201
|
Doymus B, Kerem G, Yazgan Karatas A, Kok FN, Önder S. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance in vitro. J Biomater Appl 2020; 35:655-669. [PMID: 33283583 DOI: 10.1177/0885328220977765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial infections and lack of osseointegration may negatively affect the success of titanium (Ti) implants. In the present study, a functional coating composed of chitosan (CS) microspheres and nano hydroxyapatite (nHA) was prepared to obtain antimicrobial Ti implants with enhanced bioactivity. First, the chitosan microspheres were fixed to Ti surfaces activated by alkali and heat treatment, then nHA coatings were precipitated onto these surfaces. Ciprofloxacin was loaded into the microspheres using two different procedures; encapsulation and diffusion. Scanning electron microscopy micrographs of the modified Ti surfaces showed that the coating was successfully deposited onto the Ti surfaces and stable for 30 days in PBS. The drug was completely released from free microspheres loaded by encapsulation in 21 days whereas only 89% release was observed after immobilization. The burst release also decreased from ca. 55% to ca. 35%. The release was further reduced following the nHA precipitation. The modified Ti surfaces showed antimicrobial activity based on the bacterial time-kill assay using S. aureus, but the efficiency was affected by both nHA precipitation and drug loading strategy. Highest antimicrobial activity was seen in the samples without nHA layer, and when the drug was loaded by diffusion. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed that nHA on the surface enhanced HA growth in simulated body fluid for 3 weeks, showing increased osseointegration potential. Therefore, the proposed coating may be used to prevent Ti implant failure originated from bacterial infection and/or low bioactivity.
Collapse
Affiliation(s)
- Burcu Doymus
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Gizem Kerem
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Ayten Yazgan Karatas
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Fatma Nese Kok
- Department of Molecular Biology and Genetics, Istanbul Technical University, ITU, Istanbul, Turkey
| | - Sakip Önder
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
202
|
Prasad P, Gupta S. Nanobioconjugates: Weapons against Antibacterial Resistance. ACS APPLIED BIO MATERIALS 2020; 3:8271-8285. [DOI: 10.1021/acsabm.0c01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Puja Prasad
- Deptartment of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Deptartment of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
203
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
204
|
Sims KR, Maceren JP, Liu Y, Rocha GR, Koo H, Benoit DSW. Dual antibacterial drug-loaded nanoparticles synergistically improve treatment of Streptococcus mutans biofilms. Acta Biomater 2020; 115:418-431. [PMID: 32853808 PMCID: PMC7530141 DOI: 10.1016/j.actbio.2020.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Dental caries (i.e., tooth decay), which is caused by biofilm formation on tooth surfaces, is the most prevalent oral disease worldwide. Unfortunately, many anti-biofilm drugs lack efficacy within the oral cavity due to poor solubility, retention, and penetration into biofilms. While drug delivery systems (DDS) have been developed to overcome these hurdles and improve traditional antimicrobial treatments, including farnesol, efficacy is still modest due to myriad resistance mechanisms employed by biofilms, suggesting that synergistic drug treatments may be more efficacious. Streptococcus mutans (S. mutans), a cariogenic pathogen and biofilm forming model organism, has several key virulence factors including acidogenicity and exopolysaccharide (EPS) matrix synthesis. Flavonoids, such as myricetin, can reduce both biofilm acidogenicity and EPS synthesis. Therefore, a nanoparticle carrier (NPC) DDS with flexibility to co-load farnesol in the hydrophobic core and myricetin within the cationic corona, was tested in vitro using established and developing S. mutans biofilms. Co-loaded NPC treatments effectively disrupted biofilm biomass (i.e., dry weight) and reduced biofilm viability by ~3 log CFU/mL versus single drug-only controls in developing biofilms, suggesting dual-drug delivery exhibits synergistic anti-biofilm effects. Mechanistic studies revealed that co-loaded NPCs synergistically inhibited planktonic bacterial growth compared to controls and reduced S. mutans acidogenicity due to decreased atpD expression, a gene associated with acid tolerance. Moreover, the myricetin-loaded NPC corona enhanced NPC binding to tooth-mimetic surfaces, which can increase drug efficacy through improved retention at the biofilm-apatite interface. Altogether, these findings suggest promise for co-delivery of myricetin and farnesol DDS as an alternative anti-biofilm treatment to prevent dental caries.
