2451
|
Wang M, Hsieh CY, Wang J, Wang D, Weng G, Shen C, Yao X, Bing Z, Li H, Cao D, Hou T. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. J Med Chem 2022; 65:9478-9492. [PMID: 35713420 DOI: 10.1021/acs.jmedchem.2c00732] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deep learning (DL)-based de novo molecular design has recently gained considerable traction. Many DL-based generative models have been successfully developed to design novel molecules, but most of them are ligand-centric and the role of the 3D geometries of target binding pockets in molecular generation has not been well-exploited. Here, we proposed a new 3D-based generative model called RELATION. In the RELATION model, the BiTL algorithm was specifically designed to extract and transfer the desired geometric features of the protein-ligand complexes to a latent space for generation. The pharmacophore conditioning and docking-based Bayesian sampling were applied to efficiently navigate the vast chemical space for the design of molecules with desired geometric properties and pharmacophore features. As a proof of concept, the RELATION model was used to design inhibitors for two targets, AKT1 and CDK2. The calculation results demonstrated that the RELATION model could efficiently generate novel molecules with favorable binding affinity and pharmacophore features.
Collapse
Affiliation(s)
- Mingyang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Chang-Yu Hsieh
- Tencent, Tencent Quantum Lab, Shenzhen 518057, Guangdong, P. R. China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Dong Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Gaoqi Weng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery Macau Institute for Applied Research in Medicine and Health State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macau, P. R. China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
2452
|
Stabilization of CDK6 by ribosomal protein uS7, a target protein of the natural product fucoxanthinol. Commun Biol 2022; 5:564. [PMID: 35681048 PMCID: PMC9184650 DOI: 10.1038/s42003-022-03522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) regulate the cell cycle, which is important for cell proliferation and development. Cyclins bind to and activate CDKs, which then drive the cell cycle. The expression of cyclins periodically changes throughout the cell cycle, while that of CDKs remains constant. To elucidate the mechanisms underlying the constant expression of CDKs, we search for compounds that alter their expression and discover that the natural product fucoxanthinol downregulates CDK2, 4, and 6 expression. We then develop a method to immobilize a compound with a hydroxyl group onto FG beads® and identify human ribosomal protein uS7 (also known as ribosomal protein S5) as the major fucoxanthinol-binding protein using the beads and mass spectrometry. The knockdown of uS7 induces G1 cell cycle arrest with the downregulation of CDK6 in colon cancer cells. CDK6, but not CDK2 or CDK4, is degraded by the depletion of uS7, and we furthermore find that uS7 directly binds to CDK6. Fucoxanthinol decreases uS7 at the protein level in colon cancer cells. By identifying the binding proteins of a natural product, the present study reveals that ribosomal protein uS7 may contribute to the constant expression of CDK6 via a direct interaction. The natural product fucoxanthinol causes G1 arrest through decreasing the levels of ribosomal protein uS7, which directly binds and stabilises cyclin-dependent kinase 6.
Collapse
|
2453
|
Ince Yardimci A, Istifli ES, Acikbas Y, Liman R, Yagmucukardes N, Yilmaz S, Ciğerci İH. Synthesis and characterization of single-walled carbon nanotube: Cyto-genotoxicity in Allium cepa root tips and molecular docking studies. Microsc Res Tech 2022; 85:3193-3206. [PMID: 35678501 DOI: 10.1002/jemt.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Herein, single-walled carbon nanotubes (SWCNTs) were synthesized by the thermal chemical vapor deposition (CVD) method, and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy, dynamic light scattering (DLS), and thermo-gravimetric analysis (TGA). The results indicated that obtained nanotubes were SWCNTs with high crystallinity and their average diameter was 10.15 ± 3 nm. Allium cepa ana-telophase and comet assays on the root meristem were employed to evaluate the cytotoxic and genotoxic effects of SWCNTs by examining mitotic phases, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage. A. cepa root tip cells were exposed to SWCNTs at concentrations of 12.5, 25, 50, and 100 μg/ml for 4 h. Distilled water and methyl methanesulfonate (MMS, 10 μg/ml) were used as the negative and positive control groups, respectively. It was observed that MIs decreased statistically significantly for all applied doses. Besides, CAs such as chromosome laggards, disturbed anaphase-telophase, stickiness and bridges and also DNA damage increased in the presence of SWCNTs in a concentration-dependent manner. In the molecular docking study, the SWCNT were found to be a strong DNA major groove binder showing an energetically very favorable binding free energy of -21.27 kcal/mol. Furthermore, the SWCNT interacted effectively with the nucleotides on both strands of DNA primarily via hydrophobic π and electrostatic interactions. As a result, cytotoxic and genotoxic effects of SWCNTs in A. cepa root meristematic cells which is a reliable system for assessment of nanoparticle toxicology were demonstrated in this study.
