202
|
Cruz RFA, Vieira SL, Kindlein L, Kipper M, Cemin HS, Rauber SM. Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels. Poult Sci 2016; 96:501-510. [PMID: 27655901 DOI: 10.3382/ps/pew310] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/18/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
Two experiments were conducted to evaluate the prevalence and severity of white striping (WS) and wooden breast (WB) in breast fillets from broilers fed diets with increasing digestible Lysine (dLys) from 12 to 28 d (Exp. 1) and from 28 to 42 d (Exp. 2). Trials were sequentially conducted using one-d-old male, slow-feathering Cobb 500 × Cobb broilers, both with 6 treatments and 8 replicates. Increasing dLys levels were equally spaced from 0.77 to 1.17% in Exp. 1 and from 0.68 to 1.07% in Exp. 2. The lowest dLys diet was not supplemented with L-Lysine (L-Lys) in either one of the studies and all other essential amino acid (AA) met or exceeded current commercial recommendations such that their dietary concentrations did not limit broiler growth. Four birds per pen were randomly selected from each replication and processed at 35 and 42 d in Exp. 1 and Exp. 2, respectively. Deboned breast fillets (Pectoralis major) were submitted to a 3 subject panel evaluation to detect the presence of WS and WB, as well as to provide scores of WS (0-normal, 1-moderate, 2-severe) and WB (0-normal, 1-moderate light, 2-moderate, 3-severe). Increasing the level of dLys had a positive effect on BW, carcass, and breast weight, as well as breast yield. White striping and WB prevalences were 32.3 and 85.9% in Exp. 1 and 87.1 and 89.2% in Exp. 2. Birds fed diets not supplemented with L-Lys had the lowest average WS and WB scores (0.22 and 0.78 in Exp. 1 and 0.61 and 0.68 in Exp. 2). White striping and WB presented linear responses to performance variables in Exp. 1, whereas quadratic responses were observed for all variables in Exp. 2. In conclusion, increasing the level of dLys improved growth performance and carcass traits as well as induced the occurrence and severity of WS and WB lesions.
Collapse
Affiliation(s)
- R F A Cruz
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil
| | - S L Vieira
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil
| | - L Kindlein
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 8834, Porto Alegre, RS, 91540-000, Brazil
| | - M Kipper
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil
| | - H S Cemin
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil
| | - S M Rauber
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil
| |
Collapse
|
203
|
Radaelli G, Piccirillo A, Birolo M, Bertotto D, Gratta F, Ballarin C, Vascellari M, Xiccato G, Trocino A. Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction. Poult Sci 2016; 96:309-319. [PMID: 27566729 DOI: 10.3382/ps/pew270] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
To evaluate muscle fiber degeneration (MFD) associated with white striping and wooden breast, pectoralis major of 192 broilers differing for genotype (standard vs. high breast yield), gender, and feeding regime (ad libitum vs. restricted rate 80% from 13 to 21 d of age) were sampled at 14, 21, 28, 35, and 46 d of age for histological analyses by hematoxylin and eosin (H&E) staining to evaluate tissue morphology, Masson's trichrome to identify collagen presence, and Oil red and Nile blue for lipid presence. Microvessels (diameter ≤15 μm), nuclei positive to anti-cleaved lamin A and monoclonal proliferating cell nuclear antigen (PCNA) antisera were counted to assess apoptotic and regenerative processes, respectively. Significant differences were found according to feeding system, age, and their interactions. The frequency of chickens with MFD was higher with ad libitum than restricted feeding (75.0% vs. 62.5%; P = 0.01) and increased with age (18.8%, 28.1%, 75.1%, 96.9%, and 96.9% at 14, 21, 28, 35, and 46 d). However, at 14 d a similar frequency (18.8%) was found in all broilers; at 21 d, MFD occurred more in broilers fed ad libitum than in those under restriction (50.0% vs. 6.3%; P < 0.01); at 28 d differences were reduced (87.5% vs. 62.5%; P = 0.10) to disappear by 35 (100% and 93.8%) and 46 d (96.9% and 96.9%). The number of microvessels decreased with age (20.7 to 9.46; P < 0.001) and the number of nuclei positive to the anti-cleaved lamin A antibody increased. At histology, MFD at 46 d corresponded to loss of typical cross striations, massive necrotic process, degenerating fibers surrounded by inflammatory cells, scattered fibers in an abundant collagen-rich connective tissue, numerous adipose cells; necrotic fibers showed a high percentage of apoptotic nuclei, and regenerating fibers appeared positive to anti-PCNA antibody. In conclusion, MFD soon occurred after 2 wk of growth and increased dramatically within 28 d. Early feed restriction reduced MFD as long as animals were restricted, but no residual effect was recorded after re-alimentation.
Collapse
Affiliation(s)
- G Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| | - A Piccirillo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| | - M Birolo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| | - D Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| | - F Gratta
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro (Padova), Italy
| | - C Ballarin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| | - M Vascellari
- Italian Health Authority and Research Organization for Animal Health and Food Safety, Viale dell'Università 14, I-35020, Legnaro (PD), Italy
| | - G Xiccato
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro (Padova), Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova, Italy
| |
Collapse
|