Collapse
Affiliation(s)
- Kenneth R Sims
- University of Rochester School of Medicine and Dentistry, Translational Biomedical Science, Rochester, NY, United States; University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States
| | - Julian P Maceren
- University of Rochester, Department of Chemistry, Rochester, NY, United States
| | - Yuan Liu
- University of Pennsylvania, Center for Innovation and Precision Dentistry, School of Dental Medicine, Department of Orthodontics, Philadelphia, PA, United States
| | - Guilherme R Rocha
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States; São Paulo State University, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil
| | - Hyun Koo
- University of Pennsylvania, Center for Innovation and Precision Dentistry, School of Dental Medicine, Department of Orthodontics, Philadelphia, PA, United States
| | - Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States; University of Rochester, Materials Science Program, NY, United States; University of Rochester, Department of Orthopaedics and Center for Musculoskeletal Research, NY, United States; University of Rochester, Center for Oral Biology, NY, United States; University of Rochester, Department of Chemical Engineering, NY, United States.
| |
Collapse
|
205
|
Paul Bhattacharya S, Mitra A, Bhattacharya A, Sen A. Quorum quenching activity of pentacyclic triterpenoids leads to inhibition of biofilm formation by Acinetobacter baumannii. BIOFOULING 2020; 36:922-937. [PMID: 33103466 DOI: 10.1080/08927014.2020.1831480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The quorum quenching (QQ) potential of three pentacyclic triterpenoids, glycyrrhetinic acid (GRA), ursolic acid (UA) and betulinic acid (BA), representing distinct groups of compounds, was evaluated. Violacein production by Chromobacterium violaceum and pyocyanin production by Pseudomonas aeruginosa were severely affected by GRA, UA and BA, suggesting a perturbation of N-acyl homoserine lactone (ASL) based signaling. Molecular docking analysis revealed a possible interaction between ASL-synthase and ASL-dependent transcriptional activator homologs from P. aeruginosa and Acinetobacter baumannii with common binding pockets for GRA, UA and BA. The triterpenoids inhibited biofilm formation by A. baumannii and affected the overall structure of biofilms. When administered in combination, two of the three molecules fostered antibiotic action against A. baumannii biofilms, widening the scope for developing novel combinations against the pathogen.
Collapse
Affiliation(s)
| | - Akash Mitra
- Department of Microbiology, Adamas University, Kolkata, India
| | | | - Aparna Sen
- Department of Microbiology, Lady Brabourne College, Kolkata, India
| |
Collapse
|
206
|
Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2182-2198. [DOI: 10.1080/09205063.2020.1795461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Milton Beltrame Junior
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
207
|
Khalifa M, Few LL, See Too WC. ChoK-ing the Pathogenic Bacteria: Potential of Human Choline Kinase Inhibitors as Antimicrobial Agents. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1823485. [PMID: 32695809 PMCID: PMC7368946 DOI: 10.1155/2020/1823485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Abstract
Novel antimicrobial agents are crucial to combat antibiotic resistance in pathogenic bacteria. Choline kinase (ChoK) in bacteria catalyzes the synthesis of phosphorylcholine, which is subsequently incorporated into the cell wall or outer membrane. In certain species of bacteria, phosphorylcholine is also used to synthesize membrane phosphatidylcholine. Numerous human ChoK inhibitors (ChoKIs) have been synthesized and tested for anticancer properties. Inhibition of S. pneumoniae ChoK by human ChoKIs showed a promising effect by distorting the cell wall and retarded the growth of this pathogen. Comparison of amino acid sequences at the catalytic sites of putative choline kinases from pathogenic bacteria and human enzymes revealed striking sequence conservation that supports the potential application of currently available ChoKIs for inhibiting bacterial enzymes. We also propose the combined use of ChoKIs and nanoparticles for targeted delivery to the pathogen while shielding the human host from any possible side effects of the inhibitors. More research should focus on the verification of putative bacterial ChoK activities and the characterization of ChoKIs with active enzymes. In conclusion, the presence of ChoK in a wide range of pathogenic bacteria and the distinct function of this enzyme has made it an attractive drug target. This review highlighted the possibility of "choking" bacterial ChoKs by using human ChoKIs.
Collapse
Affiliation(s)
- Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|