.G.); (O.S.)
| | - Oliver Sedlaczek
- Radiologie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.G.); (O.S.)
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| |
Collapse
|
237
|
Miller K. A backprojection kernel (KRNL3D) for very-wide-aperture 3D tomography applied to PET with Multigrid for precise use of time-of-flight data. Phys Med Biol 2021; 66. [PMID: 34673567 DOI: 10.1088/1361-6560/ac320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
In 'KRNL3D' we derive a kernel functionK(y1,y2,φ) whose backprojections from all directions (θ,φ) in the spherical band∣φ∣<φ¯maxon the celestial sphere, when integrated with respect to solid angle, yieldρ, the 3D Gaussian point response function (PRF) of radius 1. ThisK, when convolved against line integral data from an unknown density functionf, yields an integral formula for the 'mollification'ff=ρ∗f, which is a slightly blurred version off, and which stabilizes the mild ill-posedness. Applied to positron emission tomography that backprojection reconstruction occurs stochastically and one emission event at a time, after needed data corrections. We describe Octave (≈Matlab) codes to tabulateKand to test its use with a large apertureφ¯max=π/3orπ/6. 'KRNL3D-TOF' truncates backprojection to a cylindrical patch about the TOF approximate location of each event. These 'backplacements' decrease the computational cost and limit noise and streaking in one region from contaminating the reconstruction in more distant regions. They also retain the ability to count emission events in an isolated blob despiteverylow event counts, a valuable feature fordynamicstudies of metabolic processes. 'Multigrid' allows further reduction in the radius and lengths of the cylinders, thereby enabling even moreprecise use of the TOF information. This precision should be especially important as researchers decrease the TOF uncertainty in newer generation scanners. Finally, we discuss 'further work' that needs to be done. Our codes are being made freely available athttps://github.com/keithmillerberkeley/PET-codes.
Collapse
Affiliation(s)
- Keith Miller
- Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720-3840, United States of America
| |
Collapse
|
238
|
Molecular Imaging of Vulnerable Coronary Plaque with Radiolabeled Somatostatin Receptors (SSTR). J Clin Med 2021; 10:jcm10235515. [PMID: 34884218 PMCID: PMC8658082 DOI: 10.3390/jcm10235515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is responsible for the majority of heart attacks and is characterized by several modifications of the arterial wall including an inflammatory reaction. The silent course of atherosclerosis has made it necessary to develop predictors of disease complications before symptomatic lesions occur. Vulnerable to rupture atherosclerotic plaques are the target for molecular imaging. To this aim, different radiopharmaceuticals for PET/CT have emerged for the identification of high-risk plaques, with high specificity for the identification of the cellular components and pathophysiological status of plaques. By targeting specific receptors on activated macrophages in high-risk plaques, radiolabelled somatostatin analogues such as 68Ga-DOTA-TOC, TATE,0 or NOC have shown high relevance to detect vulnerable, atherosclerotic plaques. This PET radiopharmaceutical has been tested in several pre-clinical and clinical studies, as reviewed here, showing an important correlation with other risk factors.
Collapse
|
239
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
240
|
Rischka L, Godbersen GM, Pichler V, Michenthaler P, Klug S, Klöbl M, Ritter V, Wadsak W, Hacker M, Kasper S, Lanzenberger R, Hahn A. Reliability of task-specific neuronal activation assessed with functional PET, ASL and BOLD imaging. J Cereb Blood Flow Metab 2021; 41:2986-2999. [PMID: 34078145 PMCID: PMC8545051 DOI: 10.1177/0271678x211020589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mapping the neuronal response during cognitive processing is of crucial importance to gain new insights into human brain function. BOLD imaging and ASL are established MRI methods in this endeavor. Recently, the novel approach of functional PET (fPET) was introduced, enabling absolute quantification of glucose metabolism at rest and during task execution in a single measurement. Here, we report test-retest reliability of fPET in direct comparison to BOLD imaging and ASL. Twenty healthy subjects underwent two PET/MRI measurements, providing estimates of glucose metabolism, cerebral blood flow (CBF) and blood oxygenation. A cognitive task was employed with different levels of difficulty requiring visual-motor coordination. Task-specific neuronal activation was robustly detected with all three imaging approaches. The highest reliability was obtained for glucose metabolism at rest. Although this dropped during task performance it was still comparable to that of CBF. In contrast, BOLD imaging yielded high performance only for qualitative spatial overlap of task effects but not for quantitative comparison. Hence, the combined assessment of fPET and ASL offers reliable and simultaneous absolute quantification of glucose metabolism and CBF at rest and task.
