201
|
Nigro S, Hall RM. Distribution of the blaOXA-23-containing transposons Tn2006 and Tn2008 in Australian carbapenem-resistant Acinetobacter baumannii isolates. J Antimicrob Chemother 2015; 70:2409-11. [PMID: 25881617 DOI: 10.1093/jac/dkv102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven Nigro
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
202
|
Al-Obeid S, Jabri L, Al-Agamy M, Al-Omari A, Shibl A. Epidemiology of extensive drug resistantAcinetobacter baumannii(XDRAB) at Security Forces Hospital (SFH) in Kingdom of Saudi Arabia (KSA). J Chemother 2015; 27:156-62. [DOI: 10.1179/1973947815y.0000000019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
203
|
Ou HY, Kuang SN, He X, Molgora BM, Ewing PJ, Deng Z, Osby M, Chen W, Xu HH. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors. Sci Rep 2015; 5:8643. [PMID: 25728466 PMCID: PMC4345345 DOI: 10.1038/srep08643] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an important human pathogen due to its multi-drug resistance. In this study, the genome of an ST10 outbreak A. baumannii isolate LAC-4 was completely sequenced to better understand its epidemiology, antibiotic resistance genetic determinants and potential virulence factors. Compared with 20 other complete genomes of A. baumannii, LAC-4 genome harbors at least 12 copies of five distinct insertion sequences. It contains 12 and 14 copies of two novel IS elements, ISAba25 and ISAba26, respectively. Additionally, three novel composite transposons were identified: Tn6250, Tn6251 and Tn6252, two of which contain resistance genes. The antibiotic resistance genetic determinants on the LAC-4 genome correlate well with observed antimicrobial susceptibility patterns. Moreover, twelve genomic islands (GI) were identified in LAC-4 genome. Among them, the 33.4-kb GI12 contains a large number of genes which constitute the K (capsule) locus. LAC-4 harbors several unique putative virulence factor loci. Furthermore, LAC-4 and all 19 other outbreak isolates were found to harbor a heme oxygenase gene (hemO)-containing gene cluster. The sequencing of the first complete genome of an ST10 A. baumannii clinical strain should accelerate our understanding of the epidemiology, mechanisms of resistance and virulence of A. baumannii.
Collapse
Affiliation(s)
- Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism and School of Life Sciences &Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Shan N Kuang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Sciences &Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Brenda M Molgora
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Peter J Ewing
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences &Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Melanie Osby
- Department of Pathology, LAC+USC Medical Center, Los Angeles, California, USA
| | - Wangxue Chen
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
204
|
Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol 2015; 10:407-25. [DOI: 10.2217/fmb.14.135] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Carlos Lam
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine & Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
205
|
Kazi M, Nikam C, Shetty A, Rodrigues C. Dual-tubed multiplex-PCR for molecular characterization of carbapenemases isolated among Acinetobacter spp. and Pseudomonas spp. J Appl Microbiol 2015; 118:1096-102. [PMID: 25647446 DOI: 10.1111/jam.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
AIM To molecularly characterize clinical isolates of Acinetobacter spp. and Pseudomonas spp. from various clinical samples so as to identify the carbapenemases mechanisms harboured by them. MATERIALS AND RESULTS A total of 95 carbapenem-resistant, nonduplicate, multi-drug resistant Gram-negative clinical isolates (53 Acinetobacter spp. and 42 Pseudomonas spp.), were collected between July and December 2012. Modified Hodge test (MHT) for the detection of carbapenemases was performed. Inhibitor-based test, EDTA for the detection of metallo-β-lactamases (MBL) and phenyl boronic acid (PBA) for the detection of Klebsiella pneumoniae carbapenemase (KPC), were performed to distinguish between different classes of β-lactamases. Two-tubed multiplex-PCR was performed for genotypic characterization of different classes of carbapenemases ((blaNDM-1 , blaOXA-48 like , blaKPC , blaVIM , blaIMP ), (blaOXA-23 like , blaOXA-24 like , blaOXA-51 like , blaOXA-58 like )). Eighty-five per cent (81/95) isolates were carbapenemase producers. Among these, 56.7% (44) were multiple carbapenemase producers. Furthermore, 48.14% (39) were MBLs, 35.8% (29) were carbapenem hydrolyzing class D β-lactamases (CHDLs), 16% (13) had MBLs as well as CHDLs and 14.7% (14/95) had none of the targeted resistance mechanisms. The overall rate of concordance between phenotypic and genotypic test was 97% and 98% for the detection of carbapenemases and MBL, respectively. CONCLUSION This is the first study from Western India which highlights the presence of multiple carbapenemases in nonfermenters Gram-negative bacilli (NFGNB). Co-existence of multiple carbapenemases along with other resistance mechanisms might result in treatment failure. Molecular characterization of the resistance mechanisms of suspected pathogens would help provide appropriate antimicrobial treatment for good clinical outcome. SIGNIFICANCE AND IMPACT OF THE STUDY Dual-tubed multiplex PCR decreases the time of amplification and thus the turnaround time which is crucial in clinical microbiology; this would be helpful in rapid characterization of CHDLs and MBLs.
Collapse
Affiliation(s)
- M Kazi
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai, India
| | | | | | | |
Collapse
|
206
|
Zhao SY, Jiang DY, Xu PC, Zhang YK, Shi HF, Cao HL, Wu Q. An investigation of drug-resistant Acinetobacter baumannii infections in a comprehensive hospital of East China. Ann Clin Microbiol Antimicrob 2015; 14:7. [PMID: 25643932 PMCID: PMC4328433 DOI: 10.1186/s12941-015-0066-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the drug resistant gene profiles and molecular typing of Acinetobacter baumannii isolates collected from clinical specimens in a comprehensive hospital, Jiangsu province. METHODS This study included 120 patients in a comprehensive hospital with drug-resistant A. baumannii infections on clinical specimens from October 2011 to December 2013. Antibiotic susceptibility test was determined by Vitek 2 Compact system. OXA-51, OXA-23, OXA-24, OXA-58, VIM, IMP, SHV, GES, TEM, AmpC, qacEΔ1-sul1, intI l, CarO, aac(6')-Ib, and aac(6')-II were analyzed by PCR. The analysis of molecular typing for 50 multidrug resistant A. baumannii isolates was performed by PFGE. RESULTS A total of 64(53%) isolates were multidrug-resistant A.baumannii. The antibiotic susceptibility tests showed that the resistant rates to common antibiotics of mutidrug-resistant A. baumannii were extremely high, most of which over 60%. One hundred and ten isolates harbored OXA-51 (91.7%), 100 for OXA-23(83.3%), 103 for VIM-1(85.8%), 90 for AmpC(75.00%), 50 for aac(6')-Ib(41.7%), 77 for the loss of CarO (64.2%), 85 for intl1(70.8%), and 64 for qacEΔ1-sul1(53.33%), while OXA-24 was undetected. Fifty multidrug-resistant A. baumannii isolates belong to 14 clones according to the PFGE DNA patterns. Main clone A includes 24 isolates, while clone B and clone C includes 6 and 9 isolates, respectively and others with no common source identified. CONCLUSION There is high morbidity of A. baumannii infections in the hospital, especially in ICU and sputum is the most common sample type.The mainly drug-resistant genes of A. baumannii are OXA-51, OXA-23, and VIM-1 in the hospital. Clonal dissemination provides evidence for the prevalence of multidrug-resistant A. baumannii among clinical isolates. It is suggested that there is an urgent need for effective control and prevention measures.