Collapse
Affiliation(s)
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, Usak, Turkey
| | - Nesli Yagmucukardes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Hakkı Ciğerci
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
2454
|
Ma DB, Liu XY, Jia H, Zhang Y, Jiang Q, Sun H, Li X, Sun F, Chai Y, Feng F, Liu L. A Novel Small-Molecule Inhibitor of SREBP-1 Based on Natural Product Monomers Upregulates the Sensitivity of Lung Squamous Cell Carcinoma Cells to Antitumor Drugs. Front Pharmacol 2022; 13:895744. [PMID: 35662712 PMCID: PMC9157598 DOI: 10.3389/fphar.2022.895744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays important roles in modulating the proliferation, metastasis, or resistance to antitumor agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma’s inhibitor of SREBP-1), based on natural product monomers, was identified by screening the database of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of SREBP-1 and provided additional options for the treatment of LUSC.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Xing-Yu Liu
- Department of General Internal Medicine, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiyu Jiang
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fan Feng
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Liu
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2455
|
Qu T, He S, Ni C, Wu Y, Xu Z, Chen ML, Li H, Cheng Y, Wen L. In Vitro Anti-Inflammatory Activity of Three Peptides Derived from the Byproduct of Rice Processing. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:172-180. [PMID: 35449430 DOI: 10.1007/s11130-022-00963-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is a contributing factor to the initiation and progression of many diseases, and some food-derived biofunctional peptides show high anti-inflammatory activity. In our previous study, we demonstrated that peptides derived from trypsin hydrolysis of rice protein show good immunological activity. In the present study, proteins of broken rice were extracted and identified by macroporous resin fractionation and liquid chromatography/tandem mass spectrometry (LC-MS/MS). Subsequently, a bioinformatics prediction and in silico simulation approach was used to screen for peptides showing anti-inflammatory activity, including inhibition of the production of nitric oxide and proinflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) by lipopolysaccharide-stimulated RAW264.7 mice macrophages. Three peptides (DNIQGITKPAIR, IAFKTNPNSMVSHIAGK, and IGVAMDYSASSKR) that demonstrated the highest binding affinity were synthesized, and their in vitro anti-inflammatory activity was investigated. This is the first study that integrates LC-MS/MS identification and bioinformatics prediction for reporting the anti-inflammatory activity of anti-inflammatory peptides derived from broken rice protein. The study findings revealed that the peptides derived from the byproduct of rice milling could be potentially used as natural anti-inflammatory alternativities.
