201
|
Repetitive Transcranial Magnetic Stimulation-Associated Changes in Neocortical Metabolites in Major Depression: A Systematic Review. Neuroimage Clin 2022; 35:103049. [PMID: 35738081 PMCID: PMC9233277 DOI: 10.1016/j.nicl.2022.103049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
We reviewed 12 studies that measured metabolites pre and post rTMS in MDD. Frontal lobe Glu, Gln, NAA, and GABA increased after rTMS. Increases in metabolites were often associated with MDD symptom improvement. We propose novel intracellular mechanisms by which metabolites are altered by rTMS.
Introduction Repetitive Transcranial magnetic stimulation (rTMS) is an FDA approved treatment for major depressive disorder (MDD). However, neural mechanisms contributing to rTMS effects on depressive symptoms, cognition, and behavior are unclear. Proton magnetic resonance spectroscopy (MRS), a noninvasive neuroimaging technique measuring concentrations of biochemical compounds within the brain in vivo, may provide mechanistic insights. Methods This systematic review summarized published MRS findings from rTMS treatment trials to address potential neurometabolic mechanisms of its antidepressant action. Using PubMed, Google Scholar, Web of Science, and JSTOR, we identified twelve empirical studies that evaluated changes in MRS metabolites in a within-subjects, pre- vs. post-rTMS treatment design in patients with MDD. Results rTMS protocols ranged from four days to eight weeks duration, were applied at high frequency to the left dorsolateral prefrontal cortex (DLPFC) in most studies, and were conducted in patients aged 13-to-70. Most studies utilized MRS point resolved spectroscopy acquisitions at 3 Tesla in the bilateral anterior cingulate cortex and DLPFC. Symptom improvements were correlated with rTMS-related increases in the concentration of glutamatergic compounds (glutamate, Glu, and glutamine, Gln), GABA, and N-acetylated compounds (NAA), with some results trend-level. Conclusions This is the first in-depth systematic review of metabolic effects of rTMS in individuals with MDD. The extant literature suggests rTMS stimulation does not produce changes in neurometabolites independent of clinical response; increases in frontal lobe glutamatergic compounds, N-acetylated compounds and GABA following high frequency left DLPFC rTMS therapy were generally associated with clinical improvement. Glu, Gln, GABA, and NAA may mediate rTMS treatment effects on MDD symptomatology through intracellular mechanisms.
Collapse
|
202
|
Spitz NA, Pace BD, Ten Eyck P, Trapp NT. Early Improvement Predicts Clinical Outcomes Similarly in 10 Hz rTMS and iTBS Therapy for Depression. Front Psychiatry 2022; 13:863225. [PMID: 35633811 PMCID: PMC9130587 DOI: 10.3389/fpsyt.2022.863225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Prior studies have demonstrated that early treatment response with transcranial magnetic stimulation (TMS) can predict overall response, yet none have directly compared that predictive capacity between intermittent theta-burst stimulation (iTBS) and 10 Hz repetitive transcranial magnetic stimulation (rTMS) for depression. Our study sought to test the hypothesis that early clinical improvement could predict ultimate treatment response in both iTBS and 10 Hz rTMS patient groups and that there would not be significant differences between the modalities. Methods We retrospectively evaluated response to treatment in 105 participants with depression that received 10 Hz rTMS (n = 68) and iTBS (n = 37) to the dorsolateral prefrontal cortex (DLPFC). Percent changes from baseline to treatment 10 (t10), and to final treatment (tf), were used to calculate confusion matrices including negative predictive value (NPV). Treatment non-response was defined as <50% reduction in PHQ-9 scores according to literature, and population, data-driven non-response was defined as <40% for 10 Hz and <45% for iTBS. Results For both modalities, the NPV related to degree of improvement at t10. NPV for 10 Hz was 80%, 63% and 46% at t10 in those who failed to improve >20, >10, and >0% respectively; while iTBS NPV rates were 65, 50, and 35%. There were not significant differences between protocols at any t10 cut-off assessed, whether research defined 50% improvement as response or data driven kernel density estimates (p = 0.22-0.44). Conclusion Patients who fail to achieve >20% improvement by t10 with both 10 Hz rTMS and iTBS therapies have ~70% chance of non-response to treatment. With no significant differences between predictive capacities, identifying patients at-risk for non-response affords psychiatrists greater opportunity to adapt treatment strategies.
Collapse
Affiliation(s)
- Nathen A. Spitz
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Benjamin D. Pace
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
203
|
Bulteau S, Laurin A, Pere M, Fayet G, Thomas-Ollivier V, Deschamps T, Auffray-Calvier E, Bukowski N, Vanelle JM, Sébille V, Sauvaget A. Intermittent theta burst stimulation (iTBS) versus 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) to alleviate treatment-resistant unipolar depression: A randomized controlled trial (THETA-DEP). Brain Stimul 2022; 15:870-880. [DOI: 10.1016/j.brs.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/31/2022] Open
|
204
|
Mehta S, Downar J, Mulsant BH, Voineskos D, Daskalakis ZJ, Weissman CR, Vila-Rodriguez F, Blumberger DM. Effect of high frequency versus theta-burst repetitive transcranial magnetic stimulation on suicidality in patients with treatment-resistant depression. Acta Psychiatr Scand 2022; 145:529-538. [PMID: 35188677 PMCID: PMC9007836 DOI: 10.1111/acps.13412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) on suicidality in patients with treatment-resistant depression (TRD). METHODS We used data from a three-site randomized clinical trial comparing 10 Hz rTMS and iTBS applied to the left dorsolateral prefrontal cortex (DLPFC) in patients with TRD. We compared the effect of 10Hz rTMS and iTBS on suicidality as measured by the suicide item of the Hamilton Depression Rating Scale 17-item (HDRS-17). RESULTS Suicidality remitted in 71 (43.7%) participants randomized to 10Hz stimulation and 91 (49.1%) participants randomized to iTBS, without a significant difference between the proportions in the two groups (Χ2 = 0.674, df = 1, p = 0.4117). There was a significant correlation between change in suicidality and change in depression severity for both modalities (10 Hz, Pearson's r = 0.564; iTBS, Pearson's r = 0.502), with a significantly larger decrease in depression severity for those in whom suicidality remitted compared to those in whom it did not (t = 10.912, df = 276.8, p < 0.001). CONCLUSIONS Both 10 Hz and iTBS rTMS were effective in reducing suicidality in TRD. Future trials of iTBS for depression should include discrete measures of suicidality.
Collapse
Affiliation(s)
- Shobha Mehta
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California, 92093-0021, United States
| | - Cory R. Weissman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada,Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Vancouver, British Columbia, V6T 2A1, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M5J 1H4, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
205
|
Wilke SA, Johnson CL, Corlier J, Marder KG, Wilson AC, Pleman CM, Leuchter AF. Psychostimulant use and clinical outcome of repetitive transcranial magnetic stimulation treatment of major depressive disorder. Depress Anxiety 2022; 39:397-406. [PMID: 35389536 DOI: 10.1002/da.23255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD). Psychostimulant medication use may be associated with improved rTMS outcomes, but a detailed understanding of these relationships is lacking. METHODS We compared MDD subjects taking psychostimulants (n = 37) with those not taking one of these medications (n = 53) during a course of 30 rTMS treatments. Changes in the 30-item Inventory of Depressive Symptomatology Self Report (IDS-SR30) subscale scores were examined at treatment 30. We also subdivided subjects into three categories based on drug mechanism and looked at IDS-SR30 total score after treatments 10, 20, and 30. RESULTS Subjects taking psychostimulants had a significantly greater overall clinical improvement than those not taking these medications at treatment 30. The psychostimulant group also improved significantly more than the control group in "sleep" and "mood/cognition," but not "anxiety/arousal" IDS-SR30 subscales. No differences were detected among individual drug categories, which may reflect the limited sample size for individual medications. There was a negative dose-response relationship for the lisdexamfetamine/dextroamphetamine group, in which lower doses were associated with better clinical outcome. CONCLUSIONS Psychostimulant medications may enhance clinical efficacy of rTMS for MDD by preferentially impacting specific symptom domains. For some psychostimulants, these effects may be dose-dependent. Prospective clinical trials are needed to guide psychostimulant augmentation of brain stimulation therapies.
Collapse
Affiliation(s)
- Scott A Wilke
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Crystal L Johnson
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Juliana Corlier
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Katharine G Marder
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrew C Wilson
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Christopher M Pleman
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrew F Leuchter
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
206
|
He J, Tang Y, Lin J, Faulkner G, Tsang HWH, Chan SHW. Non-invasive brain stimulation combined with psychosocial intervention for depression: a systematic review and meta-analysis. BMC Psychiatry 2022; 22:273. [PMID: 35439977 PMCID: PMC9016381 DOI: 10.1186/s12888-022-03843-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This review investigates the efficacy and safety of non-invasive brain stimulation (NIBS) combined with psychosocial intervention on depressive symptoms. MATERIALS AND METHODS We systematically searched five electronic databases from their inception to June 2021: PubMed, Embase, PsycINFO, Web of Science, and Medline. Randomized or non-randomized clinical trials in which NIBS plus psychosocial intervention was compared to control conditions in people with depressive symptoms were included. RESULTS A total of 17 eligible studies with 660 participants were included. The meta-analysis results showed that NIBS combined with psychosocial therapy had a positive effect on moderate to severe depression ([SMD = - 0.46, 95%CI (- 0.90, - 0.02), I2 = 73%, p < .01]), but did not significantly improve minimal to mild depression ([SMD = - 0.12, 95%CI (- 0.42, 0.18), I2 = 0%, p = .63]). Compared with NIBS alone, the combination treatment had a significantly greater effect in alleviating depressive symptoms ([SMD = - 0.84, 95%CI (- 1.25, - 0.42), I2 = 0%, p = .93]). However, our results suggested that the pooled effect size of ameliorating depression of NIBS plus psychosocial intervention had no significant difference compared with the combination of sham NIBS [SMD = - 0.12, 95%CI (- 0.31, 0.07), I2 = 0%, p = .60] and psychosocial intervention alone [SMD = - 0.97, 95%CI (- 2.32, 0.38), I2 = 72%, p = .01]. CONCLUSION NIBS when combined with psychosocial intervention has a significant positive effect in alleviating moderately to severely depressive symptoms. Further well-designed studies of NIBS combined with psychosocial intervention on depression should be carried out to consolidate the conclusions and explore the in-depth underlying mechanism.