Collapse
Affiliation(s)
- Su-ying Zhao
- Department of Laboratory Medicine, Jiangsu provincial hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Dong-yang Jiang
- The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Peng-cheng Xu
- The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Yi-kai Zhang
- The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Heng-fang Shi
- Department of Laboratory Medicine, Jiangsu provincial hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Hui-ling Cao
- Department of Laboratory Medicine, Jiangsu provincial hospital of Traditional Chinese Medicine, Nanjing, China. lmh-@gmail.com
| | - Qian Wu
- The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China. .,Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
207
|
Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015; 36:85-98. [PMID: 25643273 DOI: 10.1055/s-0034-1398388] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks.
Collapse
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerald L Murray
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
208
|
Ku WW, Kung CH, Lee CH, Tseng CP, Wu PF, Kuo SC, Chen TL, Lee YT, Wang FD, Fung CP. Evolution of carbapenem resistance in Acinetobacter baumannii: An 18-year longitudinal study from a medical center in northern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:57-64. [DOI: 10.1016/j.jmii.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
209
|
OXA-23 Carbapenemase in Multidrug-ResistantAcinetobacter baumanniiST2 Type: First Identification in L'Aquila Hospital (Italy). Microb Drug Resist 2015; 21:97-101. [DOI: 10.1089/mdr.2014.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
210
|
Gheorghe I, Novais Â, Grosso F, Rodrigues C, Chifiriuc MC, Lazar V, Peixe L. Snapshot on carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in Bucharest hospitals reveals unusual clones and novel genetic surroundings for blaOXA-23. J Antimicrob Chemother 2015; 70:1016-20. [PMID: 25630639 DOI: 10.1093/jac/dku527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The present study was designed to provide a snapshot on carbapenemase-producing Pseudomonas aeruginosa (n=11) and Acinetobacter baumannii (n=7) isolates in hospitalized patients (November 2011, January-March 2012) from two main hospitals in Bucharest, south Romania. METHODS Clonality among isolates was established by PFGE, MLST and Fourier transform infrared spectroscopy. Carbapenemases were screened by the Blue-Carba test, PCR and sequencing. Transferability of blaOXA-23 was tested by conjugation and plasmid typing (number, size and identity) was assessed by S1-PFGE, replicon typing, hybridization and PCR mapping. RESULTS All P. aeruginosa isolates carried chromosomally located blaVIM-2, associated with a common class 1 integron (aacA7-blaVIM-2) or an atypical configuration (aacA7-blaVIM-2-dfrB5-tniC). These isolates belonged to unusual lineages; mostly ST233 disseminated in one hospital unit, with ST364 and ST1074 also being detected. A. baumannii isolates carried blaOXA-23 in Tn2008, which was found truncating a TnaphA6 transposon located in a common 60 kb GR6 (aci6) pABKp1-like conjugative plasmid in highly related CC92 clones (ST437, ST764 and ST765), where CC stands for clonal complex. CONCLUSIONS Our results show the spread of VIM-2-producing P. aeruginosa and OXA-23-producing A. baumannii clinical isolates in two hospitals from Bucharest and highlight a peculiar population structure in this Eastern European country. Also, we demonstrate the dissemination of a common and conjugative aci6 pABKp1-like plasmid scaffold in different A. baumannii clones and we report the first known identification of Tnaph6-carrying pACICU2-like plasmids in Europe.
Collapse
Affiliation(s)
- Irina Gheorghe
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ângela Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Rodrigues
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | - Veronica Lazar
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
211
|
Dissemination of blaOXA-23 in Acinetobacter spp. in China: main roles of conjugative plasmid pAZJ221 and transposon Tn2009. Antimicrob Agents Chemother 2015; 59:1998-2005. [PMID: 25605357 DOI: 10.1128/aac.04574-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Production of the OXA-23 carbapenemase is the most common reason for the increasing carbapenem resistance in Acinetobacter spp. This study was conducted to reveal the genetic basis of blaOXA-23 dissemination in Acinetobacter spp. in China. A total of 63 carbapenem-resistant OXA-23-producing Acinetobacter sp. isolates, representing different backgrounds, were selected from 28 hospitals in 18 provinces for this study. Generally, two patterns of plasmids carrying blaOXA-23 were detected according to S1-nuclease pulsed-field gel electrophoresis and Southern blot hybridization. A ca. 78-kb plasmid, designated pAZJ221, was found in 23 Acinetobacter baumannii and three Acinetobacter nosocomialis isolates, while a novel ca. 50-kb plasmid was carried by only two other A. baumannii isolates. Three of these isolates had an additional copy of blaOXA-23 on the chromosome. Transformation of the two plasmids succeeded, but only pAZJ221 was conjugative. Plasmid pAZJ221 was sequenced completely and found to carry no previously known resistance genes except blaOXA-23. The blaOXA-23 gene of the remaining 35 isolates was chromosome borne. The blaOXA-23 genetic environments were correlated with Tn2009 in 57 isolates, Tn2008 in 5 isolates, and Tn2006 in 1 isolate. The MIC values for the carbapenems with these isolates were not significantly associated with the genomic locations or the copy numbers of blaOXA-23. Overall, these observations suggest that the plasmid pAZJ221 and Tn2009 have effectively contributed to the wide dissemination of blaOXA-23 in Acinetobacter spp. in China and that horizontal gene transfer may play an important role in dissemination of the blaOXA-23 gene.