Collapse
Affiliation(s)
- Tingmin Qu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shuwen He
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ce Ni
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ying Wu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Mao-Long Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Honghui Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Li Wen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| |
Collapse
|
2456
|
Bai X, Ke J, Qiu X, Liu H, Ji Y, Chen J. Ethylenediamine-β-cyclodextrin modified graphene oxide nanocomposite membranes for highly efficient chiral separation of tryptophan and propranolol enantiomers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2457
|
Parvez MK, Al-Dosari MS, Abdelwahid MAS, Alqahtani AS, Alanzi AR. Novel anti-hepatitis B virus-active catechin and epicatechin from Rhus tripartita. Exp Ther Med 2022; 23:398. [PMID: 35619632 PMCID: PMC9115632 DOI: 10.3892/etm.2022.11325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022] Open
Abstract
Bioactive natural or phytoproducts have emerged as a potential source of antiviral agents. Of the Rhus spp., R. coriaria and R. succedanea have been reported for their antiviral activities against hepatitis B virus (HBV), while the anti-HBV efficacy of R. tripartita has remained elusive. In the present study, the anti-HBV activities of R. tripartita-derived novel catechin [3,5,13,14-flavantetrol-catechin or rhuspartin (RPT)] and epicatechin-3-O-rhamnoside (ECR), were assessed using the HBV-reporter cell line HepG2.2.15. RPT and ECR proved to efficiently inhibit HBV surface antigen (HBsAg) synthesis by 68.8 and 71.3%, respectively, and HBV pre-core antigen (HBeAg) production by 62.3 and 71.2%, respectively, after 5 days of treatment. Of note, RPT had a lower anti-HBV activity than ECR. In comparison, the reference drug lamivudine (LAM) inhibited HBsAg and HBeAg expression by 83.6 and 85.4%, respectively. Further molecular docking analysis revealed formations of strong complexes of RPT, ECR and LAM with HBV polymerase through interactions with binding pocket residues. Taken together, the present results demonstrated promising therapeutic potential of the novel R. tripartita-derived catechin and epicatechin for HBV, warranting their further molecular and pharmacological evaluation.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mazin A. S. Abdelwahid
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2458
|
Assessment of antimicrobial and enzymes inhibition effects of Allium kastambulense with in silico studies: Analysis of its phenolic compounds and flavonoid contents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
2459
|
Ochrocephalamines E and F, two new alkaloids from Oxytropis ochrocephala bung. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2460
|
Novel Cyclopentaquinoline and Acridine Analogs as Multifunctional, Potent Drug Candidates in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23115876. [PMID: 35682556 PMCID: PMC9179981 DOI: 10.3390/ijms23115876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
A series of new cyclopentaquinoline derivatives with 9-acridinecarboxylic acid and a different alkyl chain length were synthesized, and their ability to inhibit cholinesterases was evaluated. All designed compounds, except derivative 3f, exhibited a selectivity for butyrylcholinesterase (BuChE) with IC50 values ranging from 103 to 539 nM. The 3b derivative revealed the highest inhibitory activity towards BuChE (IC50 = 103.73 nM) and a suitable activity against AChE (IC50 = 272.33 nM). The 3f derivative was the most active compound to AChE (IC50 = 113.34 nM) with satisfactory activity towards BuChE (IC50 = 203.52 nM). The potential hepatotoxic effect was evaluated for both 3b and 3f compounds. The 3b and 3f potential antioxidant activity was measured using the ORAC-FL method. The 3b and 3f derivatives revealed a significantly higher antioxidant potency, respectively 35 and 25 higher than tacrine. Theoretical, physicochemical, and pharmacokinetic properties were calculated using ACD Labs Percepta software. Molecular modeling and kinetic study were used to reveal the mechanism of cholinesterase inhibition in the most potent compounds: 3b and 3f.
Collapse
|
2461
|
In Silico Screening and Testing of FDA-Approved Small Molecules to Block SARS-CoV-2 Entry to the Host Cell by Inhibiting Spike Protein Cleavage. Viruses 2022; 14:v14061129. [PMID: 35746605 PMCID: PMC9231362 DOI: 10.3390/v14061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic began in 2019, but it is still active. The development of an effective vaccine reduced the number of deaths; however, a treatment is still needed. Here, we aimed to inhibit viral entry to the host cell by inhibiting spike (S) protein cleavage by several proteases. We developed a computational pipeline to repurpose FDA-approved drugs to inhibit protease activity and thus prevent S protein cleavage. We tested some of our drug candidates and demonstrated a decrease in protease activity. We believe our pipeline will be beneficial in identifying a drug regimen for COVID-19 patients.
Collapse
|
2462
|
Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 2022; 50:W159-W164. [PMID: 35609983 PMCID: PMC9252749 DOI: 10.1093/nar/gkac394] [Citation(s) in RCA: 489] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Protein-ligand blind docking is a powerful method for exploring the binding sites of receptors and the corresponding binding poses of ligands. It has seen wide applications in pharmaceutical and biological researches. Previously, we proposed a blind docking server, CB-Dock, which has been under heavy use (over 200 submissions per day) by researchers worldwide since 2019. Here, we substantially improved the docking method by combining CB-Dock with our template-based docking engine to enhance the accuracy in binding site identification and binding pose prediction. In the benchmark tests, it yielded the success rate of ∼85% for binding pose prediction (RMSD < 2.0 Å), which outperformed original CB-Dock and most popular blind docking tools. This updated docking server, named CB-Dock2, reconfigured the input and output web interfaces, together with a highly automatic docking pipeline, making it a particularly efficient and easy-to-use tool for the bioinformatics and cheminformatics communities. The web server is freely available at https://cadd.labshare.cn/cb-dock2/.