Collapse
Affiliation(s)
- Jiali He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yiling Tang
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jingxia Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Guy Faulkner
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hector W H Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sunny H W Chan
- School of Health and Social Wellbeing, University of the West of England, England, UK
| |
Collapse
|
207
|
Wang YN, Pan YC, Shu HY, Zhang LJ, Li QY, Ge QM, Liang RB, Shao Y. Altered Spontaneous Brain Activity Patterns in Children With Strabismic Amblyopia After Low-Frequency Repetitive Transcranial Magnetic Stimulation: A Resting-State Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:790678. [PMID: 35463933 PMCID: PMC9027809 DOI: 10.3389/fnhum.2022.790678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePrevious studies have demonstrated altered brain activity in strabismic amblyopia (SA). In this study, low-frequency repetitive transcranial magnetic stimulation (rTMS) was applied in children with strabismic amblyopia after they had undergone strabismus surgery. The effect of rTMS was investigated by measuring the changes of brain features using the amplitude of low-frequency fluctuation (ALFF).Materials and MethodsIn this study, 21 SA patients (12 males and 9 females) were recruited based on their age (7–13 years old), weight, and sex. They all had SA in their left eyes and they received rTMS treatment one month after strabismus surgery. Their vision before and after surgery were categorized as pre-rTMS (PRT) and post-rTMS (POT). All participants received rTMS treatment, underwent magnetic resonance imaging (MRI), and their data were analyzed using the repeated measures t-test. The team used correlation analysis to explore the relationship between logMAR visual acuity and ALFF.ResultsPre- versus post-rTMS values of ALFF were significantly different within individuals. In the POT group, ALFF values were significantly decreased in the Angular_R (AR), Parietal_Inf_L (PIL), and Cingulum_Mid_R (CMR) while ALFF values were significantly increased in the Fusiform_R (FR) and Frontal_Inf_Orb_L(FIL) compared to the PRT stage.ConclusionOur data showed that ALFF recorded from some brain regions was changed significantly after rTMS in strabismic amblyopes. The results may infer the pathological basis of SA and demonstrate that visual function may be improved using rTMS in strabismic amblyopic patients.
Collapse
|
208
|
Markman TM, Pothineni NVK, Zghaib T, Smietana J, McBride D, Amankwah NA, Linn KA, Kumareswaran R, Hyman M, Arkles J, Santangeli P, Schaller RD, Supple GE, Frankel DS, Deo R, Lin D, Riley MP, Epstein AE, Callans DJ, Marchlinski FE, Hamilton R, Nazarian S. Effect of Transcutaneous Magnetic Stimulation in Patients With Ventricular Tachycardia Storm: A Randomized Clinical Trial. JAMA Cardiol 2022; 7:445-449. [PMID: 35171197 PMCID: PMC8851364 DOI: 10.1001/jamacardio.2021.6000] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Autonomic neuromodulation provides therapeutic benefit in ventricular tachycardia (VT) storm. Transcutaneous magnetic stimulation (TcMS) can noninvasively and nondestructively modulate a patient's nervous system activity and may reduce VT burden in patients with VT storm. OBJECTIVE To evaluate the safety and efficacy of TcMS of the left stellate ganglion for patients with VT storm. DESIGN, SETTING, AND PARTICIPANTS This double-blind, sham-controlled randomized clinical trial took place at a single tertiary referral center between August 2019 and July 2021. The study included 26 adult patients with 3 or more episodes of VT in 24 hours. INTERVENTIONS Patients were randomly assigned to receive a single session of either TcMS that targeted the left stellate ganglion (n = 14) or sham stimulation (n = 12). MAIN OUTCOMES AND MEASURES The primary outcome was freedom from VT in the 24-hour period following randomization. Key secondary outcomes included safety of TcMS on cardiac implantable electronic devices, as well as burden of VT in the 72-hour period following randomization. RESULTS Among 26 patients (mean [SD] age, 64 [13] years; 20 [77%] male), a mean (SD) of 12.7 (10.3) episodes of VT occurred within the 24 hours preceding randomization. Patients had recurrent VT despite taking a mean (SD) of 2.0 (0.6) antiarrhythmic drugs (AADs), and 11 patients (42%) required mechanical hemodynamic support at the time of randomization. In the 24-hour period after randomization, VT recurred in 4 of 14 patients (29% [SD 47%]) in the TcMS group vs 7 of 12 patients (58% [SD 51%]) in the sham group (P = .20). In the 72-hour period after randomization, patients in the TcMS group had a mean (SD) of 4.5 (7.2) episodes of VT vs 10.7 (13.8) in the sham group (incidence rate ratio, 0.42; P < .001). Patients in the TcMS group were taking fewer AADs 24 hours after randomization compared with baseline (mean [SD], 0.9 [0.8] vs 1.8 [0.4]; P = .001), whereas there was no difference in the number of AADs taken for the sham group (mean [SD], 2.3 [0.8] vs 1.9 [0.5]; P = .20). None of the 7 patients in the TcMS group with a cardiac implantable electronic device had clinically significant effects on device function. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, findings support the potential for TcMS to safely reduce the burden of VT in the setting of VT storm in patients with and without cardiac implantable electronic devices and inform the design of future trials to further investigate this novel treatment approach. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04043312.
Collapse
Affiliation(s)
- Timothy M. Markman
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia,Penn Brain Science, Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia
| | - Naga Venkata K. Pothineni
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Tarek Zghaib
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Jeffrey Smietana
- Division of Cardiology, Temple University, Temple University Hospital, Philadelphia, Pennsylvania
| | - Daniel McBride
- Division of Cardiology, University of Michigan, Ann Arbor
| | - Nigel A. Amankwah
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Kristin A. Linn
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia
| | - Ramanan Kumareswaran
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Matthew Hyman
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Jeffrey Arkles
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Pasquale Santangeli
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Robert D. Schaller
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Gregory E. Supple
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - David S. Frankel
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Rajat Deo
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - David Lin
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Michael P. Riley
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Andrew E. Epstein
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia,Cardiology Division, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - David J. Callans
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Francis E. Marchlinski
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Roy Hamilton
- Penn Brain Science, Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia,Department of Neurology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| | - Saman Nazarian
- Division of Cardiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|
209
|
Li X, Zhang C, Tan J, Ding L, Wang C, Wang M, Lin Y. Clinical effects of continuous theta burst stimulation for generalized anxiety disorder and a mechanism involving α oscillations: a randomized controlled trial. J Psychiatry Neurosci 2022; 47:E123-E133. [PMID: 35361700 PMCID: PMC8979658 DOI: 10.1503/jpn.210134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Continuous theta burst stimulation (cTBS) is a much more rapid protocol than low-frequency repetitive transcranial magnetic stimulation (rTMS), but no clinical trial has yet investigated the efficacy and mechanisms of cTBS for the treatment of generalized anxiety disorder. The purpose of this study was to compare the clinical effects and α oscillations induced by cTBS versus 1 Hz rTMS as predictors of response, and to assess the underlying mechanisms of the therapeutic effects of cTBS in patients with generalized anxiety disorder. METHODS We randomly allocated 120 patients with generalized anxiety disorder to receive cTBS (n = 41), 1 Hz rTMS (n = 40) or sham cTBS (n = 39) over the right dorsolateral prefrontal cortex; we also included healthy controls (n = 30) to compare neurophysiological data. We analyzed changes in Hamilton Anxiety Rating Scale scores and α oscillations (frequency and power) at baseline, post-treatment and 1-month follow-up. RESULTS After 20 sessions of treatment, patients' anxiety had improved and α power had increased in the cTBS and 1 Hz rTMS groups. However, at 1-month follow-up the cTBS group had significantly more responders and remitters, and higher α oscillations than the 1 Hz rTMS group (post hoc analysis: cTBS > rTMS > sham). At baseline, α frequency was inversely correlated with psychological symptom scores on the Hamilton Anxiety Rating Scale (r = -0.613, p < 0.001); post-treatment, this correlation was present only in the cTBS group (r = -0.685, p < 0.001). LIMITATIONS Electroencephalography data were limited to the α band. CONCLUSION Our findings provide evidence for the clinical use of cTBS, a novel brain stimulation protocol. Its therapeutic effects may be the result of increasing α frequency, thereby improving the psychological symptoms of generalized anxiety disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongzhong Lin
- From the Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, China (Li, Tan, Ding, C. Wang, M. Wang, Lin); the Stem Cell Clinical Research Institution, the First Affiliated Hospital of Dalian Medical University, Dalian, China (Li); the Clinical Drug Trial Institution, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China (Zhang)
| |
Collapse
|
210
|
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. BIOLOGY 2022; 11:biology11030473. [PMID: 35336846 PMCID: PMC8945729 DOI: 10.3390/biology11030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary High spinal cord injuries (SCIs) are known to lead to permanent diaphragmatic paralysis, and to induce deleterious post-traumatic inflammatory processes following cervical spinal cord injury. We used a noninvasive therapeutic tool (repetitive transcranial magnetic stimulation (rTMS)), to harness plasticity in spared descending respiratory circuit and reduce the inflammatory processes. Briefly, the results obtained in this present study suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes. Abstract High spinal cord injuries (SCIs) lead to permanent diaphragmatic paralysis. The search for therapeutics to induce functional motor recovery is essential. One promising noninvasive therapeutic tool that could harness plasticity in a spared descending respiratory circuit is repetitive transcranial magnetic stimulation (rTMS). Here, we tested the effect of chronic high-frequency (10 Hz) rTMS above the cortical areas in C2 hemisected rats when applied for 7 days, 1 month, or 2 months. An increase in intact hemidiaphragm electromyogram (EMG) activity and excitability (diaphragm motor evoked potentials) was observed after 1 month of rTMS application. Interestingly, despite no real functional effects of rTMS treatment on the injured hemidiaphragm activity during eupnea, 2 months of rTMS treatment strengthened the existing crossed phrenic pathways, allowing the injured hemidiaphragm to increase its activity during the respiratory challenge (i.e., asphyxia). This effect could be explained by a strengthening of respiratory descending fibers in the ventrolateral funiculi (an increase in GAP-43 positive fibers), sustained by a reduction in inflammation in the C1–C3 spinal cord (reduction in CD68 and Iba1 labeling), and acceleration of intracellular plasticity processes in phrenic motoneurons after chronic rTMS treatment. These results suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes.
Collapse
|
211
|
Dorsomedial prefrontal rTMS for depression in borderline personality disorder: A pilot randomized crossover trial. J Affect Disord 2022; 301:273-280. [PMID: 34942227 DOI: 10.1016/j.jad.2021.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recently, a small literature has emerged suggesting that repetitive transcranial magnetic stimulation (rTMS) may offer benefit for MDD even in BPD patients, perhaps by enhancing cognitive control, and/or disrupting excessive 'non-reward' activity in right orbitofrontal regions. This study aimed primarily to assess the therapeutic effects of dorsomedial prefrontal cortex (DMPFC)-rTMS against MDD symptoms in BPD patients, and secondarily to assess whether the therapeutic effects ensued via mechanisms of reduced impulsivity and core BPD pathology on clinical scales (BIS-11, ZAN-BPD) or of reduced alpha- and theta-band activity on EEG recordings of right orbitofrontal cortex.. METHODS In a crossover-design trial, 20 BPD patients with MDD underwent 2 × 30 session/15 day blocks of either active-then-sham or sham-then-active bilateral 20 Hz DMPFC-rTMS. RESULTS Sixteen out of 20 patients completed treatment. A significant (p = 0.00764) crossover effect was detected, with overall reductions in HamD17 score from 23.1±SD3.1 to 10.75±SD5.8. Nine out of 16 (56.3%) treatment completers achieved response (>50% improvement) and 6/16 (37.5%) achieved remission (HamD≤7), maintained at 1 month followup. BIS-11 scores remained unchanged, and ZAN-BPD scores improved similarly in both groups with no significant crossover effect. Change in low-band power over right orbitofrontal regions correlated with clinical improvement. LIMITATIONS This was a crossover study with a small sample size. A randomized controlled trial with larger sample size will be needed to establish the efficacy more definitively. CONCLUSIONS The results suggest efficacy for DMPFC-rTMS in treating MDD in BPD, and provide a foundation for a larger future trial.