Collapse
|
212
|
Azam N, Talukder T, Robinson KR, Kwon DH. Dissemination and Genetic Structure of Carbapenemase Encoding Genes (bla<sub>OXA-23</sub> and bla<sub>OXA-24</sub>) in <i>Acinetobacter baumannii</i> from Southern Texas. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aim.2015.56047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
213
|
Liu F, Zhu Y, Yi Y, Lu N, Zhu B, Hu Y. Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics 2014; 15:1163. [PMID: 25534766 PMCID: PMC4367897 DOI: 10.1186/1471-2164-15-1163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
Background Acinetobacter baumannii is an important nosocomial pathogen that poses a serious health threat to immune-compromised patients. Due to its rapid ability to develop multidrug resistance (MDR), A. baumannii has increasingly become a focus of attention worldwide. To better understand the genetic variation and antibiotic resistance mechanisms of this bacterium at the genomic level, we reported high-quality draft genome sequences of 8 clinical isolates with various sequence types and drug susceptibility profiles. Results We sequenced 7 MDR and 1 drug-sensitive clinical A. baumannii isolates and performed comparative genomic analysis of these draft genomes with 16 A. baumannii complete genomes from GenBank. We found a high degree of variation in A. baumannii, including single nucleotide polymorphisms (SNPs) and large DNA fragment variations in the AbaR-like resistance island (RI) regions, the prophage and the type VI secretion system (T6SS). In addition, we found several new AbaR-like RI regions with highly variable structures in our MDR strains. Interestingly, we found a novel genomic island (designated as GIBJ4) in the drug-sensitive strain BJ4 carrying metal resistance genes instead of antibiotic resistance genes inserted into the position where AbaR-like RIs commonly reside in other A. baumannii strains. Furthermore, we showed that diverse antibiotic resistance determinants are present outside the RIs in A. baumannii, including antibiotic resistance-gene bearing integrons, the blaOXA-23-containing transposon Tn2009, and chromosomal intrinsic antibiotic resistance genes. Conclusions Our comparative genomic analysis revealed that extensive genomic variation exists in the A. baumannii genome. Transposons, genomic islands and point mutations are the main contributors to the plasticity of the A. baumannii genome and play critical roles in facilitating the development of antibiotic resistance in the clinical isolates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1163) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Baoli Zhu
- CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
214
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|
215
|
Guerrero-Lozano I, Fernández-Cuenca F, Galán-Sánchez F, Egea P, Rodríguez-Iglesias M, Pascual Á. Description of the OXA-23 β-lactamase gene located within Tn2007 in a clinical isolate of Acinetobacter baumannii from Spain. Microb Drug Resist 2014; 21:215-7. [PMID: 25386800 DOI: 10.1089/mdr.2014.0155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A carbapenem-resistant Acinetobacter baumannii expressing blaOXA-23 was recovered from an intensive care unit patient in a third-level hospital from Spain. Genetic analysis showed the association of this carbapenemase with the transposon Tn2007 located in a plasmid of 10 kb. The isolate was classified as ST-1. This strain has shown a potential ability to displace other endemic strains in the hospital and is the first reported identification of A. baumannii carrying blaOXA-23 related to Tn2007 in Spain.
Collapse
Affiliation(s)
- Inmaculada Guerrero-Lozano
- 1 Clinical Unit of Clinical Microbiology and Infectious Diseases, Puerta del Mar University Hospital , Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
216
|
Bakour S, Touati A, Bachiri T, Sahli F, Tiouit D, Naim M, Azouaou M, Rolain JM. First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase NDM-1 in Algerian hospitals. J Infect Chemother 2014; 20:696-701. [DOI: 10.1016/j.jiac.2014.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
|
217
|
Chen CM, Ke SC, Li CR, Chang CC. The comparison of genotyping, antibiogram, and antimicrobial resistance genes between carbapenem-susceptible and -resistant Acinetobacter baumannii. Comp Immunol Microbiol Infect Dis 2014; 37:339-46. [PMID: 25456639 DOI: 10.1016/j.cimid.2014.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022]
Abstract
This study was conducted to explore the epidemiological and molecular differences between carbapenem-susceptible Acinetobacter baumannii (CSAB) and carbapenem-resistant A. baumannii (CRAB) isolates. Thirty-two CSAB and 55 CRAB isolates were collected in 2010. By multilocus sequence typing analysis, 31 (56%) CRAB isolates and 11 (34%) CSAB isolates belonged to ST2. Twenty-one (38%) CRAB isolates, and 4 (13%) CSAB isolates belonged to a new type, ST129. The blaIMP, blaVIM, and blaOXA-58-like were not detected in our study isolates. blaOXA-23 and blaOXA-24/40-like were not detected in all CSAB isolates. On the contrary, blaOXA-23 was detected in 51 (93%) CRAB isolates. Class 1 integron was detected in 19 (35%) CRAB isolates and 8 (25%) CSAB isolates (p>0.05). In conclusion, the ST2 and ST129 were the major sequence types in both CSAB and CRAB isolates. The blaOXA-23 is the primary carbapenem-resistance gene in CRAB isolates from hospitalized patients and the specimens collected from hospital environment.
Collapse
Affiliation(s)
- Chih-Ming Chen
- Division of Infectious Disease, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chia-Ru Li
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
218
|
Hamidian M, Kenyon JJ, Holt KE, Pickard D, Hall RM. A conjugative plasmid carrying the carbapenem resistance gene blaOXA-23 in AbaR4 in an extensively resistant GC1 Acinetobacter baumannii isolate. J Antimicrob Chemother 2014; 69:2625-8. [PMID: 24907141 PMCID: PMC4164139 DOI: 10.1093/jac/dku188] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To locate the acquired bla(OXA-23) carbapenem resistance gene in an Australian A. baumannii global clone 1 (GC1) isolate. METHODS The genome of the extensively antibiotic-resistant GC1 isolate A85 harbouring bla(OXA-23) in Tn2006 was sequenced using Illumina HiSeq, and the reads were used to generate a de novo assembly. PCR was used to assemble relevant contigs. Sequences were compared with ones in GenBank. Conjugation experiments were conducted. RESULTS The sporadic GC1 isolate A85, recovered in 2003, was extensively resistant, exhibiting resistance to imipenem, meropenem and ticarcillin/clavulanate, to cephalosporins and fluoroquinolones and to the older antibiotics gentamicin, kanamycin and neomycin, sulfamethoxazole, trimethoprim and tetracycline. Genes for resistance to older antibiotics are in the chromosome, in an AbaR3 resistance island. A second copy of the ampC gene in Tn6168 confers cephalosporin resistance and the gyrA and parC genes have mutations leading to fluoroquinolone resistance. An 86 335 bp repAci6 plasmid, pA85-3, carrying bla(OXA-23) in Tn2006 in AbaR4, was shown to transfer imipenem, meropenem and ticarcillin/clavulanate resistance into a susceptible recipient. A85 also contains two small cryptic plasmids of 2.7 and 8.7 kb. A85 is sequence type ST126 (Oxford scheme) and carries a novel KL15 capsule locus and the OCL3 outer core locus. CONCLUSIONS A85 represents a new GC1 lineage identified by the novel capsule locus but retains AbaR3 carrying genes for resistance to older antibiotics. Resistance to imipenem, meropenem and ticarcillin/clavulanate has been introduced into A85 by pA85-3, a repAci6 conjugative plasmid carrying Tn2006 in AbaR4.