Collapse
Affiliation(s)
- Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaocong Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianhong Gan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
2463
|
Chaiputtanapun P, Lirdprapamongkol K, Thanaussavadate B, Phongphankhum T, Thippong T, Thangsan P, Montatip P, Ngiwsara L, Svasti J, Chuawong P. Biphasic dose-dependent G0/G1 and G2/M cell cycle arrest by synthetic 2,3-arylpyridylindole derivatives in A549 lung cancer cells. ChemMedChem 2022; 17:e202200127. [PMID: 35595678 DOI: 10.1002/cmdc.202200127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Indexed: 11/09/2022]
Abstract
A collection of 2,3-arylpyridylindole derivatives were synthesized via the Larock heteroannulation and evaluated for their in vitro cytotoxic activity against A549 human lung cancer cells. Two derivatives expressed good cytotoxicity with IC 50 values of 1.18±0.25 μM and 0.87±0.10 μM and inhibited tubulin polymerization in vitro , with molecular docking studies suggesting the binding modes of the compounds in the colchicine binding site. Both derivatives have biphasic cell cycle arrest effects depending on their concentrations. At a lower concentration (0.5 μM), the two compounds induced G0/G1 cell cycle arrest by activating the JNK/p53/p21 pathway. At a higher concentration (2.0 μM), the two derivatives arrested the cell cycle at the G2/M phase via Akt signaling and inhibition of tubulin polymerization. Additional cytotoxic mechanisms of the two compounds involved the decreased expression of Bcl-2 and Mcl-1 antiapoptotic proteins through inhibition of the STAT3 and Akt signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pitak Chuawong
- Kasetsart University Faculty of Science, Chemistry, 50 Ngamwongwan Rd., Chatuchak, 10900, Bangkok, THAILAND
| |
Collapse
|
2464
|
Hamdy J, Emadeldin N, Hamed MM, Frakolaki E, Katsamakas S, Vassilaki N, Zoidis G, Hirsch AKH, Abdel-Halim M, Abadi AH. Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors. Pharmaceuticals (Basel) 2022; 15:632. [PMID: 35631457 PMCID: PMC9146377 DOI: 10.3390/ph15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)-approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-meta-positioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t½ > 120 min) makes it a potential preclinical candidate.
Collapse
Affiliation(s)
- Jehad Hamdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Nouran Emadeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Mostafa M. Hamed
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Sotirios Katsamakas
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Niki Vassilaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Anna K. H. Hirsch
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| |
Collapse
|
2465
|
Wang Z, Pan H, Sun H, Kang Y, Liu H, Cao D, Hou T. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief Bioinform 2022; 23:6587180. [PMID: 35580866 DOI: 10.1093/bib/bbac201] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Predicting the native or near-native binding pose of a small molecule within a protein binding pocket is an extremely important task in structure-based drug design, especially in the hit-to-lead and lead optimization phases. In this study, fastDRH, a free and open accessed web server, was developed to predict and analyze protein-ligand complex structures. In fastDRH server, AutoDock Vina and AutoDock-GPU docking engines, structure-truncated MM/PB(GB)SA free energy calculation procedures and multiple poses based per-residue energy decomposition analysis were well integrated into a user-friendly and multifunctional online platform. Benefit from the modular architecture, users can flexibly use one or more of three features, including molecular docking, docking pose rescoring and hotspot residue prediction, to obtain the key information clearly based on a result analysis panel supported by 3Dmol.js and Apache ECharts. In terms of protein-ligand binding mode prediction, the integrated structure-truncated MM/PB(GB)SA rescoring procedures exhibit a success rate of >80% in benchmark, which is much better than the AutoDock Vina (~70%). For hotspot residue identification, our multiple poses based per-residue energy decomposition analysis strategy is a more reliable solution than the one using only a single pose, and the performance of our solution has been experimentally validated in several drug discovery projects. To summarize, the fastDRH server is a useful tool for predicting the ligand binding mode and the hotspot residue of protein for ligand binding. The fastDRH server is accessible free of charge at http://cadd.zju.edu.cn/fastdrh/.