Collapse
|
212
|
Yan J, Zhang F, Le Niu, Wang X, Lu X, Ma C, Zhang C, Song J, Zhang Z. High-frequency repetitive transcranial magnetic stimulation mitigates depression-like behaviors in CUMS-induced rats via FGF2/FGFR1/p-ERK signaling pathway. Brain Res Bull 2022; 183:94-103. [PMID: 35247488 DOI: 10.1016/j.brainresbull.2022.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022]
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) is a widely used and effective biological treatment for depression. Although previous studies have shown that astrocyte function may be modified by rTMS, the specific neurobiological mechanisms underlying its antidepressant action are not clear. Substantial evidence has accumulated indicating that neurotrophin dysfunction and neuronal apoptosis play a role in the development of depression. To evaluate this hypothesis, we applied a chronical unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats, followed by the delivery of 10-Hz rTMS for 3 weeks. Behavioral outcome measures consisted of a sucrose preference test, forced swimming test, and open field test. Histological analysis focused on apoptosis, expression of GFAP and FGF2, and FGF2 pathway-related proteins. The results showed that after rTMS treatment, the rats' sucrose preference increased, open field performance improved while the immobility time of forced swimming decreased. The behavioral changes seen in rTMS treated rats were accompanied by marked reductions in the number of TUNEL-positive neural cells and the level of expression of BAX and by an increase in Bcl2. Furthermore, the expression of GFAP and FGF2 was increased, along with activation of FGF2 downstream pathway. These results suggest that rTMS treatment can improve depression-like behavior, attenuate neural apoptosis, and reverse reduction of astrocytes in a rat model of depression. We hypothesize that the therapeutic action of rTMS in CUMS-induced rats is linked to the activation of the FGF2/FGFR1/p-ERK signaling pathway.
Collapse
Affiliation(s)
- Junni Yan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Le Niu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xiaonan Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xinxin Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Chaoyue Ma
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired technology, Shanghai, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
213
|
Darmani G, Bergmann T, Butts Pauly K, Caskey C, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T, Phipps M, Pinton G, Ramezanpour H, Sallet J, Yaakub S, Yoo S, Chen R. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol 2022; 135:51-73. [DOI: 10.1016/j.clinph.2021.12.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
214
|
Gold MC, Yuan S, Tirrell E, Kronenberg EF, Kang JWD, Hindley L, Sherif M, Brown JC, Carpenter LL. Large-scale EEG neural network changes in response to therapeutic TMS. Brain Stimul 2022; 15:316-325. [PMID: 35051642 PMCID: PMC8957581 DOI: 10.1016/j.brs.2022.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an effective therapy for patients with treatment-resistant depression. TMS likely induces functional connectivity changes in aberrant circuits implicated in depression. Electroencephalography (EEG) "microstates" are topographies hypothesized to represent large-scale resting networks. Canonical microstates have recently been proposed as markers for major depressive disorder (MDD), but it is not known if or how they change following TMS. METHODS Resting EEG was obtained from 49 MDD patients at baseline and following six weeks of daily TMS. Polarity-insensitive modified k-means clustering was used to segment EEGs into constituent microstates. Microstates were localized via sLORETA. Repeated-measures mixed models tested for within-subject differences over time and t-tests compared microstate features between TMS responder and non-responder groups. RESULTS Six microstates (MS-1 - MS-6) were identified from all available EEG data. Clinical response to TMS was associated with increases in features of MS-2, along with decreased metrics of MS-3. Nonresponders showed no significant changes in any microstate. Change in occurrence and coverage of both MS-2 (increased) and MS-3 (decreased) correlated with symptom change magnitude over the course of TMS treatment. CONCLUSIONS We identified EEG microstates associated with clinical improvement following a course of TMS therapy. Results suggest selective modulation of resting networks observable by EEG, which is inexpensive and easily acquired in the clinic setting.
Collapse
Affiliation(s)
- Michael C Gold
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, USA
| | - Shiwen Yuan
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, USA
| | - Eric Tirrell
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA
| | - E Frances Kronenberg
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA
| | - Jee Won D Kang
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA
| | - Lauren Hindley
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA
| | - Mohamed Sherif
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, USA; Lifespan Physician Group, Rhode Island Hospital, Providence, RI, USA
| | - Joshua C Brown
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, USA
| | - Linda L Carpenter
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, USA.
| |
Collapse
|
215
|
Gharooni AA, Kwon BK, Fehlings MG, Boerger TF, Rodrigues-Pinto R, Koljonen PA, Kurpad SN, Harrop JS, Aarabi B, Rahimi-Movaghar V, Wilson JR, Davies BM, Kotter MRN, Guest JD. Developing Novel Therapies for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 7]: Opportunities From Restorative Neurobiology. Global Spine J 2022; 12:109S-121S. [PMID: 35174725 PMCID: PMC8859698 DOI: 10.1177/21925682211052920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To provide an overview of contemporary therapies for the James Lind Alliance priority setting partnership for degenerative cervical myelopathy (DCM) question: 'Can novel therapies, including stem-cell, gene, pharmacological and neuroprotective therapies, be identified to improve the health and wellbeing of people living with DCM and slow down disease progression?' METHODS A review of the literature was conducted to outline the pathophysiology of DCM and present contemporary therapies that may hold therapeutic value in 3 broad categories of neuroprotection, neuroregeneration, and neuromodulation. RESULTS Chronic spinal cord compression leads to ischaemia, neuroinflammation, demyelination, and neuronal loss. Surgical intervention may halt progression and improve symptoms, though the majority do not make a full recovery leading to lifelong disability. Neuroprotective agents disrupt deleterious secondary injury pathways, and one agent, Riluzole, has undergone Phase-III investigation in DCM. Although it did not show efficacy on the primary outcome modified Japanese Orthopaedic Association scale, it showed promising results in pain reduction. Regenerative approaches are in the early stage, with one agent, Ibudilast, currently in a phase-III investigation. Neuromodulation approaches aim to therapeutically alter the state of spinal cord excitation by electrical stimulation with a variety of approaches. Case studies using electrical neuromuscular and spinal cord stimulation have shown positive therapeutic utility. CONCLUSION There is limited research into interventions in the 3 broad areas of neuroprotection, neuroregeneration, and neuromodulation for DCM. Contemporary and novel therapies for DCM are now a top 10 priority, and whilst research in these areas is limited in DCM, it is hoped that this review will encourage research into this priority.
Collapse
Affiliation(s)
- Aref-Ali Gharooni
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Benjamin M. Davies
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Mark R. N. Kotter
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
216
|
Cappon D, den Boer T, Jordan C, Yu W, Metzger E, Pascual-Leone A. Transcranial magnetic stimulation (TMS) for geriatric depression. Ageing Res Rev 2022; 74:101531. [PMID: 34839043 PMCID: PMC8996329 DOI: 10.1016/j.arr.2021.101531] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The prevalence of treatment-resistant geriatric depression (GD) highlights the need for treatments that preserve cognitive functions and recognize polypharmacy in elderly, yet effectively reduce symptom burden. Transcranial magnetic stimulation (TMS) is a proven intervention for treatment-resistant depression in younger adults but the efficacy of TMS to treat depressed older adults is still unclear. This review provides an updated view on the efficacy of TMS treatment for GD, discusses methodological differences between trials in TMS application, and explores avenues for optimization of TMS treatment in the context of the ageing brain. METHODS A systematic review was conducted to identify published literature on the antidepressant efficacy of TMS for GD. Databases PubMed, Embase, and PsycINFO were searched for English language articles in peer-reviewed journals in March 2021. RESULTS Seven randomized controlled trials (RCTs) (total n = 260, active n = 148, control n = 112) and seven uncontrolled trials (total n = 160) were included. Overall, we found substantial variability in the clinical response, ranging from 6.7% to 54.3%. CONCLUSIONS The reviewed literature highlights large heterogeneity among studies both in terms of the employed TMS dosage and the observed clinical efficacy. This highlights the need for optimizing TMS dosage by recognizing the unique clinical features of GD. We showcase a set of novel approaches for the optimization of the TMS protocol for depression and discuss the possibility for a standardized TMS protocol tailored for the treatment of GD.
Collapse
Affiliation(s)
- Davide Cappon
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Tim den Boer
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Caleb Jordan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Wanting Yu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Eran Metzger
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Guttmann Institut, Spain
| |
Collapse
|
217
|
Schwippel T, Plewnia C. [Non-Invasive Brain Stimulation in Psychiatric Disorders]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:63-79. [PMID: 35081645 DOI: 10.1055/a-1680-7075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Based on neurophysiological findings, non-invasive brain stimulation methods offer an integrative treatment approach for mental disorders. Some of the stimulation methods have already been extensively studied for specific psychiatric indications and have become established as reasonable treatment option. For example, transcranial magnetic stimulation (TMS) for the treatment of refractory depression received approval from the Food and Drug Administration (FDA) in the United States in 2008. However, in Europe and especially in Germany, TMS is not widely offered even in a university setting. The following article describes the available technologies and their biological mechanisms of action, outlines the clinical indication and application of TMS, and summarizes the clinical evidence. The article is based on recently published guidelines for the therapeutic use of non-invasive brain stimulation 1 2 3.