Collapse
Affiliation(s)
- Mohammad Hamidian
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Johanna J Kenyon
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
219
|
Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother 2014; 70:23-40. [PMID: 25261423 DOI: 10.1093/jac/dku356] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Carbapenems are the last line of defence against ever more prevalent MDR Gram-negative bacteria, but their efficacy is threatened worldwide by bacteria that produce carbapenemase enzymes. The epidemiology of bacteria producing carbapenemases has been described in considerable detail in Europe, North America and Asia; however, little is known about their spread and clinical relevance in Africa. METHODS We systematically searched in PubMed, EBSCOhost, Web of Science, Scopus, Elsevier Masson Consulte and African Journals Online, international conference proceedings, published theses and dissertations for studies reporting on carbapenemase-producing bacteria in Africa. We included articles published in English or French up to 28 February 2014. We calculated the prevalence of carbapenemase producers only including studies where the total number of isolates tested was at least 30. RESULTS Eighty-three studies were included and analysed. Most studies were conducted in North Africa (74%, 61/83), followed by Southern Africa (12%, 10/83), especially South Africa (90%, 9/10), West Africa (8%, 7/83) and East Africa (6%, 6/83). Carbapenemase-producing bacteria were isolated from humans, the hospital environment and community environmental water samples, but not from animals. The prevalence of carbapenemase-producing isolates in hospital settings ranged from 2.3% to 67.7% in North Africa and from 9% to 60% in sub-Saharan Africa. CONCLUSIONS Carbapenemase-producing bacteria have been described in many African countries; however, their prevalence is poorly defined and has not been systematically studied. Antibiotic stewardship and surveillance systems, including molecular detection and genotyping of resistant isolates, should be implemented to monitor and reduce the spread of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
220
|
Smet A, Cools P, Krizova L, Maixnerova M, Sedo O, Haesebrouck F, Kempf M, Nemec A, Vaneechoutte M. Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int J Syst Evol Microbiol 2014; 64:4007-4015. [PMID: 25225259 DOI: 10.1099/ijs.0.068791-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported the presence of an OXA-23 carbapenemase in an undescribed species of the genus Acinetobacter isolated from horse dung at the Faculty of Veterinary Medicine, Ghent University, Belgium. Here we include six strains to corroborate the delineation of this taxon by phenotypic characterization, DNA-DNA hybridization, 16S rRNA gene and rpoB sequence analysis, % G+C determination, MALDI-TOF MS and fatty acid analysis. The nearly complete 16S rRNA gene sequence of strain UG 60467(T) showed the highest similarities with those of the type strains of Acinetobacter bouvetii (98.4 %), Acinetobacter haemolyticus (97.7 %), and Acinetobacter schindleri (97.2 %). The partial rpoB sequence of strain UG 60467(T) showed the highest similarities with 'Acinetobacter bohemicus' ANC 3994 (88.6 %), A. bouvetii NIPH 2281 (88.6 %) and A. schindleri CIP 107287T (87.3 %). Whole-cell MALDI-TOF MS analyses supported the distinctness of the group at the protein level. The predominant fatty acids of strain UG 60467(T) were C12 : 0 3-OH, C12 : 0, C16 : 0, C18 : 1ω9c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Strains UG 60467(T) and UG 60716 showed a DNA-DNA relatedness of 84 % with each other and a DNA-DNA relatedness with A. schindleri LMG 19576(T) of 17 % and 20 %, respectively. The DNA G+C content of strain UG 60467(T) was 39.6 mol%. The name Acinetobacter gandensis sp. nov. is proposed for the novel taxon. The type strain is UG 60467(T) ( = ANC 4275(T) = LMG 27960(T) = DSM 28097(T)).
Collapse
Affiliation(s)
- Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan133, 9820 Merelbeke, Belgium
| | - Piet Cools
- Laboratory Bacteriology Research (LBR), Department of Clinical Chemistry, Microbiology & Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium
| | - Lenka Krizova
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 42 Prague, Czech Republic
| | - Martina Maixnerova
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 42 Prague, Czech Republic
| | - Ondrej Sedo
- Research Group Proteomics, Central European Institute of Technology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan133, 9820 Merelbeke, Belgium
| | - Marie Kempf
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBU, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 42 Prague, Czech Republic
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research (LBR), Department of Clinical Chemistry, Microbiology & Immunology, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium
| |
Collapse
|
221
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
222
|
Peters JE, Fricker AD, Kapili BJ, Petassi MT. Heteromeric transposase elements: generators of genomic islands across diverse bacteria. Mol Microbiol 2014; 93:1084-92. [PMID: 25091064 DOI: 10.1111/mmi.12740] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7-like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon-encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022-like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022-like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
223
|
Merino M, Poza M, Roca I, Barba MJ, Sousa MD, Vila J, Bou G. Nosocomial Outbreak of a MultiresistantAcinetobacter baumanniiExpressing OXA-23 Carbapenemase in Spain. Microb Drug Resist 2014; 20:259-63. [DOI: 10.1089/mdr.2013.0127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- María Merino
- Microbiology Department, Biomedical Research Institute-INIBIC, University Hospital A Coruña, A Coruña, Spain
| | - Margarita Poza
- Microbiology Department, Biomedical Research Institute-INIBIC, University Hospital A Coruña, A Coruña, Spain
| | - Ignasi Roca
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - María José Barba
- Microbiology Department, Biomedical Research Institute-INIBIC, University Hospital A Coruña, A Coruña, Spain
| | | | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Germán Bou
- Microbiology Department, Biomedical Research Institute-INIBIC, University Hospital A Coruña, A Coruña, Spain
| |
Collapse
|
224
|
Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One 2014; 9:e102232. [PMID: 25068267 PMCID: PMC4113224 DOI: 10.1371/journal.pone.0102232] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL) and narrow spectrum (NSBL) beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13), blaGIM (2/2), blaKPC (27/27), blaNDM (5/5), blaIMP-2/4/7/8/13/14/15/16/31 (10/10), blaOXA-23 (12/13), blaOXA-40-group (7/7), blaOXA-48-group (32/33), blaOXA-51 (1/1) and blaOXA-58 (1/1). Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16), blaOXA-2 (4/4), blaOXA-9 (33/33), OXA-10 (3/3), blaOXA-51 (25/25), blaOXA-58 (2/2), CTX-M1/M15 (17/17) and blaVIM (1/1)]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4%) isolates, including Acinetobacter baumannii (28/28), Enterobacter spec. (5/5), Escherichia coli (4/4), Klebsiella pneumoniae (62/63), Klebsiella oxytoca (0/2), Pseudomonas aeruginosa (12/12), Citrobacter freundii (1/1) and Citrobacter braakii (2/2), were correctly identified by a panel of species specific probes. This assay might be easily extended, adapted and transferred to point of care platforms enabling fast surveillance, rapid detection and appropriate early treatment of infections caused by multiresistant Gram-negative bacteria.
Collapse
|
225
|
Unusual detection of an Acinetobacter class D carbapenemase gene, blaOXA-23, in a clinical Escherichia coli isolate. J Clin Microbiol 2014; 52:3822-3. [PMID: 25031438 DOI: 10.1128/jcm.01566-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
226
|
Population dynamics of an Acinetobacter baumannii clonal complex during colonization of patients. J Clin Microbiol 2014; 52:3200-8. [PMID: 24951812 DOI: 10.1128/jcm.00921-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the leading pathogens causing hospital-acquired infection. The success of A. baumannii as a pathogen has to a large extent been attributed to its capacity to remodel its genome. Several major epidemic clonal complexes of A. baumannii spread across different health care facilities around the world, each of which contains a subset of diversified strains. However, little is known about the population dynamics during colonization of A. baumannii within hosts. Here, whole-genome sequencing was used to analyze population dynamics of A. baumannii strains isolated from a group of patients at different time points as well as from different sites of a particular patient. Seven out of nine of the sampled A. baumannii strains belonged to the international clone II (CC92 clonal complex). While the A. baumannii strains were found to be stable in three patients, there was a change of A. baumannii strains in one patient. Comparative genomic analysis revealed that the accessory genome of these strains contained a large set of virulence-encoding genes and these virulence factors might play a role in determining population dynamics. Microscale genome modification has been revealed by analysis of single nucleotide polymorphisms (SNPs) between A. baumannii strains isolated from the same patient. Parallel evolutionary traits have been observed during genome diversification when A. baumannii colonize in different patients. Our study suggested that both antibiotic usage and host environment might impose selective forces that drive the rapid adaptive evolution in colonizing A. baumannii.