Collapse
Affiliation(s)
- Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong Pan
- Day Surgery Center, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
2466
|
Regulation of β-Disaccharide Accumulation by β-Glucosidase Inhibitors to Enhance Cellulase Production in Trichoderma reesei. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Trichoderma reesei is a high-yield producer of cellulase for applications in lignocellulosic biomass conversion, but its cellulase production requires induction. A mixture of glucose and β-disaccharide has been demonstrated to achieve high-level cellulase production. However, as inducers, β-disaccharides are prone to be hydrolyzed by β-glucosidase (BGL) during fermentation, therefore β-disaccharides need to be supplemented through feeding to overcome this problem. Here, miglitol, an α-glucosidase inhibitor, was investigated as a BGL inhibitor, and exhibited an IC50 value of 2.93 μg/mL. The cellulase titer was more than two-fold when miglitol was added to the fermentation medium of T. reesei. This method was similar to the prokaryotic expression system using unmetabolized isopropyl-β-D-thiogalactopyranoside (IPTG) as the inducer instead of lactose to continuously induce gene expression. However, cellulase activity was not enhanced with BGL inhibition when lactose or cellulose was used as an inducer, which demonstrated that the transglycosidase activity of BGL is important for the inducible activity of lactose and cellulose. This novel method demonstrates potential in stimulating cellulase production and provides a promising system for T. reesei protein expression.
Collapse
|
2467
|
Hao JH, Zheng DJ, Ye YH, Yu JT, Li XY, Xiong MJ, Jiang WH, He KP, Li PY, Lv YS, Gu WM, Lai LH, Wu YD, Cao SL. Atomevo: a web server combining protein modelling, docking, molecular dynamic simulation and MMPBSA analysis of Candida antarctica lipase B (CalB) fusion protein. BIORESOUR BIOPROCESS 2022; 9:53. [PMID: 38647745 PMCID: PMC10991163 DOI: 10.1186/s40643-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Although current computational biology software is available and has prompted the development of enzyme-substrates simulation, they are difficult to install and inconvenient to use. This makes the time-consuming and error-prone process. By far there is still a lack of a complete tool which can provide a one-stop service for the enzyme-substrates simulation process. Hence, in this study, several computational biology software was extended development and integrated as a website toolbox named Atomevo. The Atomevo is a free web server providing a user-friendly interface for enzyme-substrates simulation: (1) protein homologous modeling; (2) parallel docking module of Autodock Vina 1.2; (3) automatic modeling builder for Gromacs molecular dynamics simulation package; and (4) Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) analysis module for receptor-ligand binding affinity analysis. We officially launched the web server and provided instructions through a case for the design and simulation of Candida antarctica lipase B (CalB) fusion protein called Maltose Binding Protein-Thioredoxin A-Candida antarctica lipase B (MBP-TrxA-CalB).
Collapse
Affiliation(s)
- Jin-Heng Hao
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Dun-Jin Zheng
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Yu-Hao Ye
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie-Ting Yu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Xin-Yao Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China
| | - Mei-Jie Xiong
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Wen-Hao Jiang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Kang-Ping He
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Pei-Yu Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Yong-Si Lv
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Wei-Ming Gu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Lin-Hao Lai
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Yi-Da Wu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China
| | - Shi-Lin Cao
- Guangdong Key Laboratory of Food Intelligent Manufacturing, School of Food Science and Technology, Foshan University, Foshan, 528000, China.
- School of Food Science and Technology, Foshan University, Foshan, 528225, Guangdong, China.