Collapse
|
218
|
McNerney MW, Heath A, Narayanan S, Yesavage J. Repetitive Transcranial Magnetic Stimulation Improves Brain-Derived Neurotrophic Factor and Cholinergic Signaling in the 3xTgAD Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:499-507. [PMID: 35068462 PMCID: PMC9028616 DOI: 10.3233/jad-215361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Alzheimer’s disease (AD) is a debilitating disorder involving the loss of plasticity and cholinergic neurons in the cortex. Pharmaceutical treatments are limited in their efficacy, but brain stimulation is emerging as a treatment for diseases of cognition. More research is needed to determine the biochemical mechanisms and treatment efficacy of this technique. Objective: We aimed to determine if forebrain repetitive transcranial magnetic stimulation can improve cortical BDNF gene expression and cholinergic signaling in the 3xTgAD mouse model of AD. Methods: Both B6 wild type mice and 3xTgAD mice aged 12 months were given daily treatment sessions for 14 days or twice weekly for 6 weeks. Following treatment, brain tissue was extracted for immunological stains for plaque load, as well as biochemical analysis for BDNF gene expression and cholinergic signaling via acetylcholinesterase and choline acetyltransferase ELISA assays. Results: For the 3xTgAD mice, both 14 days and 6 weeks treatment regimens resulted in an increase in BDNF gene expression relative to sham treatment, with a larger increase in the 6-week group. Acetylcholinesterase activity also increased for both treatments in 3xTgAD mice. The B6 mice only had an increase in BDNF gene expression for the 6-week group. Conclusion: Brain stimulation is a possible non-invasive and nonpharmaceutical treatment option for AD as it improves both plasticity markers and cholinergic signaling in an AD mouse model.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alesha Heath
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sindhu Narayanan
- Medical Anthropology and Global Health, University of Washington, Seattle, WA, USA
| | - Jerome Yesavage
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
219
|
Cantù F, Schiena G, Sciortino D, Di Consoli L, Delvecchio G, Maggioni E, Brambilla P. Use of 30-Hz Accelerated iTBS in Drug-Resistant Unipolar and Bipolar Depression in a Public Healthcare Setting: A Case Series. Front Psychiatry 2022; 12:798847. [PMID: 35095614 PMCID: PMC8790145 DOI: 10.3389/fpsyt.2021.798847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Depressive episodes, especially when resistant to pharmacotherapy, are a hard challenge to face for clinicians and a leading cause of disability worldwide. Neuromodulation has emerged as a potential therapeutic option for treatment-resistant depression (TRD), in particular transcranial magnetic stimulation (TMS). In this article, we present a case series of six patients who received TMS with an accelerated intermittent theta-burst stimulation (iTBS) protocol in a public healthcare setting. Methods: We enrolled a total number of six participants, affected by a treatment-resistant depressive episode, in either Major Depressive Disorder (MDD) or Bipolar Disorder (BD). Patients underwent an accelerated iTBS protocol, targeted to the left dorsolateral prefrontal cortex (DLPFC), 3-week-long, with a total of 6 days of overall stimulation. On each stimulation day, the participants received 3 iTBS sessions, with a 15-min pause between them. Patients were assessed by the Hamilton Rating Scale for Depression (HAM-D), the Montgomery-Asberg Depression Rating Scale (MADRS), the Hamilton Rating Scale for Anxiety (HAM-A), and the Mania Rating Scale (MRS). At baseline (T0), at the end of the second week (T1), and at the end of the cycle of stimulation (T2). Results: The rANOVA (repeated Analysis of Variance) statistics showed no significant effect of time on the rating scale scores, with a slight decrease in MADRS scores and a very slight increase in HAM-A and HAM-D scores. No manic symptoms emerged during the entire protocol. Conclusions: Although accelerated iTBS might be considered a less time-consuming strategy for TMS administration, useful in a public healthcare setting, our results in a real-word six-patient population with TRD did not show a significant effect. Further studies on wider samples are needed to fully elucidate the potential of accelerated iTBS protocols in treatment-resistant depression.
Collapse
Affiliation(s)
- Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giandomenico Schiena
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Sciortino
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorena Di Consoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
220
|
Leaver AM, Gonzalez S, Vasavada M, Kubicki A, Jog M, Wang DJJ, Woods RP, Espinoza R, Gollan J, Parrish T, Narr KL. Modulation of Brain Networks during MR-Compatible Transcranial Direct Current Stimulation. Neuroimage 2022; 250:118874. [PMID: 35017127 PMCID: PMC9623807 DOI: 10.1016/j.neuroimage.2022.118874] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate. Volunteers (n=64) received active tDCS, sham tDCS, and rest (no stimulation), using one of three previously established electrode tDCS montages targeting left dorsolateral prefrontal cortex (DLPFC, n=37), lateral temporoparietal area (LTA, n=16), or superior temporal cortex (STC, n=11). In brain networks where simulated E field was highest in each montage, connectivity with remote nodes decreased during active tDCS. During active DLPFC-tDCS, connectivity decreased between a fronto-parietal network and subgenual ACC, while during LTA-tDCS connectivity decreased between an auditory-somatomotor network and frontal operculum. Active DLPFC-tDCS was also associated with increased connectivity within an orbitofrontal network overlapping subgenual ACC. Irrespective of montage, FC metrics increased in sensorimotor and attention regions during both active and sham tDCS, which may reflect the cognitive-perceptual demands of tDCS. Taken together, these results indicate that tDCS may have both intended and unintended effects on ongoing brain activity, stressing the importance of including sham, stimulation-absent, and active comparators in basic science and clinical trials of tDCS.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, IL, 60611; Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095.
| | - Sara Gonzalez
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Megha Vasavada
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Antoni Kubicki
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Mayank Jog
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Danny J J Wang
- Department of Neurology, University of Southern California, Los Angeles CA 90033
| | - Roger P Woods
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Jacqueline Gollan
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611
| | - Todd Parrish
- Department of Radiology, Northwestern University, Chicago, IL, 60611
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
221
|
Jiao J, Tan L, Zhang Y, Li T, Tang X. Repetitive transcranial magnetic stimulation for insomnia in patients with autism spectrum disorder: Study protocol for a randomized, double-blind, and sham-controlled clinical trial. Front Psychiatry 2022; 13:977341. [PMID: 36245883 PMCID: PMC9554245 DOI: 10.3389/fpsyt.2022.977341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Insomnia is the most common comorbidity in children with autism spectrum disorder (ASD) and seriously affects their rehabilitation and prognosis. Thus, an intervention targeting insomnia in ASD seems warranted. Repetitive transcranial magnetic stimulation (rTMS), a potentially effective treatment for improving sleep quality and optimizing sleep structure, has already been demonstrated to alleviate insomnia symptoms and sleep disturbance in different neurological and neuropsychiatric conditions. This trial aims to investigate the effects of rTMS on insomnia in patients with ASD. METHOD This study is designed to be a double-blind, randomized, and sham-controlled trial with a target sample size of 30 participants (aged 3-13 years) diagnosed with ASD comorbid with insomnia. The intervention phase will comprise 20 sessions of rTMS or sham rTMS applied over the right dorsolateral prefrontal cortex (DLPFC) within four consecutive weeks. The effect of rTMS on insomnia and other symptoms of ASD will be investigated through home-PSG (two consecutive overnights), sleep diary, CSHQ, CARS, ABC, SRS, RBS-R, and metabolomics analysis at baseline and posttreatment. A follow-up assessment 1 month after the intervention will examine the long-term effects. DISCUSSION The results of this study may address an important knowledge gap and may provide evidence for the use of rTMS to treat insomnia in ASD. Furthermore, it will elucidate the potential mechanism and link between sleep disorders and clinical symptoms. CLINICAL TRIAL REGISTRATION The study is ongoing and has been registered at the Chinese Clinical Trial Registry (ChiCTR2100049266) on 28/07/2021.
Collapse
Affiliation(s)
- Jian Jiao
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
222
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
223
|
Effect of transcranial magnetic stimulation on treatment effect and immune function. Saudi J Biol Sci 2022; 29:379-384. [PMID: 35002433 PMCID: PMC8717157 DOI: 10.1016/j.sjbs.2021.08.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
To explore the effect of transcranial stimulation on the therapeutic effect and immune function of patients with post-stroke depression (PSD). Methods Selection in September 2020-April 2021 on the diagnosis of 70 patients with PSD as the research object, 35 patients were randomly divided into control group and intervention group and control group given conventional treatment, the intervention group in the control group on the basis of the application of transcranial magnetic stimulation treatment, compare the curative effect of two groups of patients after the treatment cycle and the effects on the immune function. Results After treatment, the levels of DA, NE, 5-HT in 2 groups were significantly increased, and those in the observation group were significantly higher than those in the control group (P < 0.05). After 8 weeks of treatment, serum Gly content in 2 groups was significantly increased and Glu content was significantly decreased compared with before treatment. Compared with the control group, serum Gly content in observation group was significantly increased and Glu content was significantly decreased after treatment (P < 0.05). After 8 weeks of treatment, the contents of IL-1β, IL-6 and TNF-α in serum of 2 groups were significantly decreased, compared with the control group, the contents of IL-1β, IL-6 and TNF-α in serum of observation group were significantly decreased (P < 0.05); Before treatment, there was no significant difference in PHQ-9 score and MBI score between the two groups (P > 0.05). After 8 weeks of treatment, PHQ-9 score and MBI score in the two groups were better than before treatment, and the observation group was better than the control group (P < 0.05). Conclusion Transcranial magnetic stimulation therapy can not only effectively promote the synthesis and release of monoamine neurotransmitters in patients with post-stroke depression, regulate the inhibitory/excitatory amino acid neurotransmitters, reduce inflammatory response, improve the clinical treatment effect and enhance the immune function of PSD patients, which has clinical application value.
Collapse
|
224
|
Marder KG, Barbour T, Ferber S, Idowu O, Itzkoff A. Psychiatric Applications of Repetitive Transcranial Magnetic Stimulation. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:8-18. [PMID: 35746935 PMCID: PMC9063593 DOI: 10.1176/appi.focus.20210021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an increasingly popular noninvasive brain stimulation modality. In TMS, a pulsed magnetic field is used to noninvasively stimulate a targeted brain region. Repeated stimulation produces lasting changes in brain activity via mechanisms of synaptic plasticity similar to long-term potentiation. Local application of TMS alters activity in distant, functionally connected brain regions, indicating that TMS modulates activity of cortical networks. TMS has been approved by the U.S. Food and Drug Administration for the treatment of major depressive disorder, obsessive-compulsive disorder, and smoking cessation, and a growing evidence base supports its efficacy in the treatment of other neuropsychiatric conditions. TMS is rapidly becoming part of the standard of care for treatment-resistant depression, where it yields response rates of 40%-60%. TMS is generally safe and well tolerated; its most serious risk is seizure, which occurs very rarely. This review aims to familiarize practicing psychiatrists with basic principles of TMS, including target localization, commonly used treatment protocols and their outcomes, and safety and tolerability. Practical considerations, including evaluation and monitoring of patients undergoing TMS, device selection, treatment setting, and insurance reimbursement, are also reviewed.
Collapse
|
225
|
Liu B, Chang H, Peng K, Wang X. An End-to-End Depression Recognition Method Based on EEGNet. Front Psychiatry 2022; 13:864393. [PMID: 35360138 PMCID: PMC8963113 DOI: 10.3389/fpsyt.2022.864393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a common and highly debilitating condition that threatens the health of millions of people. However, current diagnosis of depression relies on questionnaires that are highly correlated with physician experience and hence not completely objective. Electroencephalography (EEG) signals combined with deep learning techniques may be an objective approach to effective diagnosis of MDD. This study proposes an end-to-end deep learning framework for MDD diagnosis based on EEG signals. We used EEG signals from 29 healthy subjects and 24 patients with severe depression to calculate Accuracy, Precision, Recall, F1-Score, and Kappa coefficient, which were 90.98%, 91.27%, 90.59%, and 81.68%, respectively. In addition, we found that these values were highest when happy-neutral face pairs were used as stimuli for detecting depression. Compared with exiting methods for EEG-based MDD classification, ours can maintain stable model performance without re-calibration. The present results suggest that the method is highly accurate for diagnosis of MDD and can be used to develop an automatic plug-and-play EEG-based system for diagnosing depression.