Collapse
|
227
|
Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: results of the first cross-sectional countrywide survey. J Clin Microbiol 2014; 52:3004-10. [PMID: 24920776 DOI: 10.1128/jcm.00291-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) is emerging worldwide as a public health problem in various settings. The aim of this study was to investigate the prevalence of CRAb isolates in Italy and to characterize their resistance mechanisms and genetic relatedness. A countrywide cross-sectional survey was carried out at 25 centers in mid-2011. CRAb isolates were reported from all participating centers, with overall proportions of 45.7% and 22.2% among consecutive nonreplicate clinical isolates of A. baumannii from inpatients (n = 508) and outpatients (n = 63), respectively. Most of them were resistant to multiple antibiotics, whereas all remained susceptible to colistin, with MIC50 and MIC90 values of ≤ 0.5 mg/liter. The genes coding for carbapenemase production were identified by PCR and sequencing. OXA-23 enzymes (found in all centers) were by far the most common carbapenemases (81.7%), followed by OXA-58 oxacillinases (4.5%), which were found in 7 of the 25 centers. In 6 cases, CRAb isolates carried both bla(OXA-23-like) and bla(OXA-58-like) genes. A repetitive extragenic palindromic (REP)-PCR technique, multiplex PCRs for group identification, and multilocus sequence typing (MLST) were used to determine the genetic relationships among representative isolates (n = 55). Two different clonal lineages were identified, including a dominant clone of sequence type 2 (ST2) related to the international clone II (sequence group 1 [SG1], SG4, and SG5) and a clone of ST78 (SG6) previously described in Italy. Overall, our results demonstrate that OXA-23 enzymes have become the most prevalent carbapenemases and are now endemic in Italy. In addition, molecular typing profiles showed the presence of international and national clonal lineages in Italy.
Collapse
|
228
|
Alvargonzalez JJC, Hernando AV, Martín MDR, Casas CM, Iglesias JO, Marín MFB, Alvarez MLA, Sanchez VB, Marí JMN. Sequential outbreaks in a Spanish hospital caused by multiresistant OXA-58-producing Acinetobacter baumannii ST92. J Med Microbiol 2014; 63:1093-1098. [PMID: 24866368 DOI: 10.1099/jmm.0.067280-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to assess the epidemiology and molecular basis of the infection and dissemination of multidrug-resistant Acinetobacter baumannii (MDRAB) in three sequential outbreaks at the intensive care units (ICUs) of a tertiary university hospital in Granada, Spain, between 2009 and 2011. Strains from all patients infected and/or colonized by MDRAB during outbreak periods were characterized using PFGE and multilocus sequence typing (MLST). The first outbreak appeared in the summer of 2009 involving 38 ICU patients: 25 from a Traumatology-Rehabilitation hospital (TRH) and 13 from a Medical-Surgery hospital (MSH). Between 2010 and 2011, outbreaks were limited to the MSH-ICU, affecting 9 and 11 patients, respectively. Two PFGE types were detected. In the 2009 outbreak, two clones were identified: profile 1 strains were isolated at the TRH, whilst profile 2 was isolated at the MSH. Only one clone was identified in the 2010 and 2011 outbreaks: the profile 2 clone detected at the MSH in 2009. After MLST analysis, a single sequence type (ST92) was identified. This suggested that an endemic strain could evolve and cause localized outbreaks in vulnerable patients. Multiplex PCR for OXA group enzymes yielded a positive result for blaOXA-58-like and blaOXA-51-like genes, and gene sequencing showed the presence of blaOXA-58. However, the absence of ISAba1 upstream of the blaOXA-51-like gene suggested the absence of OXA-51 expression. The susceptibility pattern was not an appropriate method for MDRAB surveillance, as several susceptibility patterns were identified in a single clone. Consequently, molecular methods of characterization are recommended for epidemiological surveillance of MDRAB.
Collapse
Affiliation(s)
| | - Ana Vindel Hernando
- Antibiotic Laboratory, Department of Bacteriology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | - Jesús Oteo Iglesias
- Antibiotic Laboratory, Department of Bacteriology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Maria Luisa Azañedo Alvarez
- Antibiotic Laboratory, Department of Bacteriology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Veronica Bautista Sanchez
- Antibiotic Laboratory, Department of Bacteriology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | |
Collapse
|
229
|
Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:305784. [PMID: 24955354 PMCID: PMC4052623 DOI: 10.1155/2014/305784] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023]
Abstract
The emergence and global spread of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii are of great concern to health services worldwide. These β-lactamases hydrolyse almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 types. Their current extensive spread worldwide in Enterobacteriaceae is an important source of concern. Infections caused by these bacteria have limited treatment options and have been associated with high mortality rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, and A. baumannii and still mostly in hospital settings and rarely in the community. The Mediterranean region is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high, with this area constituting one of the most important reservoirs. The types of carbapenemase vary among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases produced by enterobacteria and A. baumannii in this part of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination.
Collapse
|
230
|
Baba Ahmed-Kazi Tani Z, Arlet G. [News of antibiotic resistance among Gram-negative bacilli in Algeria]. ACTA ACUST UNITED AC 2014; 62:169-78. [PMID: 24819127 DOI: 10.1016/j.patbio.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country.
Collapse
Affiliation(s)
- Z Baba Ahmed-Kazi Tani
- Laboratoire « antibiotiques antifongiques : physico-chimie, synthèse et activité biologique », faculté des sciences de la nature et de la vie et sciences de la terre et de l'univers, université Abou Bekr Belkaïd, rocade 2, BP 119, Tlemcen, Algérie
| | - G Arlet
- Département de bactériologie, faculté de médecine, université Pierre-et-Marie-Curie, 27, rue de Chaligny, 75012 Paris, France; Département de bactériologie, hôpital Tenon, hôpitaux universitaires Est parisiens, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75970 Paris cedex 20, France.
| |
Collapse
|
231
|
CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014; 52:2359-64. [PMID: 24759709 DOI: 10.1128/jcm.00594-14] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii isolates, particularly those that produce carbapenemases, are increasingly reported worldwide. The biochemically based Carba NP test, extensively validated for the detection of carbapenemase producers among Enterobacteriaceae and Pseudomonas spp., has been modified to detect carbapenemase production in Acinetobacter spp. A collection of 151 carbapenemase-producing and 69 non-carbapenemase-producing Acinetobacter spp. were tested using the Carba NP test and a modified Carba NP protocol (the CarbAcineto NP test) in this study. The CarbAcineto NP test requires modified lysis conditions and an increased bacterial inoculum compared to those of the original Carba NP test. The Carba NP test detects metallo-β-lactamase producers but failed to detect the production of other carbapenemase types among Acinetobacter spp. In contrast, the newly designed CarbAcineto NP test, which is rapid and reproducible, detects all types of carbapenemases with a sensitivity of 94.7% and a specificity of 100%. This cost-effective technique offers a reliable and affordable technique for identifying carbapenemase production in Acinetobacter spp., which is a marker of multidrug resistance in those species. Its use will facilitate the recognition of these carbapenemases and prevent their spread.