Collapse
Affiliation(s)
- Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Vera Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
241
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
242
|
In Vivo PET Imaging of Monocytes Labeled with [ 89Zr]Zr-PLGA-NH 2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers (Basel) 2021; 13:cancers13205069. [PMID: 34680219 PMCID: PMC8533969 DOI: 10.3390/cancers13205069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models.
Collapse
|
243
|
Luurtsema G, Pichler V, Bongarzone S, Seimbille Y, Elsinga P, Gee A, Vercouillie J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality. EJNMMI Radiopharm Chem 2021; 6:34. [PMID: 34628570 PMCID: PMC8502193 DOI: 10.1186/s41181-021-00149-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
This guideline on molar activity (Am) and specific activity (As) focusses on small molecules, peptides and macromolecules radiolabelled for diagnostic and therapeutic applications. In this guideline we describe the definition of Am and As, and how these measurements must be standardised and harmonised. Selected examples highlighting the importance of Am and As in imaging studies of saturable binding sites will be given, and the necessity of using appropriate materials and equipment will be discussed. Furthermore, common Am pitfalls and remedies are described. Finally, some aspects of Am in relation the emergence of a new generation of highly sensitive PET scanners will be discussed.
Collapse
Affiliation(s)
- Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Medical University of Vienna, Vienna, Austria
| | | | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Philip Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antony Gee
- Department of Imaging Sciences, King's College London, London, UK
| | | |
Collapse
|
244
|
Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. NANOTECHNOLOGY 2021; 32:502008. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Image-guided therapy, with simultaneous imaging and therapy functions, has the potential to greatly enhance the therapeutic efficacy of anticancer therapy, and reduce the incidence of side effects. Fluorescence imaging has the advantages of easy operation, abundant signal, high contrast, and fast response for real-time and non-invasive tracking. Luminogens with aggregation-induced emission characteristics (AIEgens) can emit strong luminescence in an aggregate state, which makes them ideal materials to construct applicative fluorophores for fluorescence imaging. The opportunity for image-guided cancer treatment has inspired researchers to explore the theranostic application of AIEgens combined with other therapy methods. In recent years, many AIEgens with efficient photosensitizing or photothermal abilities have been designed by precise molecular engineering, with superior performance in image-guided anticancer therapy. Owing to the hydrophobic property of most AIEgens, an assembly approach has been wildly utilized to construct biocompatible AIEgen-based nanostructures in aqueous systems, which can be used for image-guided anticancer therapy. In the present review, we summarize the recent advances in the assembled AIEgens for image-guided anticancer therapy. Five types of image-guided anticancer therapy using assembled AIEgens are included: chemotherapy, photodynamic therapy, photothermal therapy, gene therapy, and synergistic therapy. Moreover, a brief conclusion with the discussion of current challenges and future perspectives in this area is further presented.
Collapse
Affiliation(s)
- Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
- Department of Oncological Gynecology, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Leijing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| |
Collapse
|
245
|
Wang Y, Li E, Cherry SR, Wang G. Total-Body PET Kinetic Modeling and Potential Opportunities Using Deep Learning. PET Clin 2021; 16:613-625. [PMID: 34353745 PMCID: PMC8453049 DOI: 10.1016/j.cpet.2021.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The uEXPLORER total-body PET/CT system provides a very high level of detection sensitivity and simultaneous coverage of the entire body for dynamic imaging for quantification of tracer kinetics. This article describes the fundamentals and potential benefits of total-body kinetic modeling and parametric imaging focusing on the noninvasive derivation of blood input function, multiparametric imaging, and high-temporal resolution kinetic modeling. Along with its attractive properties, total-body kinetic modeling also brings significant challenges, such as the large scale of total-body dynamic PET data, the need for organ and tissue appropriate input functions and kinetic models, and total-body motion correction. These challenges, and the opportunities using deep learning, are discussed.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA; Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA
| | - Elizabeth Li
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA; Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA.