Collapse
Affiliation(s)
- Bo Liu
- Department of Emergency, The Second Hospital of Shandong University, Jinan, China
| | - Hongli Chang
- School of Information Science and Engineering, Southeast University, Nanjing, China
| | - Kang Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuenan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
226
|
Liu Q, Sun H, Hu Y, Wang Q, Zhao Z, Dong D, Shen Y. Intermittent Theta Burst Stimulation vs. High-Frequency Repetitive Transcranial Magnetic Stimulation in the Treatment of Methamphetamine Patients. Front Psychiatry 2022; 13:842947. [PMID: 35558419 PMCID: PMC9087275 DOI: 10.3389/fpsyt.2022.842947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS In this brief report, we compare the effectiveness and safety of intermittent theta burst stimulation (iTBS) and conventional 10 Hz repetitive transcranial magnetic stimulation (rTMS) in patients with methamphetamine use disorder (MAUD). Our study suggests that iTBS would also reduce drug craving in patients with MAUD just as the 10 Hz; thus, there may be no difference in treatment effects between these two methods. METHODS In total twenty male methamphetamine (MA) addicts were randomly assigned to iTBS (n = 10) or 10 Hz (n = 10) groups for 12 treatments. Cue-evoked cravings, anxiety, depression, and withdrawal symptoms were measured at baseline before the first treatment, and post-tests after days 10, 15, and 20. RESULTS The results showed that iTBS and 10 Hz treatment had similar effectiveness in reducing cue-induced craving in male addicts for MA. Both 10 Hz and iTBS improved withdrawal symptoms of patients with MAUD. CONCLUSIONS Intermittent theta burst stimulation may be similar in effectiveness as 10 Hz in treating patients with MAUD. The clinical usefulness of rTMS could be improved substantially because of the increase in its capacity, cost, and accessibility. Importantly, the effectiveness of rTMS in the treatment of patients with MAUD is not yet proven, and should be tested in the large double-blind sham-controlled studies.
Collapse
Affiliation(s)
- Qingming Liu
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China.,School of Teacher Education, Shaoxing University, Shaoxing, China.,School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huimeng Sun
- School of Teacher Education, Shaoxing University, Shaoxing, China
| | - Yitian Hu
- School of Teacher Education, Shaoxing University, Shaoxing, China
| | - Qiongyao Wang
- School of Teacher Education, Shaoxing University, Shaoxing, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Da Dong
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China.,School of Teacher Education, Shaoxing University, Shaoxing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
227
|
Kawabata Y, Imazu SI, Matsumoto K, Toyoda K, Kawano M, Kubo Y, Kinoshita S, Nishizawa Y, Kanazawa T. rTMS Therapy Reduces Hypofrontality in Patients With Depression as Measured by fNIRS. Front Psychiatry 2022; 13:814611. [PMID: 35815029 PMCID: PMC9257165 DOI: 10.3389/fpsyt.2022.814611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/26/2022] [Indexed: 11/15/2022] Open
Abstract
Multichannel functional near-infrared spectroscopy (fNIRS) is a tool used to capture changes in cerebral blood flow. A consistent result for depression is a decrease in blood flow in the frontal cortex leading to hypofrontality, which indicates multidomain functional impairment. Repetitive transcranial magnetic stimulation (rTMS) and elective convulsive therapy (ECT) are alternatives to antidepressant drugs for the treatment of depression but the underlying mechanism is yet to be elucidated. The aim of the current study was to evaluate cerebral blood flow using fNIRS following rTMS treatment in patients with depression. The cerebral blood flow of 15 patients with moderate depression after rTMS treatment was measured using fNIRS. While there was clear hypofrontality during pre-treatment (5 ± 2.5), a notable increase in oxygenated hemoglobin was observed after 30 sessions with rTMS (50 ± 15). This increased blood flow was observed in a wide range of channels in the frontal cortex; however, the centroid values were similar between the treatments. Increased blood flow leads to the activation of neuronal synapses, as noted with other neuromodulation treatments such as electroconvulsive therapy. This study describes the rTMS-induced modulation of blood oxygenation response over the prefrontal cortex in patients with depression, as captured by fNIRS. Future longitudinal studies are needed to assess cerebral blood flow dynamics during rTMS treatment for depression.
Collapse
Affiliation(s)
- Yasuo Kawabata
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin-Ichi Imazu
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Koichi Matsumoto
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Katsunori Toyoda
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Makoto Kawano
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yoichiro Kubo
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shinya Kinoshita
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yoshitaka Nishizawa
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan.,Stanford University, Stanford, CA, United States
| | - Tetsufumi Kanazawa
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
228
|
Li J, Cui L, Li H. Optimal parameter determination of repetitive transcranial magnetic stimulation for treating treatment-resistant depression: A network meta-analysis of randomized controlled trials. Front Psychiatry 2022; 13:1038312. [PMID: 36532172 PMCID: PMC9751374 DOI: 10.3389/fpsyt.2022.1038312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Many studies have shown the efficacy of repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant depression (TRD). However, the choice of different parameters has been a challenging issue. METHODS PubMed, Cochrane, and Embase databases were searched for relevant studies until June 20, 2022. The treatment efficacy was evaluated by the relative risk (RR) using the pairwise test for response and remission rates. Subgroup and sensitivity analyses were conducted to explore the primary outcome differences and to assess the reliability of the results. RESULTS Thirty-seven trials comprising 2120 participants with TRD were included. The more efficacious interventions compared to sham controls included high-frequency left followed by low-frequency right sup-threshold (HFL-LFR-sup-rTMS, RR = 5.29, 95% CI: 1.24-22.50), high-frequency left sup-threshold (HFL-sup-rTMS, RR = 2.97, 95% CI: 1.74-5.05), low-frequency right sup-threshold (LFR-sup-rTMS, RR = 2.72, 95% CI: 1.50-4.90), low-frequency right followed by high-frequency left sup-threshold (LFR-HFL-sup-rTMS, RR = 2.71, 95% CI: 1.62-4.53), and high-frequency left sub-threshold (HFL-sub-rTMS, RR = 1.91, 95% CI: 1.18-3.10) rTMS. The estimated relative ranking of treatments suggested that HFL-LFR-sup-rTMS (84.4%) might be the most efficacious among all rTMS strategies. No treatments showed a lower acceptability than the sham control. LIMITATIONS Subgroup analysis was not conducted to compare the efficacy of rTMS treatment between bipolar and unipolar depression, and small-study effects possibly introduced bias. CONCLUSION Treatment with HFL-LFR-sup-rTMS, HFL-sup-rTMS, LFR-sup-rTMS, LFR-HFL-sup-rTMS, or HFL-sub-rTMS is more efficacious than the sham control. HFL-LFR-sup-rTMS and HFL-sup-rTMS may be the two best among the most efficacious rTMS treatments. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO], identifier [CRD42022334481].
Collapse
Affiliation(s)
- Jinbiao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
229
|
Anatomical and fMRI-network comparison of multiple DLPFC targeting strategies for repetitive transcranial magnetic stimulation treatment of depression. Brain Stimul 2022; 15:63-72. [PMID: 34767967 PMCID: PMC8900427 DOI: 10.1016/j.brs.2021.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The efficacy of repetitive transcranial magnetic stimulation (rTMS) for depression may vary depending on the subregion stimulated within the dorsolateral prefrontal cortex (DLPFC). Clinical TMS typically uses scalp-based landmarks for DLPFC targeting, rather than individualized MRI guidance. OBJECTIVE In rTMS patients, determine the brain systems targeted by multiple DLPFC stimulation rules by computing several surrogate measures: underlying brain targets labeled with connectivity-based atlases, subgenual cingulate anticorrelation strength, and functionally connected networks. METHODS Forty-nine patients in a randomized controlled trial of rTMS therapy for treatment resistant major depression underwent structural and functional MRI. DLPFC rules were applied virtually using MR-image guidance. Underlying cortical regions were labeled, and connectivity with the subgenual cingulate and whole-brain computed. RESULTS Scalp-targeting rules applied post hoc to these MRIs that adjusted for head size, including Beam F3, were comparably precise, successful in directly targeting classical DLPFC and frontal networks, and anticorrelated with the subgenual cingulate. In contrast, all rules involving fixed distances introduced variability in regions and networks targeted. The 5 cm rule targeted a transitional DLPFC region with a different connectivity profile from the adjusted rules. Seed-based connectivity analyses identified multiple regions, such as posterior cingulate and inferior parietal lobe, that warrant further study in order to understand their potential contribution to clinical response. CONCLUSION EEG-based rules consistently targeted DLPFC brain regions with resting-state fMRI features known to be associated with depression response. These results provide a bridge from lab to clinic by enabling clinicians to relate scalp-targeting rules to functionally connected brain systems.
Collapse
|
230
|
Balderston NL, Beer JC, Seok D, Makhoul W, Deng ZD, Girelli T, Teferi M, Smyk N, Jaskir M, Oathes DJ, Sheline YI. Proof of concept study to develop a novel connectivity-based electric-field modelling approach for individualized targeting of transcranial magnetic stimulation treatment. Neuropsychopharmacology 2022; 47:588-598. [PMID: 34321597 PMCID: PMC8674270 DOI: 10.1038/s41386-021-01110-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Resting state functional connectivity (rsFC) offers promise for individualizing stimulation targets for transcranial magnetic stimulation (TMS) treatments. However, current targeting approaches do not account for non-focal TMS effects or large-scale connectivity patterns. To overcome these limitations, we propose a novel targeting optimization approach that combines whole-brain rsFC and electric-field (e-field) modelling to identify single-subject, symptom-specific TMS targets. In this proof of concept study, we recruited 91 anxious misery (AM) patients and 25 controls. We measured depression symptoms (MADRS/HAMD) and recorded rsFC. We used a PCA regression to predict symptoms from rsFC and estimate the parameter vector, for input into our e-field augmented model. We modeled 17 left dlPFC and 7 M1 sites using 24 equally spaced coil orientations. We computed single-subject predicted ΔMADRS/HAMD scores for each site/orientation using the e-field augmented model, which comprises a linear combination of the following elementwise products (1) the estimated connectivity/symptom coefficients, (2) a vectorized e-field model for site/orientation, (3) rsFC matrix, scaled by a proportionality constant. In AM patients, our connectivity-based model predicted a significant decrease depression for sites near BA9, but not M1 for coil orientations perpendicular to the cortical gyrus. In control subjects, no site/orientation combination showed a significant predicted change. These results corroborate previous work suggesting the efficacy of left dlPFC stimulation for depression treatment, and predict better outcomes with individualized targeting. They also suggest that our novel connectivity-based e-field modelling approach may effectively identify potential TMS treatment responders and individualize TMS targeting to maximize the therapeutic impact.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joanne C Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Darsol Seok
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Tommaso Girelli
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Teferi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan Smyk
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Jaskir
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
231
|
Bibliography. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:76-78. [PMID: 35746926 PMCID: PMC9063592 DOI: 10.1176/appi.focus.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
232
|
Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sci 2021; 12:brainsci12010048. [PMID: 35053792 PMCID: PMC8773947 DOI: 10.3390/brainsci12010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) and alcohol use disorder (AUD) are leading causes of disability, and patients are frequently affected by both conditions. This comorbidity is known to confer worse outcomes and greater illness severity. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation method that has demonstrated antidepressant effects. However, the study of rTMS for patients with MDD and commonly associated comorbidities, such as AUD, has been largely overlooked, despite significant overlap in clinical presentation and neurobiological mechanisms. This narrative review aims to highlight the interrelated aspects of the literature on rTMS for MDD and rTMS for AUD. First, we summarize the available evidence on the effectiveness of rTMS for each condition, both most studied through stimulation of the dorsolateral prefrontal cortex (DLPFC). Second, we describe common symptom constructs that can be modulated by rTMS, such as executive dysfunction, that are transdiagnostic across these disorders. Lastly, we describe promising approaches in the personalization and optimization of rTMS that may be applicable to both AUD and MDD. By bridging the gap between research efforts in MDD and AUD, rTMS is well positioned to be developed as a treatment for the many patients who have both conditions concurrently.