Collapse
|
232
|
Carvalhaes CG, Cayô R, Visconde MF, Barone T, Frigatto EAM, Okamoto D, Assis DM, Juliano L, Machado AMO, Gales AC. Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J Antimicrob Chemother 2014; 69:2132-6. [PMID: 24722840 DOI: 10.1093/jac/dku094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Recently, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was successfully applied for the detection of carbapenemase activity directly from Gram-negative colonies. Based on this principle, we evaluated the performance of MALDI-TOF MS for rapid detection of carbapenemase activity directly from positive blood culture vials. METHODS A total of 100 blood culture vials were randomly selected. MALDI-TOF MS carbapenemase assay results were confirmed by the detection of carbapenemase-encoding genes. RESULTS A total of 110 bacterial isolates were recovered. The MALDI-TOF MS carbapenemase assay identified 21 of 29 (72.4%) of the carbapenemase-producing isolates directly from the blood culture vials, especially those encoding KPC-2 (100%) and SPM-1 (100%), after a 4 h incubation period. Although the majority of OXA-23-producing Acinetobacter baumannii isolates were not identified on day 1, all isolates were identified as carbapenemase producers directly from the colony on the next day. CONCLUSIONS The MALDI-TOF MS carbapenemase assay is a feasible and rapid test to identify carbapenemase activity directly from blood culture vials. It may contribute to faster readjustment of empirical antimicrobial therapy and implementation of infection control measures.
Collapse
Affiliation(s)
- Cecilia G Carvalhaes
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Rodrigo Cayô
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Marina F Visconde
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Talita Barone
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | - Debora Okamoto
- Departamento de Biofísica, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Diego M Assis
- Departamento de Biofísica, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil Bruker Daltonics, Atibaia, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | - Ana C Gales
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
233
|
Wang D, Yan D, Hou W, Zeng X, Qi Y, Chen J. Characterization of bla(OxA-23) gene regions in isolates of Acinetobacter baumannii. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 48:284-90. [PMID: 24675065 DOI: 10.1016/j.jmii.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND/PURPOSE To investigate the characterization of bla(OxA-23) gene regions in isolates of Acinetobacter baumannii from Taizhou Municipal Hospital. METHODS Fifty-nine non-repetitive, multiresistant (including imipenem-resistant) isolates of A. baumannii were recovered from clinical infections in hospitalized patients from January 2010 to August 2011 in Taizhou Municipal Hospital (affiliated with Taizhou University) in China. These isolates were genotyped using pulsed-field gel electrophoresis (PFGE). bla(OxA-23) β-lactamase and associated genetic structures were analyzed using polymerase chain reaction (PCR), and recombination plasmids were analyzed by BamHI- or SacI- restriction enzyme digestion; predicted promoter structures of bla(OxA-23) genes were determined and compared using protein-protein BLAST analysis. RESULTS Fifteen out of 59 isolates expressing imipenem-resistant A. baumannii clinical isolates acquired either a bla(OxA-23) β-lactamase gene. A new gene cluster (ISAba1-bla(OxA-23)-AMP) with three previously identified transposons (Tn2006, Tn2007, and Tn2008) and one previously identified gene cluster (ISAba1- bla(OxA-23)) was found in the isolates. Recombination plasmids were analyzed by restriction enzyme digestion. CONCLUSION Our results indicate that pattern A was the most prevalent molecular type based on PFGE, and that different clones might be widespread with a majority of ISAba1-bla(OxA-23) clonal lineages in the 15 PCR positive isolates of A. baumannii in the hospital.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Laboratory Medicine, Medical College of Taizhou University Affiliated Taizhou Municipal Hospital, 381 East Road of Zhongshan of Jiaojiang District in Taizhou, Taizhou 318000, Zhejiang Province, PRC.
| | - Dongliang Yan
- Department of Urology Surgery, Medical College of Taizhou University Affiliated Taizhou Municipal Hospital, Taizhou, Zhejiang Province, PRC.
| | - Wei Hou
- Department of Infection, Medical College of Taizhou University Affiliated Taizhou Municipal Hospital, Taizhou, Zhejiang Province, PRC
| | - Xiaohua Zeng
- The State Key Laboratory of Industry Microbiology, Tianjin Science and Technology University, Tianjin City, PRC
| | - Yongxiao Qi
- Department of Laboratory Medicine, Medical College of Taizhou University, Taizhou, Zhejiang Province, PRC
| | - Jiayu Chen
- Department of Laboratory Medicine, Medical College of Taizhou University, Taizhou, Zhejiang Province, PRC
| |
Collapse
|
234
|
Matsui M, Suzuki S, Yamane K, Suzuki M, Konda T, Arakawa Y, Shibayama K. Distribution of carbapenem resistance determinants among epidemic and non-epidemic types of Acinetobacter species in Japan. J Med Microbiol 2014; 63:870-877. [PMID: 24600014 DOI: 10.1099/jmm.0.069138-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed a comparative molecular analysis on three types of clinically isolated Acinetobacter spp.: epidemic sequence types (STs) of Acinetobacter baumannii (epidemic ST-AB), non-epidemic sequence types of A. baumannii (non-epidemic ST-AB) and non-baumannii Acinetobacter spp. A total of 87 isolates - 46 A. baumannii, 25 A. pittii and 16 A. nosocomialis - from 43 hospitals were analysed. Of these, 31 A. baumannii isolates were ST1 or ST2 according to the Pasteur Institute multilocus sequence typing scheme and were defined as epidemic ST-AB. The other 15 A. baumannii isolates were defined as non-epidemic ST-AB. The epidemic ST-AB isolates harboured the blaOXA-23-like gene or had an ISAba1 element upstream of blaOXA-51-like, or both, whereas non-epidemic ST-AB and non-baumannii Acinetobacter spp. isolates harboured blaOXA-58-like or metallo-β-lactamase genes, or both. The proportion of multidrug-resistant isolates was significantly higher in the epidemic ST-AB isolates (48 %) than that in the other types of Acinetobacter isolates (5 %) (P<0.05). In addition, epidemic ST-AB isolates exhibited a relatively higher proportion of fluoroquinolone resistance. We demonstrated that, in terms of genotypes and phenotypes of antimicrobial resistance, non-epidemic ST-AB isolates shared more similarity with non-baumannii Acinetobacter spp. isolates than with epidemic ST-AB isolates, regardless of bacterial species. In addition, this study revealed that, even in Japan, where IMP-type metallo-β-lactamase producers are endemic, epidemic ST-AB harbouring blaIMP have not yet emerged.
Collapse
Affiliation(s)
- Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Satowa Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kunikazu Yamane
- Department of Public Health, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.,Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Masato Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Toshifumi Konda
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
235
|
Macguire AE, Ching MC, Diamond BH, Kazakov A, Novichkov P, Godoy VG. Activation of phenotypic subpopulations in response to ciprofloxacin treatment in Acinetobacter baumannii. Mol Microbiol 2014; 92:138-52. [PMID: 24612352 DOI: 10.1111/mmi.12541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other.