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2468
|
Moreira BO, Vilar VLS, de Almeida RNS, Morbeck LLB, Andrade BS, Barros RGM, Neves BM, de Carvalho AL, Cruz MP, Yatsuda R, David JM. New dimer and trimer of chalcone derivatives from anti-inflammatory and antinociceptive extracts of Schinopsis brasiliensis roots. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115089. [PMID: 35143935 DOI: 10.1016/j.jep.2022.115089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinopsis brasiliensis Engl. is an endemic tree of the Brazilian semi-arid regions belonging to the Anacardiaceae family. It is the main representative of the genus Schinopsis, mostly native to Brazil and popularly known as "braúna" or "baraúna". Different parts of this plant are employed in Brazilian folk medicines to treat inflammation in general, sexual impotence, cough, and influenza. AIM OF THE STUDY This work describes the antinociceptive (acetic acid-induced writhing and formalin-induced nociception) and anti-inflammatory (paw edema and neutrophil migration) activities of the extract of the root of S. brasiliensis. Besides, the evaluation of total phenolic compounds and antioxidant, antimicrobial (including MRSA bacteria), and acetylcholinesterase inhibition activities were also determined. MATERIAL AND METHODS The pure compounds were isolated by different chromatographic techniques and their chemical structures have been unambiguously elucidated based on extensive spectroscopic methods, including 1D (1H, 13C, DEPT, and NOEdiff) and 2D (HSQC, HMBC, and NOESY) NMR experiments, MS data, and comparison with the literature data of similar compounds. The antinociceptive and anti-inflammatory activities were evaluated by acid acetic writhing test, formalin paw edema, and by the investigation of neutrophil migration to the peritoneal cavities of mice. For antimicrobial evaluation were determined MIC and MBC, antioxidant activities were obtained by TPC and DPPH tests, and AChE inhibition by Elmann's methodology. RESULTS The extracts showed antinociceptive and anti-inflammatory activities and two unusual new compounds, a cyclobutanyl chalcone trimer (schinopsone A) and a cyclohexene-containing chalcone dimer (schinopsone B), with six known compounds were isolated from the active extracts. Additionally, the acetylcholinesterase inhibitory activity for isolated compounds was reported for the first time in this study. Molecular docking studies indicated that the isolated compounds are responsible for the interaction with anti-inflammatory targets (COX 1 and 2 and LOX) with variable binding affinities, indicating a possible mechanism of action of these compounds. CONCLUSIONS These findings indicate for the first time the correlation between the anti-inflammatory activity different enriched polyphenol-organic soluble fractions of S. brasiliensis, and it contributes to the understanding of the anti-inflammatory potential of S. brasiliensis.
Collapse
Affiliation(s)
- Bruno Oliveira Moreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Vanessa Lima Souza Vilar
- Instituto Federal Catarinense - Campus Concórdia, 89703-720, Concórdia, SC, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | | | - Lorena Lôbo Brito Morbeck
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, 45200-000, BA, Brazil
| | - Rafael Gomes Moreno Barros
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Breno Magalhães Neves
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Anaildes Lago de Carvalho
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, 45083-900, Vitória da Conquista, BA, Brazil
| | - Mariluze Peixoto Cruz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Regiane Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Jorge Mauricio David
- Instituto de Química, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
2469
|
Tang S, Chen R, Lin M, Lin Q, Zhu Y, Ding J, Hu H, Ling M, Wu J. Accelerating AutoDock Vina with GPUs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093041. [PMID: 35566391 PMCID: PMC9103882 DOI: 10.3390/molecules27093041] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
AutoDock Vina is one of the most popular molecular docking tools. In the latest benchmark CASF-2016 for comparative assessment of scoring functions, AutoDock Vina won the best docking power among all the docking tools. Modern drug discovery is facing a common scenario of large virtual screening of drug hits from huge compound databases. Due to the seriality characteristic of the AutoDock Vina algorithm, there is no successful report on its parallel acceleration with GPUs. Current acceleration of AutoDock Vina typically relies on the stack of computing power as well as the allocation of resource and tasks, such as the VirtualFlow platform. The vast resource expenditure and the high access threshold of users will greatly limit the popularity of AutoDock Vina and the flexibility of its usage in modern drug discovery. In this work, we proposed a new method, Vina-GPU, for accelerating AutoDock Vina with GPUs, which is greatly needed for reducing the investment for large virtual screens and also for wider application in large-scale virtual screening on personal computers, station servers or cloud computing, etc. Our proposed method is based on a modified Monte Carlo using simulating annealing AI algorithm. It greatly raises the number of initial random conformations and reduces the search depth of each thread. Moreover, a classic optimizer named BFGS is adopted to optimize the ligand conformations during the docking progress, before a heterogeneous OpenCL implementation was developed to realize its parallel acceleration leveraging thousands of GPU cores. Large benchmark tests show that Vina-GPU reaches an average of 21-fold and a maximum of 50-fold docking acceleration against the original AutoDock Vina while ensuring their comparable docking accuracy, indicating its potential for pushing the popularization of AutoDock Vina in large virtual screens.