Collapse
|
233
|
Mula M, Brodie MJ, de Toffol B, Guekht A, Hecimovic H, Kanemoto K, Kanner AM, Teixeira AL, Wilson SJ. ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia 2021; 63:316-334. [PMID: 34866176 DOI: 10.1111/epi.17140] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
The aim of this document is to provide evidence-based recommendations for the medical treatment of depression in adults with epilepsy. The working group consisted of members of an ad hoc Task Force of the International League Against Epilepsy (ILAE) Commission on Psychiatry, ILAE Executive and the International Bureau for Epilepsy (IBE) representatives. The development of these recommendations is based on a systematic review of studies on the treatment of depression in adults with epilepsy, and a formal adaptation process of existing guidelines and recommendations of treatment of depression outside epilepsy using the ADAPTE process. The systematic review identified 11 studies on drug treatments (788 participants, class of evidence III and IV); 13 studies on psychological treatments (998 participants, class of evidence II, III and IV); and 2 studies comparing sertraline with cognitive behavioral therapy (CBT; 155 participants, class of evidence I and IV). The ADAPTE process identified the World Federation of Societies of Biological Psychiatry guidelines for the biological treatment of unipolar depression as the starting point for the adaptation process. This document focuses on first-line drug treatment, inadequate response to first-line antidepressant treatment, and duration of such treatment and augmentation strategies within the broader context of electroconvulsive therapy, psychological, and other treatments. For mild depressive episodes, psychological interventions are first-line treatments, and where medication is used, selective serotonin reuptake inhibitors (SSRIs) are first-choice medications (Level B). SSRIs remain the first-choice medications (Level B) for moderate to severe depressive episodes; however, in patients who are partially or non-responding to first-line treatment, switching to venlafaxine appears legitimate (Level C). Antidepressant treatment should be maintained for at least 6 months following remission from a first depressive episode but it should be prolonged to 9 months in patients with a history of previous episodes and should continue even longer in severe depression or in cases of residual symptomatology until such symptoms have subsided.
Collapse
Affiliation(s)
- Marco Mula
- Institute of Medical and Biomedical Education, St George's University of London and the Atkinson Morley Regional Neuroscience Centre, St George's University Hospital NHS Foundation Trust, London, UK
| | | | - Bertrand de Toffol
- Department of Neurology and Clinical Neurophysiology, CHU Bretonneau, INSERM U 1253 ibrain, Université de Tours, Tours, France
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry and Pirogov Russian National Research Medical University, Moscow, Russia
| | - Hrvoje Hecimovic
- Neuro Center, Zagreb, Croatia.,Department of Biomedicine, University North, Varaždin, Croatia
| | - Kousuke Kanemoto
- Department of Neuropsychiatry, Aichi Medical University, Nagoya, Japan
| | - Andres M Kanner
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Antonio L Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH Belo Horizonte, Belo Horizonte, Brasil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, The University of Melbourne and Comprehensive Epilepsy Program, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
234
|
Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology 2021; 200:108807. [PMID: 34562442 DOI: 10.1016/j.neuropharm.2021.108807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023]
Abstract
Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.
Collapse
|
235
|
Teng M, Khoo AL, Zhao YJ, Abdin E, Mok YM, Lim BP, Tor PC. Neurostimulation therapies in major depressive disorder: A decision-analytic model. Early Interv Psychiatry 2021; 15:1531-1541. [PMID: 33254283 DOI: 10.1111/eip.13091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
AIM Neurostimulation techniques are effective treatments for major depressive disorders (MDD). However, the optimal sequence of electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) as part of antidepressant treatment algorithm is unclear. We examined the cost-effectiveness of ECT and TMS in MDD. METHODS A decision-analytic model was developed to determine total costs, quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) for 10 strategies. Each strategy comprised four treatment lines with ECT and TMS incorporated as second, third, or fourth line. A scenario analysis that explored the cost-effectiveness of maintenance approach by continuing ECT and TMS after acute treatment was performed. RESULTS In the base case, fourth-line TMS after three preceding trials of antidepressants was least costly at US$ 5523 yielding 1.424 QALYs. Compared with this strategy, fourth-line ECT and third-line TMS followed by ECT were cost-effective with ICERs of US$ 7601 per QALY gained and US$ 11 388 per QALY gained, respectively. In the scenario analysis where continuation treatments of ECT and TMS were provided, third-line TMS followed by ECT was cost-effective, with an ICER of US$ 17 198 per QALY gained. Effectiveness of ECT and cost of managing severe depression were influential parameters affecting the cost-effectiveness results. CONCLUSIONS In acute treatment of MDD, fourth-line ECT was the most cost-effective strategy. In maintenance treatment, the strategy that incorporated third-line TMS and fourth-line ECT was cost-effective. The overall findings confirmed the value of neurostimulation therapies which should be offered early in the process of managing depression.
Collapse
Affiliation(s)
- Monica Teng
- Group Health Informatics, National Healthcare Group, Singapore, Singapore
| | - Ai Leng Khoo
- Group Health Informatics, National Healthcare Group, Singapore, Singapore
| | - Ying Jiao Zhao
- Group Health Informatics, National Healthcare Group, Singapore, Singapore
| | - Edimansyah Abdin
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Yee Ming Mok
- Department of Mood and Anxiety, Institute of Mental Health, Singapore, Singapore
| | - Boon Peng Lim
- Group Health Informatics, National Healthcare Group, Singapore, Singapore
| | - Phern Chern Tor
- Research Division, Institute of Mental Health, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,National University of Singapore, Singapore, Singapore
| |
Collapse
|
236
|
Adjunctive Nonconvulsive Electrotherapy for Patients with Depression: a Systematic Review. Psychiatr Q 2021; 92:1645-1656. [PMID: 34159503 DOI: 10.1007/s11126-021-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
The efficacy and safety of adjunctive nonconvulsive electrotherapy (NET) for patients with depression are undetermined. This systematic review was conducted to examine the efficacy and safety of adjunctive NET for patients with depression. Chinese (WanFang and Chinese Journal Net) and English (PubMed, EMBASE, PsycINFO and the Cochrane Library) databases were systematically searched from their inception until Jan 27, 2021 by three independent investigators. One randomized controlled trial (RCT) with 3 treatment arms (n = 108) and two observational studies (single-group, before-after design, n = 31) were included. In the RCT, the antidepressant efficacy of NET on depression was similar to that of electroconvulsive therapy (ECT) (P > 0.05) but with significantly fewer neurocognitive impairments as measured by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) (P < 0.05). In two observational studies, the 17-item Hamilton Depression Rating Scale (HAMD-17) scores decreased significantly from baseline to post-NET (all Ps < 0.05), without adverse neurocognitive effects. In the RCT, adverse drug reactions (ADRs) were not separately reported among the 3 treatment arms but a similar rate of discontinuation was reported. The currently available limited evidence from 3 studies suggests that NET as an adjunctive treatment may be a safe, well-tolerated, effective therapy for depression without serious neurocognitive impairments.
Collapse
|
237
|
McPartland JC, Lerner MD, Bhat A, Clarkson T, Jack A, Koohsari S, Matuskey D, McQuaid GA, Su WC, Trevisan DA. Looking Back at the Next 40 Years of ASD Neuroscience Research. J Autism Dev Disord 2021; 51:4333-4353. [PMID: 34043128 PMCID: PMC8542594 DOI: 10.1007/s10803-021-05095-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
During the last 40 years, neuroscience has become one of the most central and most productive approaches to investigating autism. In this commentary, we assemble a group of established investigators and trainees to review key advances and anticipated developments in neuroscience research across five modalities most commonly employed in autism research: magnetic resonance imaging, functional near infrared spectroscopy, positron emission tomography, electroencephalography, and transcranial magnetic stimulation. Broadly, neuroscience research has provided important insights into brain systems involved in autism but not yet mechanistic understanding. Methodological advancements are expected to proffer deeper understanding of neural circuitry associated with function and dysfunction during the next 40 years.
Collapse
Affiliation(s)
| | - Matthew D Lerner
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Tessa Clarkson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
238
|
Cabrera LY, Gilbert MMC, McCright AM, Achtyes ED, Bluhm R. Beyond the Cuckoo's Nest: Patient and Public Attitudes about Psychiatric Electroceutical Interventions. Psychiatr Q 2021; 92:1425-1438. [PMID: 33864542 PMCID: PMC8531080 DOI: 10.1007/s11126-021-09916-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
Recent research emphasizes the role of psychiatric electroceutical interventions (PEIs), bioelectronic treatments that employ electrical stimulation to affect and modify brain function, to effectively treat psychiatric disorders. We sought to examine attitudes about three PEIs-electroconvulsive therapy, transcranial magnetic stimulation, and deep brain stimulation-among patients with depression and members of the general public. As part of a larger study to assess different stakeholders' attitudes about PEIs, we conducted semi-structured key informant interviews with 16 individuals living with depression and 16 non-depressive members of the general public. We used a purposive sampling approach to recruit potential participants based on eligibility criteria. We performed qualitative content analysis of interview transcripts. Participants from both groups expressed an overall cautionary attitude towards PEIs, yet there were mixed attitudes in both groups. Patients commonly described electroconvulsive therapy as scary, traumatic, or intense, while members of the general public often referenced the treatment's negative portrayal in One Flew over the Cuckoo's Nest. Patients and the general public saw transcranial magnetic stimulation as a potentially viable option, but in most cases only if medication was not effective. Deep brain stimulation attitudes were predominantly negative among patients and cautionary among public. The overall cautionary attitudes towards PEIs, together with the technological features and social aspects underlying those attitudes, highlight the need for unbiased education to fill the gaps in knowledge and inform perceptions of those who may benefit from these treatments.