Collapse
Affiliation(s)
- Ashley E Macguire
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
236
|
Dissemination of 16S rRNA methylase ArmA-producing acinetobacter baumannii and emergence of OXA-72 carbapenemase coproducers in Japan. Antimicrob Agents Chemother 2014; 58:2916-20. [PMID: 24550340 DOI: 10.1128/aac.01212-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forty-nine clinical isolates of multidrug-resistant Acinetobacter baumannii were obtained from 12 hospitals in 7 prefectures throughout Japan. Molecular phylogenetic analysis revealed the clonal spread of A. baumannii sequence type 208 (ST208) and ST455 isolates harboring the armA gene and ST512 harboring the armA and blaOXA-72 genes. These findings show that A. baumannii isolates harboring armA are disseminated throughout Japan, and this is the first report to show that A. baumannii strains harboring blaOXA-72 and armA are emerging in hospitals in Japan.
Collapse
|
237
|
Abstract
OBJECTIVE To characterize the descriptive and molecular epidemiology of Acinetobacter baumannii in our hospital. DESIGN Longitudinal analysis of electronic microbiology laboratory records and isolates. SETTING A 1,500 bed public teaching hospital in the Miami area. PATIENTS Consecutive patients with A. baumannii from January 1994 to December 2011. INTERVENTIONS None MEASUREMENTS AND MAIN RESULTS : Data on all A. baumannii isolates were clustered at the patient level, and the first isolate per single patient was determined. Yearly trends were analyzed based on carbapenem susceptibilities and originating units for all first isolates and first blood isolates per unique patient. Additionally, carbapenem nonsusceptible isolates frozen in the microbiology laboratory since 1998 were retrieved and evaluated using polymerase chain reaction and randomly amplified polymorphic DNA techniques. A total of 9,334 A. baumannii isolates were detected, of which 4,484 isolates (48%) were identified as first positive isolates per unique patient. Most of the burden of disease was located in the ICUs (odds ratio, 2.64 [95% CI, 2.17-3.22]; p < 0.0001) and in the adult wards (odds ratio, 3.867 [95% CI, 2.71-5.52]; p < 0.0001). Respiratory specimens constituted the most frequent source (49%; odds ratio, 1.619 [95% CI, 1.391-1.884]; p < 0.0001). Of the 4,484 first isolates, 846 isolates (18.9%) were carbapenem nonsusceptible and 3,638 isolates (81.1%) were carbapenem susceptible. Over the years, the number of carbapenem nonsusceptible isolates increased, whereas the number of carbapenem susceptible decreased (p < 0.0001). The trauma ICU had the highest burden of carbapenem nonsusceptible first isolates (205 of 846; 24.2%). Seven clones were discovered among 144 carbapenem nonsusceptible isolates; one of these clones was found from 1999 to 2005. OXA-23 and OXA-40 were identified in 96 and 13 isolates, respectively. One isolate harbored a novel CTX-M-115 enzyme. CONCLUSIONS This constitutes the largest experience with A. baumannii reported to date from a single center. Half of all isolates were respiratory specimens and were from adult ICUs, especially trauma. Even though this was a polyclonal process, a single clone was identified in the hospital through a 6-year span.
Collapse
|
238
|
New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio 2014; 5:e00963-13. [PMID: 24449752 PMCID: PMC3903280 DOI: 10.1128/mbio.00963-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content and insertion sequence patterns added additional discriminatory power. Gene content comparisons illustrated extensive and redundant antibiotic resistance gene carriage and direct evidence of gene transfer, recombination, gene loss, and mutation. Evidence of barriers to gene flow among hospital components was not found, suggesting complex mixing of strains and a large reservoir of A. baumannii strains capable of colonizing patients. Genome sequencing was used to characterize multidrug-resistant Acinetobacter baumannii strains from one United States hospital system during a 1-year period to better understand how A. baumannii strains that cause infection are related to one another. Extensive variation in gene content was found, even among strains that were very closely related phylogenetically and epidemiologically. Several mechanisms contributed to this diversity, including transfer of mobile genetic elements, mobilization of insertion sequences, insertion sequence-mediated deletions, and genome-wide homologous recombination. Variation in gene content, however, lacked clear spatial or temporal patterns, suggesting a diverse pool of circulating strains with considerable interaction between strains and hospital locations. Widespread genetic variation among strains from the same hospital and even the same patient, particularly involving antibiotic resistance genes, reinforces the need for molecular diagnostic testing and genomic analysis to determine resistance profiles, rather than a reliance primarily on strain typing and antimicrobial resistance phenotypes for epidemiological studies.
Collapse
|
239
|
β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev 2014; 26:361-80. [PMID: 23824364 DOI: 10.1128/cmr.00096-12] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SUMMARY Infections due to Gram-negative bacilli (GNB) are a leading cause of morbidity and mortality worldwide. The extent of antibiotic resistance in GNB in countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, has not been previously reviewed. These countries share a high prevalence of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing GNB, most of which are associated with nosocomial infections. Well-known and widespread β-lactamases genes (such as those for CTX-M-15, OXA-48, and NDM-1) have found their way into isolates from the GCC states. However, less common and unique enzymes have also been identified. These include PER-7, GES-11, and PME-1. Several potential risk factors unique to the GCC states may have contributed to the emergence and spread of β-lactamases, including the unnecessary use of antibiotics and the large population of migrant workers, particularly from the Indian subcontinent. It is clear that active surveillance of antimicrobial resistance in the GCC states is urgently needed to address regional interventions that can contain the antimicrobial resistance issue.
Collapse
|
240
|
Bonnin RA, Nordmann P, Poirel L. Screening and deciphering antibiotic resistance inAcinetobacter baumannii: a state of the art. Expert Rev Anti Infect Ther 2014; 11:571-83. [DOI: 10.1586/eri.13.38] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
241
|
Ji S, Chen Y, Ruan Z, Fu Y, Ji J, Fu Y, Wang H, Yu Y. Prevalence of carbapenem-hydrolyzing class D β-lactamase genes in Acinetobacter spp. isolates in China. Eur J Clin Microbiol Infect Dis 2013; 33:989-97. [PMID: 24374815 DOI: 10.1007/s10096-013-2037-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
In order to assess the prevalence of carbapenem-hydrolyzing class D β-lactamase genes in Acinetobacter spp. isolates in China, we conducted a polymerase chain reaction (PCR)-based surveillance of OXA-type β-lactamase gene clusters for a total of 2,880 Acinetobacter spp. isolates collected from 23 Chinese provinces. All isolates were tested for susceptibility to 12 antimicrobial agents and showed high rates of resistance to all these agents except minocycline. We also found that the vast majority of carbapenem-resistant Acinetobacter spp. were OXA-23-like-producing isolates, predominantly Acinetobacter baumannii isolates. Besides, bla OXA-58-like and bla OXA-24-like genes were detected in 32 and 11 isolates, respectively, involving many provinces throughout China. Furthermore, these two carbapenem-resistance determinants were located on transferable plasmids in most cases, indicating an emerging threat for both OXA-58-like- and OXA-24-like-producing Acinetobacter spp. isolates in China. Interestingly, a novel homologue of the bla OXA-143 gene was identified in a susceptible Acinetobacter pittii isolate. Overall, these observations suggest that the bla OXA-23-harboring A. baumannii isolates are the most frequent carbapenem-resistant Acinetobacter spp. in China, and the bla OXA-24-like and bla OXA-58-like genes have emerged as potential threats of hospital outbreaks of multidrug-resistant Acinetobacter spp.