| |
Collapse
|
246
|
Hu Y, Liu G, Yu H, Wang Y, Li C, Tan H, Chen S, Gu J, Shi H. Feasibility of ultra-low 18F-FDG activity acquisitions using total-body PET/CT. J Nucl Med 2021; 63:959-965. [PMID: 34593593 DOI: 10.2967/jnumed.121.262038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate the feasibility of ultra-low 18F-fluorodeoxyglucose (FDG) activity in total-body positron emission tomography (PET)/computed tomography (CT) oncological studies. Methods: Thirty patients with cancer were enrolled prospectively and underwent a total-body PET/CT examination with an ultra-low 18F-FDG activity (0.37 MBq/kg) after an uptake time of 60 minutes. Among the enrolled patients, 11 were diagnosed with colorectal cancer (CRC). PET raw data were acquired within 15 minutes and reconstructed using data from the first 1, 2, 4, 8, 10 and the entire 15 min (G1, G2, G4, G8, G10, G15). Image quality was assessed qualitatively by two readers using a 5-point Likert scale twice. Cohen's kappa test was performed to investigate the intra-reader and inter-reader agreement. The standard uptake value (SUV)max of lesions, SUVmax, SUVmean, and standard deviation (SD) of the livers, the tumor-to-background ratio (TBR), and the signal-to-noise ratio (SNR) were measured and compared. The acquisition time for a clinically acceptable image quality was determined using an ultra low activity injection. In a matched-pair study, 11 patients with CRC who received a full FDG activity (3.7 MBq/kg) with a 2-min PET acquisition were selected retrospectively with matched sex, height, weight, body mass index, glucose level, uptake time, and pathological types with the 11 CRC subjects in the prospective study. Qualitative and quantitative analyses were performed and compared between the 11 patients with CRC in the ultra-low activity group and their matched full activity controls. Results: Qualitative analysis of image quality showed good intra- and inter-reader agreements (all kappa > 0.7). All the images acquired for 8-min or longer scored over 3 (indicating clinical acceptability). There was no significant difference in TBR and liver SNR among all the images acquired for 8-min or longer. In the matched study, no significant difference was found in the image quality score and quantitative parameters between the ultra-low activity group with an 8-min acquisition and the full activity group with a 2-min acquisition. Conclusion: Ultra-low FDG activity injection with 8-min acquisition in a total-body PET/CT study can achieve acceptable image quality equivalent to that in the full activity group using 2-min acquisition.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, China
| | - Ying Wang
- Central Research Institute, United Imaging Healthcare, China
| | - Chenwei Li
- Central Research Institute, United Imaging Healthcare, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, China
| | | |
Collapse
|
247
|
Suchacki KJ, Alcaide-Corral CJ, Nimale S, Macaskill MG, Stimson RH, Farquharson C, Freeman TC, Tavares AAS. A Systems-Level Analysis of Total-Body PET Data Reveals Complex Skeletal Metabolism Networks in vivo. Front Med (Lausanne) 2021; 8:740615. [PMID: 34616758 PMCID: PMC8488174 DOI: 10.3389/fmed.2021.740615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos J. Alcaide-Corral
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Samah Nimale
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. Macaskill
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Roland H. Stimson
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
248
|
Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, Rahmim A, Uribe C. Role of Artificial Intelligence in Theranostics:: Toward Routine Personalized Radiopharmaceutical Therapies. PET Clin 2021; 16:627-641. [PMID: 34537133 DOI: 10.1016/j.cpet.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We highlight emerging uses of artificial intelligence (AI) in the field of theranostics, focusing on its significant potential to enable routine and reliable personalization of radiopharmaceutical therapies (RPTs). Personalized RPTs require patient-specific dosimetry calculations accompanying therapy. Additionally we discuss the potential to exploit biological information from diagnostic and therapeutic molecular images to derive biomarkers for absorbed dose and outcome prediction; toward personalization of therapies. We try to motivate the nuclear medicine community to expand and align efforts into making routine and reliable personalization of RPTs a reality.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Katherine Zukotynski
- Department of Medicine and Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Jean-Mathieu Beauregard