Collapse
Affiliation(s)
- Laura Y Cabrera
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Penn State University, University Park, W-319 Millennium Science Complex, State College, PA, 16802, USA. .,Rock Ethics Institute, Penn State University, University Park, State College, PA, USA.
| | | | - Aaron M McCright
- Department of Sociology, College of Social Science, Michigan State University, East Lansing, MI, USA
| | - Eric D Achtyes
- Division of Psychiatry & Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Robyn Bluhm
- Department of Philosophy, College of Arts and Letters, Michigan State University, East Lansing, MI, USA.,Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
239
|
Oliveira JS, Manning MC, Kavanaugh BC. Cognitive Control Deficits in Depression: A Novel Target to Improve Suboptimal Outcomes in Childhood. J Neuropsychiatry Clin Neurosci 2021; 33:307-313. [PMID: 34261346 DOI: 10.1176/appi.neuropsych.20090236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cognitive control deficits are one of three primary endophenotypes in depression, and the enhanced targeting of these deficits in clinical and research work is expected to lead to improved depression outcomes. Cognitive control is a set of self-regulatory processes responsible for goal-oriented behavior that predicts clinical/functional outcomes across the spectrum of brain-based disorders. In depression, cognitive control deficits emerge by the first depressive episode, persist during symptom remission, and worsen over the course of depression. In addition, the presence of these deficits predicts a poor response to evidence-based depression treatments, including psychotherapy and antidepressant medication. This is particularly relevant to childhood depression, as 1%-2% of children are diagnosed with depression, yet there are very limited evidence-based treatment options. Cognitive control deficits may be a previously underaddressed factor contributing to poor outcomes, although there remains a dearth of research examining the topic. The investigators describe the prior literature on cognitive control in depression to argue for the need for increased focus on this endophenotype. They then describe cognitive control-focused clinical and research avenues that would likely lead to improved treatments and outcomes for this historically undertreated aspect of childhood depression.
Collapse
Affiliation(s)
- Jane S Oliveira
- Bradley Hospital, East Providence, R.I. (Oliveira, Kavanaugh); Alpert Medical School of Brown University, Providence, R.I. (Oliveira, Kavanaugh); and Department of Applied Psychology, Northeastern University, Boston (Manning)
| | - Madeline C Manning
- Bradley Hospital, East Providence, R.I. (Oliveira, Kavanaugh); Alpert Medical School of Brown University, Providence, R.I. (Oliveira, Kavanaugh); and Department of Applied Psychology, Northeastern University, Boston (Manning)
| | - Brian C Kavanaugh
- Bradley Hospital, East Providence, R.I. (Oliveira, Kavanaugh); Alpert Medical School of Brown University, Providence, R.I. (Oliveira, Kavanaugh); and Department of Applied Psychology, Northeastern University, Boston (Manning)
| |
Collapse
|
240
|
Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biol Psychiatry 2021; 90:689-700. [PMID: 32800379 DOI: 10.1016/j.biopsych.2020.05.033] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an effective treatment for depression but is limited in that the optimal therapeutic target remains unknown. Early TMS trials lacked a focal target and thus positioned the TMS coil over the prefrontal cortex using scalp measurements. Over time, it became clear that this method leads to variation in the stimulation site and that this could contribute to heterogeneity in antidepressant response. Newer methods allow for precise positioning of the TMS coil over a specific brain location, but leveraging these precise methods requires a more precise therapeutic target. We review how neuroimaging is being used to identify a more focal therapeutic target for depression. We highlight recent studies showing that more effective TMS targets in the frontal cortex are functionally connected to deep limbic regions such as the subgenual cingulate cortex. We review how connectivity might be used to identify an optimal TMS target for use in all patients and potentially even a personalized target for each individual patient. We address the clinical implications of this emerging field and highlight critical questions for future research.
Collapse
|
241
|
Vergallito A, Gallucci A, Pisoni A, Punzi M, Caselli G, Ruggiero GM, Sassaroli S, Romero Lauro LJ. Effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders: a meta-analysis of sham or behaviour-controlled studies. J Psychiatry Neurosci 2021; 46:E592-E614. [PMID: 34753789 PMCID: PMC8580831 DOI: 10.1503/jpn.210050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The possibility of using noninvasive brain stimulation to treat mental disorders has received considerable attention recently. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are considered to be effective treatments for depressive symptoms. However, no treatment recommendation is currently available for anxiety disorders, suggesting that evidence is still limited. We conducted a systematic review of the literature and a quantitative analysis of the effectiveness of rTMS and tDCS in the treatment of anxiety disorders. METHODS Following PRISMA guidelines, we screened 3 electronic databases up to the end of February 2020 for English-language, peer-reviewed articles that included the following: a clinical sample of patients with an anxiety disorder, the use of a noninvasive brain stimulation technique, the inclusion of a control condition, and pre/post scores on a validated questionnaire that measured symptoms of anxiety. RESULTS Eleven papers met the inclusion criteria, comprising 154 participants assigned to a stimulation condition and 164 to a sham or control group. We calculated Hedge's g for scores on disorder-specific and general anxiety questionnaires before and after treatment to determine effect size, and we conducted 2 independent random-effects meta-analyses. Considering the well-known comorbidity between anxiety and depression, we ran a third meta-analysis analyzing outcomes for depression scores. Results showed a significant effect of noninvasive brain stimulation in reducing scores on disorder-specific and general anxiety questionnaires, as well as depressive symptoms, in the real stimulation compared to the control condition. LIMITATIONS Few studies met the inclusion criteria; more evidence is needed to strengthen conclusions about the effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders. CONCLUSION Our findings showed that noninvasive brain stimulation reduced anxiety and depression scores compared to control conditions, suggesting that it can alleviate clinical symptoms in patients with anxiety disorders.
Collapse
Affiliation(s)
| | | | - Alberto Pisoni
- From the Department of Psychology, University of Milano Bicocca, Milan, Italy (Vergallito, Pisoni, Punzi, Romero Lauro); the Neuromi, Milan, Italy (Vergallito, Gallucci, Pisoni, Romero Lauro); the Department of Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (Gallucci); the Studi Cognitivi, Milan, Italy (Caselli, Ruggiero, Sassaroli); and the Faculty of Psychology, Sigmund Freud University, Milan, Italy (Caseli, Ruggiero, Sassaroli)
| | | | | | | | | | | |
Collapse
|
242
|
Pallanti S, Marras A, Dickson SL, Adan RA, Vieta E, Dell Osso B, Arango C, Fusar-Poli P, Soriano-Mas C, Carmi L, Meyer Lindenberg A, Zohar J. Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty. Eur Neuropsychopharmacol 2021; 52:72-83. [PMID: 34348181 DOI: 10.1016/j.euroneuro.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques and in particular, repetitive Transcranial Magnetic Stimulation (rTMS), are developing beyond mere clinical application. Although originally purposed for the treatment of resistant neuropsychiatric disorders, NIBS is also contributing to a deeper understanding of psychiatric disorders. rTMS is also changing the model of the disorder itself, from "mental" to one of neural connectivity. TMS allows the assessment of brain circuit excitability and eventually, of plastic changes affecting these circuits. While a clinical translational approach is, at the present time, the most adequate to meet the dimensional-circuit base model of the disorder, it refines the standard categorical classification of psychiatric disorders. The discovery of the fundamental importance of the balance between neuroplasticity and inflammation is also now explored through neuro-modulation findings consistently with the evidence of anti-inflammatory actions of the magnetic pulses. rTMS may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity of brain-induced electric field. Of particular interest, yet still unclear, is how the relatively unspecific nature of TMS stimulation may lead to specific neuronal reorganization, as well as a definition of the TMS-triggered reorganization of functional brain modules, raising attention on the importance of the active participation of the patient to the treatment.. Configuration and state of consciousness of the subject have made subjective experience under treatment regain importance in the neuro-scientific Psychiatry based on the requirement of United States National Institute of Health (NIH) and the substantial importance of the consciousness state in the efficacy of the TMS treatment. By focusing on the subjective experience, a renaissance of the phenomenology offers Psychiatry an opportunity to become proficient and to distinguish itself from other disciplines. For all these reasons, TMS should be included in the cluster of the sub-specialties as a new "Super-Specialty" and an appropriate training course has to be inaugurated. Psychiatrists are nowadays multi-specialists, moving from a specialty to another, vs super-specialist. The cultivation of a properly trained cohort of TMS psychiatrists will better meet the challenges of treatment-resistant psychiatric conditions (disorders of connectivity), through appropriate and ethical practice, meanwhile facilitating an informed development and integration of additional emerging neuro-modulation techniques. The aim of this consensus paper is to underline the interdisciplinary nature of NIBS, that also encompasses the subjective experience and to point out the necessity of a neuroscience-applied approach to NIBS in the context of the European College of Neuro-psychopharmacology (ECNP).
Collapse
Affiliation(s)
- Stefano Pallanti
- Istituto di Neuroscienze, Florence, IT; Albert Einstein College of Medicine and Montefiore Medical Center, NY, USA.
| | - Anna Marras
- Istituto di Neuroscienze, Florence, IT; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, IT
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Roger Ah Adan
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Bernardo Dell Osso
- Ospedale Sacco-Polo Universitario, Psychiatric Clinic, Milano; University of Milano, IT
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid 28009, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan. Aldo Ravelli' Research Center for Neurotechnology and Experimental Brain Therapeutics, Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Health Sciences, University of Milan, Milan, Italy; Department of Psychiatry and Brain and Behavioral Sciences, Stanford University, California, USA. of Pavia, Pavia, Italy
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute-IDIBELL, Psychiatry Service, Bellvitge University Hospital and CIBERSAM,Barcelona, Spain. Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Lior Carmi
- Academic Laboratory Manager, The National Institute of PTSD, Chaim Sheba Medical Center, School Of Psychological sciences, Tel Aviv University, Israel
| | - Andreas Meyer Lindenberg
- Central Institute of Mental Health, Mannheim; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Chair of Psychiatry and Psychotherapy, University of Heidelberg, Germany
| | - Joseph Zohar
- Sheba Medical Center at Tel Hashomer, Israel, Sackler Faculty of Medicine, Tel Aviv
| |
Collapse
|
243
|
Blumberger DM, Vila-Rodriguez F, Wang W, Knyahnytska Y, Butterfield M, Noda Y, Yariv S, Isserles M, Voineskos D, Ainsworth NJ, Kennedy SH, Lam RW, Daskalakis ZJ, Downar J. A randomized sham controlled comparison of once vs twice-daily intermittent theta burst stimulation in depression: A Canadian rTMS treatment and biomarker network in depression (CARTBIND) study. Brain Stimul 2021; 14:1447-1455. [PMID: 34560319 DOI: 10.1016/j.brs.2021.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a newer form of repetitive transcranial magnetic stimulation (rTMS) for patients with treatment resistant depression (TRD). Applying multiple daily iTBS sessions may enable patients to achieve remission more rapidly. OBJECTIVE We compared the efficacy and tolerability of a twice-daily versus once-daily iTBS protocol in patients with TRD. We hypothesized that twice-daily iTBS would result in a greater improvement in depression scores compared to once-daily iTBS. METHODS 208 participants (131 females) with TRD were randomized to receive either iTBS (600 pulses) delivered twice-daily with a 54-min interval between treatments or once-daily (1200 pulses) with 1 sham treatment with the same interval between treatments, to ensure equal levels of daily therapeutic contact and blinding of patients and raters. The primary outcome measure was change in depression scores on the Hamilton Rating Scale for Depression (HRSD-17) after 10 days of treatment and 30 days of treatments. RESULTS HRSD-17 scores improved in both the twice-daily and once-daily iTBS groups; however, these improvements did not significantly differ between the two groups at either the 10-day or 30-day timepoints. Response and remission rates were low (<10%) in both groups after 10 days and consistent with prior reports at 30 days; these rates did not differ between the treatment groups. CONCLUSIONS These results suggest that twice-daily iTBS does not accelerate response to iTBS and is not different from once-daily treatment in terms of improving depressive symptoms in patients with TRD. Clinicaltrials.gov ID: NCT02729792 (https://clinicaltrials.gov/ct2/show/NCT02729792).