Collapse
Affiliation(s)
- S Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Tan SYY, Chua SL, Liu Y, Høiby N, Andersen LP, Givskov M, Song Z, Yang L. Comparative genomic analysis of rapid evolution of an extreme-drug-resistant Acinetobacter baumannii clone. Genome Biol Evol 2013; 5:807-18. [PMID: 23538992 PMCID: PMC3673627 DOI: 10.1093/gbe/evt047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes-61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell.
Collapse
Affiliation(s)
- Sean Yang-Yi Tan
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
243
|
First report of OXA-23-mediated carbapenem resistance in sequence type 2 multidrug-resistant Acinetobacter baumannii associated with urinary tract infection in a cat. Antimicrob Agents Chemother 2013; 58:1267-8. [PMID: 24295971 DOI: 10.1128/aac.02527-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
244
|
Revathi G, Siu LK, Lu PL, Huang LY. First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int J Infect Dis 2013; 17:e1255-8. [DOI: 10.1016/j.ijid.2013.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/30/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022] Open
|
245
|
Dissemination of multidrug-resistant Acinetobacter baumannii carrying BlaOxA-23 from hospitals in central Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 46:419-24. [DOI: 10.1016/j.jmii.2012.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/07/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022]
|
246
|
Fonseca EL, Scheidegger E, Freitas FS, Cipriano R, Vicente ACP. Carbapenem-resistant Acinetobacter baumannii from Brazil: role of carO alleles expression and blaOXA-23 gene. BMC Microbiol 2013; 13:245. [PMID: 24195496 PMCID: PMC4228306 DOI: 10.1186/1471-2180-13-245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Background Carbapenems are the antibiotics of choice to treat infections caused by Acinetobacter baumannii, and resistance to this class can be determined by loss of membrane permeability and enzymatic mechanisms. Here, we analyzed the basis of carbapenem resistance in clinical A. baumannii isolates from different Brazilian regions. Results The analyses addressed the carbapenemase activity of OXA-23, CarO expression and alterations in its primary structure. Susceptibility test revealed that the strains presented the COS (Colistin-Only-Sensitive) profile. PCR and sequencing showed the presence of the chromosomally-encoded blaOXA-51 in all isolates. The majority of strains (53%) carried the carbapenemase blaOXA-23 gene associated with ISAba1. The Hodge test indicated that these strains are carbapenemase producers. PFGE revealed 14 genotypes among strains from Rio de Janeiro and Maranhão. The influence of carO on imipenem resistance was evaluated considering two aspects: the composition of the primary amino acid sequence; and the expression level of this porin. Sequencing and in silico analyses showed the occurrence of CarOa, CarOb and undefined CarO types, and Real Time RT-PCR revealed basal and reduced carO transcription levels among isolates. Conclusions We concluded that, in general, for these Brazilian isolates, the major carbapenem resistance mechanism was due to OXA-23 carbapenemase activity and that loss of CarO porin plays a minor role in this phenotype. However, it was possible to associate the carO alleles and their expression with imipenem resistance. Therefore, these findings underline the complexity in addressing the role of different mechanisms in carbapenem resistance and highlight the possible influence of CarO type in this phenotype.
Collapse
Affiliation(s)
- Erica Lourenço Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
247
|
Vranić-Ladavac M, Bedenić B, Minandri F, Ištok M, Bošnjak Z, Frančula-Zaninović S, Ladavac R, Visca P. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur J Clin Microbiol Infect Dis 2013; 33:471-8. [DOI: 10.1007/s10096-013-1991-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
|
248
|
Wang X, Qiao F, Yu R, Gao Y, Zong Z. Clonal diversity of Acinetobacter baumannii clinical isolates revealed by a snapshot study. BMC Microbiol 2013; 13:234. [PMID: 24144168 PMCID: PMC3815251 DOI: 10.1186/1471-2180-13-234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/18/2013] [Indexed: 02/05/2023] Open
Abstract
Background Acinetobacter baumannii is a notorious opportunistic pathogen mainly associated with hospital-acquired infections. Studies on the clonal relatedness of isolates could lay the foundation for effective infection control. A snapshot study was performed to investigate the clonal relatedness of A. baumannii clinical isolates in our local settings. Results Among 82 non-repetitive Acinetobacter spp. clinical isolates that were recovered during a period of four days in 13 hospitals in Sichuan, Southwest China, 67 isolates were identified as A. baumannii. Half of the 67 A. baumannii isolates were non-susceptible to carbapenems. blaOXA-23 was the only acquired carbapenemase gene detected, present in 40 isolates including five carbapenem-susceptible ones. The isolates belonged to 62 pulsotypes determined by PFGE and 31 sequence types (ST) by multi-locus sequence typing. Forty-three isolates belonged to the globally-disseminated clonal complex 92, among which ST75, ST92 and ST208 were the most common sequence types. Conclusions Clinical isolates of A. baumannii were diverse in clonality in this snapshot study. However, most of the isolates belonged to the globally-distributed clonal complex CC92. ST75, ST92 and ST208 were the most common types in our region. In particular, ST208 might be an emerging lineage carrying blaOXA-23.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, China.
| |
Collapse
|
249
|
Identification of novel vaccine candidates against multidrug-resistant Acinetobacter baumannii. PLoS One 2013; 8:e77631. [PMID: 24116234 PMCID: PMC3792912 DOI: 10.1371/journal.pone.0077631] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/03/2013] [Indexed: 12/29/2022] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic bacterium associated with nosocomial infections in intensive care units. The alarming increase in infections caused by A. baumannii is strongly associated with enhanced resistance to antibiotics, in particular carbapenems. This, together with the lack of a licensed vaccine, has translated into significant economic, logistic and health impacts to health care facilities. In this study, we combined reverse vaccinology and proteomics to identify surface-exposed and secreted antigens from A. baumannii. Using in silico prediction tools and comparative genome analysis in combination with in vitro proteomic approaches, we identified 42 antigens that could be used as potential vaccine targets. Considering the paucity of effective antibiotics available to treat multidrug-resistant A. baumannii infections, these vaccine targets may serve as a framework for the development of a broadly protective multi-component vaccine, an outcome that would have a major impact on the burden of A. baumannii infections in intensive care units across the globe.
Collapse
|
250
|
He C, Kang M, Xie Y, Wu L, Chen Z, Wang L. Clonal characteristics of Acinetobacter baumannii isolated from cerebrospinal fluid in a west China hospital. J Med Microbiol 2013; 62:1631-1633. [PMID: 23887891 DOI: 10.1099/jmm.0.053975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Chao He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| | - Zhixing Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, PR China
| |
Collapse
|