- Department of Radiology and Nuclear Medicine, Cancer Research Centre, Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada; Department of Medical Imaging, Research Center (Oncology Axis), CHU de Québec - Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada
| | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Physics, University of British Columbia, 325 - 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Functional Imaging, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| |
Collapse
|
249
|
Chalampalakis Z, Stute S, Filipović M, Sureau F, Comtat C. Use of dynamic reconstruction for parametric Patlak imaging in dynamic whole body PET. Phys Med Biol 2021; 66. [PMID: 34433155 DOI: 10.1088/1361-6560/ac2128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
Dynamic whole body (DWB) PET acquisition protocols enable the use of whole body parametric imaging for clinical applications. In FDG imaging, accurate parametric images of PatlakKican be complementary to regular standardised uptake value images and improve on current applications or enable new ones. In this study we consider DWB protocols implemented on clinical scanners with a limited axial field of view with the use of multiple whole body sweeps. These protocols result in temporal gaps in the dynamic data which produce noisier and potentially more biased parametric images, compared to single bed (SB) dynamic protocols. Dynamic reconstruction using the Patlak model has been previously proposed to overcome these limits and shown improved DWB parametric images ofKi. In this work, we propose and make use of a spectral analysis based model for dynamic reconstruction and parametric imaging of PatlakKi. Both dynamic reconstruction methods were evaluated for DWB FDG protocols and compared against 3D reconstruction based parametric imaging from SB dynamic protocols. This work was conducted on simulated data and results were tested against real FDG dynamic data. We showed that dynamic reconstruction can achieve levels of parametric image noise and bias comparable to 3D reconstruction in SB dynamic studies, with the spectral model offering additional flexibility and further reduction of image noise. Comparisons were also made between step and shoot and continuous bed motion (CBM) protocols, which showed that CBM can achieve lower parametric image noise due to reduced acquisition temporal gaps. Finally, our results showed that dynamic reconstruction improved VOI parametric mean estimates but did not result to fully converged values before resulting in undesirable levels of noise. Additional regularisation methods need to be considered for DWB protocols to ensure both accurate quantification and acceptable noise levels for clinical applications.
Collapse
Affiliation(s)
- Zacharias Chalampalakis
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Simon Stute
- Nuclear Medicine Department, Nantes University Hospital, Nantes, France.,CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, France
| | - Marina Filipović
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Florent Sureau
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Claude Comtat
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
250
|
Leung D, Bonacorsi S, Smith RA, Weber W, Hayes W. Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic. Front Oncol 2021; 11:698425. [PMID: 34497758 PMCID: PMC8420047 DOI: 10.3389/fonc.2021.698425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the important molecular interplay between PD-1 and PD-L1, a key pathway contributing to immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other treatments, across multiple tumor types. PD-L1 expression has been associated with response to immune checkpoint inhibitors, and treatment strategies are often guided by immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However, challenges related to the implementation, interpretation, and clinical utility of PD-L1 diagnostic tests have led to an increasing number of preclinical and clinical studies exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have been tested in preclinical and clinical studies, with clinical trials in progress to assess their use in a number of cancer types. This review will showcase the development of PD-(L)1 PET tracers from preclinical studies through to clinical use, and will explore the opportunities in drug development and possible future clinical implementation.
Collapse
Affiliation(s)
- David Leung
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Samuel Bonacorsi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Ralph Adam Smith
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Wolfgang Weber
- Technische Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wendy Hayes
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|