Collapse
Affiliation(s)
- Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J1H4, Canada; Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada.
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Wei Wang
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J1H4, Canada; College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J1H4, Canada; Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael Butterfield
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shahak Yariv
- Department of Psychiary, Emek Medical Center General Hospital, Afula, 1834111, Israel; Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, 3525433, Israel
| | - Moshe Isserles
- The Jerusalem Center for Mental Health, Jerusalem, 91060, Israel
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J1H4, Canada; Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Nicholas J Ainsworth
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Sidney H Kennedy
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada; St. Michaels Hospital, Unity Health, Toronto, ON, M5B 1W8, Canada; Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, M5T 0S8, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, California, USA, 92093
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada; Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, M5T 0S8, Canada
| |
Collapse
|
244
|
Modak A, Fitzgerald PB. Personalising transcranial magnetic stimulation for depression using neuroimaging: A systematic review. World J Biol Psychiatry 2021; 22:647-669. [PMID: 33779486 DOI: 10.1080/15622975.2021.1907710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) is a well-established and effective treatment for depression, though response rates are suboptimal. Personalising TMS for depression with neuroimaging can take into account inter-individual differences in anatomical and electrophysiological characteristics; and thereby provide a potentially more efficacious form of treatment. The current systematic review aimed to critically appraise the literature relating to personalising TMS for depression with neuroimaging. METHODS PubMed, PsycINFO and Embase databases were used to identify relevant literature published up to November 2020. RESULTS A total of 37 studies were included in the review. Across these studies, a total of 1451 patients with depression received TMS that was personalised using neuroimaging. The majority of the studies used structural or functional neuroimaging to personalise treatment target (n = 30), primarily through neuronavigation methodologies. Fewer studies used electroencephalography to personalise treatment frequency or stimulus timing (n = 7). Only 6 studies directly compared neuroimaging-personalised TMS to standard TMS. CONCLUSIONS The findings from this review suggest that personalising TMS with neuroimaging may be more effective in the treatment of depression compared to standard TMS. Further research is required to directly compare neuroimaging-personalised TMS with standard TMS, and to identify the optimal parameters for treatment personalisation.
Collapse
Affiliation(s)
- Anish Modak
- Alfred Mental and Addiction Health, Alfred Health, Melbourne, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Melbourne, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Melbourne, Australia
| |
Collapse
|
245
|
Cotovio G, Oliveira-Maia AJ, Paul C, Viana FF, Rodrigues da Silva D, Seybert C, Stern AP, Pascual-Leone A, Press DZ. Reply: Variability in motor threshold. Brain Stimul 2021; 14:1523-1524. [PMID: 34619388 DOI: 10.1016/j.brs.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Carter Paul
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco Faro Viana
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Carolina Seybert
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Adam P Stern
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
246
|
Wang A, Nikolin S, Moffa AH, Loo CK, Martin DM. A novel approach for targeting the left dorsolateral prefrontal cortex for transcranial magnetic stimulation using a cognitive task. Exp Brain Res 2021; 240:71-80. [PMID: 34625838 DOI: 10.1007/s00221-021-06233-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has the potential to be developed as a novel treatment for cognitive dysfunction. However, current methods of targeting rTMS for cognition fail to consider inter-individual functional variability. This study explored the use of a cognitive task to individualise the target site for rTMS administered to the left dorsolateral prefrontal cortex (L-DLPFC). Twenty-five healthy participants were enrolled in a sham-controlled, crossover study. Participants performed a random letter generation task under the following conditions: no stimulation, sham and active 'online' rTMS applied to F3 (International 10-20 System) and four standardised surrounding sites. Across all sites combined, active 'online' rTMS was associated with significantly reduced performance compared to sham rTMS for unique trigrams (p = 0.012), but not for unique digrams (p > 0.05). Using a novel localisation methodology based on performance outcomes from both measures, a single optimal individualised site was identified for 92% [n = 23] of participants. At the individualised site, performance was significantly poorer compared to a common standard site (F3) and both control conditions (ps < 0.01). The current results suggest that this localisation methodology using a cognitive task could be used to individualise the rTMS target site at the L-DLPFC for modulating and potentially enhancing cognitive functioning.
Collapse
Affiliation(s)
- Ashley Wang
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia
| | - Adriano H Moffa
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia.,St George Hospital, Sydney, NSW, Australia
| | - Donel M Martin
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia. .,Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia.
| |
Collapse
|
247
|
Seybert C, Cotovio G, Grácio J, Oliveira-Maia AJ. Future Perspectives From a Case Report of Transcranial Magnetic Stimulation, Cognitive Behavioral Therapy, and Psychopharmacological Treatment for Post-traumatic Stress Disorder. Front Psychol 2021; 12:728130. [PMID: 34589030 PMCID: PMC8473870 DOI: 10.3389/fpsyg.2021.728130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Carolina Seybert
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal.,NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Jaime Grácio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal.,NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal.,NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
248
|
Singh A, Erwin-Grabner T, Goya-Maldonado R, Antal A. Transcranial Magnetic and Direct Current Stimulation in the Treatment of Depression: Basic Mechanisms and Challenges of Two Commonly Used Brain Stimulation Methods in Interventional Psychiatry. Neuropsychobiology 2021; 79:397-407. [PMID: 31487716 DOI: 10.1159/000502149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Noninvasive neuromodulation, including repetitive trans-cranial magnetic stimulation (rTMS) and direct current stimulation (tDCS), provides researchers and health care professionals with the ability to gain unique insights into brain functions and treat several neurological and psychiatric conditions. Undeniably, the number of published research and clinical papers on this topic is increasing exponentially. In parallel, several methodological and scientific caveats have emerged in the transcranial stimulation field; these include less robust and reliable effects as well as contradictory clinical findings. These inconsistencies are maybe due to the fact that research exploring the relationship between the methodological aspects and clinical efficacy of rTMS and tDCS is far from conclusive. Hence, additional work is needed to understand the mechanisms underlying the effects of magnetic stimulation and low-intensity transcranial electrical stimulation (TES) in order to optimize dosing, methodological designs, and safety aspects.
Collapse
Affiliation(s)
- Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany, .,Institute for Medical Psychology, Medical Faculty, Otto-v.-Guericke University Magdeburg, Magdeburg, Germany,
| |
Collapse
|
249
|
Fukuda AM, Kang JWD, Gobin AP, Tirrell E, Kokdere F, Carpenter LL. Effects of transcranial magnetic stimulation on anhedonia in treatment resistant major depressive disorder. Brain Behav 2021; 11:e2329. [PMID: 34453491 PMCID: PMC8442591 DOI: 10.1002/brb3.2329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anhedonia is one of the defining features of depression but it remains difficult to target and treat. Transcranial magnetic stimulation (TMS) is a proven treatment for depression, but its effects on anhedonia and whether anhedonia can be used as a predictive biomarker of response is not well known. METHODS Snaith-Hamilton Pleasure Scale was administered to patients with depression before and after a standard course of TMS in a naturalistic outpatient setting. RESULTS 144 patients were analyzed. There was an overall significant improvement in anhedonia from pre- to post-treatment (7.69 ± 3.88 vs. 2.96 ± 3.45; p < .001). Significant correlations between improvements in anhedonia and other depressive symptoms were present (r = 0.55, p < .001). Logistic regression revealed that baseline anhedonia severity was not a significant predictor of clinical outcome. CONCLUSION This is the first large, naturalistic study examining the effects of standard, non-research TMS on anhedonia. Among depressed patients, TMS resulted in significant improvements in anhedonia. Patients with severe baseline anhedonia had an equal chance of achieving clinical response/remission. Patients with anhedonia should not be excluded from treatment if they are safe for outpatient care and otherwise appropriate candidates for treatment.
Collapse
Affiliation(s)
- Andrew M Fukuda
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jee Won Diane Kang
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA
| | - Asi Polly Gobin
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA
| | - Eric Tirrell
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA
| | - Fatih Kokdere
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA
| | - Linda L Carpenter
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, Providence, Rhode Island, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
250
|
Keller M, Zweerings J, Klasen M, Zvyagintsev M, Iglesias J, Mendoza Quiñones R, Mathiak K. fMRI Neurofeedback-Enhanced Cognitive Reappraisal Training in Depression: A Double-Blind Comparison of Left and Right vlPFC Regulation. Front Psychiatry 2021; 12:715898. [PMID: 34497546 PMCID: PMC8419460 DOI: 10.3389/fpsyt.2021.715898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Affective disorders are associated with maladaptive emotion regulation strategies. In particular, the left more than the right ventrolateral prefrontal cortex (vlPFC) may insufficiently regulate emotion processing, e.g., in the amygdala. A double-blind cross-over study investigated NF-supported cognitive reappraisal training in major depression (n = 42) and age- and gender-matched controls (n = 39). In a randomized order, participants trained to upregulate either the left or the right vlPFC during cognitive reappraisal of negative images on two separate days. We wanted to confirm regional specific NF effects with improved learning for left compared to right vlPFC (ClinicalTrials.gov NCT03183947). Brain responses and connectivity were studied with respect to training progress, gender, and clinical outcomes in a 4-week follow-up. Increase of vlPFC activity was stronger after NF training from the left- than the right-hemispheric ROI. This regional-specific NF effect during cognitive reappraisal was present across patients with depression and controls and supports a central role of the left vlPFC for cognitive reappraisal. Further, the activity in the left target region was associated with increased use of cognitive reappraisal strategies (r = 0.48). In the 4-week follow-up, 75% of patients with depression reported a successful application of learned strategies in everyday life and 55% a clinically meaningful symptom improvement suggesting clinical usability.
Collapse
Affiliation(s)
- Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Training Centre for Medical Education and Patient Safety—AIXTRA, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jorge Iglesias
- Department of Cognitive Neuroscience, Cuban Center for Neuroscience, Havana, Cuba
| | | | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Research Center Jülich, Jülich, Germany
| |
Collapse
|