Collapse
Affiliation(s)
- Shidi Tang
- School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.T.); (J.D.)
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruiqi Chen
- VeriMake Research, Nanjing Renmian Integrated Circuit Technology Co., Ltd., Nanjing 210088, China; (R.C.); (M.L.); (Y.Z.)
| | - Mengru Lin
- VeriMake Research, Nanjing Renmian Integrated Circuit Technology Co., Ltd., Nanjing 210088, China; (R.C.); (M.L.); (Y.Z.)
| | - Qingde Lin
- National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China; (Q.L.); (M.L.)
| | - Yanxiang Zhu
- VeriMake Research, Nanjing Renmian Integrated Circuit Technology Co., Ltd., Nanjing 210088, China; (R.C.); (M.L.); (Y.Z.)
| | - Ji Ding
- School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.T.); (J.D.)
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Haifeng Hu
- School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Ming Ling
- National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China; (Q.L.); (M.L.)
| | - Jiansheng Wu
- School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.T.); (J.D.)
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Correspondence:
| |
Collapse
|
2470
|
In Silico Analysis Revealed Five Novel High-Risk Single-Nucleotide Polymorphisms (rs200384291, rs201163886, rs193141883, rs201139487, and rs201723157) in ELANE Gene Causing Autosomal Dominant Severe Congenital Neutropenia 1 and Cyclic Hematopoiesis. ScientificWorldJournal 2022; 2022:3356835. [PMID: 35571273 PMCID: PMC9106522 DOI: 10.1155/2022/3356835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Single-nucleotide polymorphisms in the ELANE (Elastase, Neutrophil Expressed) gene are associated with severe congenital neutropenia, while the ELANE gene provides instructions for making a protein called neutrophil elastase. We identified disease susceptibility single-nucleotide polymorphisms (SNPs) in the ELANE gene using several computational tools. We used cutting-edge computational techniques to investigate the effects of ELANE mutations on the sequence and structure of the protein. Our study suggested that eight nsSNPs (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and rs200384291) are the most deleterious in ELANE gene and disturb protein structure and function. The mutants F218L, R34W, G203S, R193W, and T175M have not yet been identified in patients suffering from SCN and cyclic hematopoiesis, while C71Y, P139R, C151Y, G214R, and G203C reported in our study are already associated with both of the disorders. These mutations are shown to destabilize structure and disrupt ELANE protein activation, splicing, and folding and might diminish trypsin-like serine protease efficiency. Prediction of posttranslation modifications highlighted the significance of deleterious nsSNPs because some of nsSNPs affect potential phosphorylation sites. Gene-gene interactions showed the relation of ELANE with other genes depicting its importance in numerous pathways and coexpressions. We identified the deleterious nsSNPs, constructed mutant protein structures, and evaluated the impact of mutation by employing molecular docking. This research sheds light on how ELANE failure upon mutation results in disease progression, including congenital neutropenia, and validation of these novel predicted nsSNPs is required through the wet lab.
Collapse
|
2471
|
Szczupak P, Radzikowska-Cieciura E, Kulik K, Madaj R, Sierant M, Krakowiak A, Nawrot B. Escherichia coli tRNA 2-selenouridine synthase SelU selects its prenyl substrate to accomplish its enzymatic function. Bioorg Chem 2022; 122:105739. [DOI: 10.1016/j.bioorg.2022.105739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
2472
|
Semi-Synthesis of N-Aryl Amide Analogs of Piperine from Piper nigrum and Evaluation of Their Antitrypanosomal, Antimalarial, and Anti-SARS-CoV-2 Main Protease Activities. Molecules 2022; 27:molecules27092841. [PMID: 35566194 PMCID: PMC9100884 DOI: 10.3390/molecules27092841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 μM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 μM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 μM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.
Collapse
|
2473
|
Identification of Bioactive Components of Stephania epigaea Lo and Their Potential Therapeutic Targets by UPLC-MS/MS and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3641586. [PMID: 35529936 PMCID: PMC9068296 DOI: 10.1155/2022/3641586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Stephania epigaea, an important traditional folk medicinal plant, elucidating its bioactive compound profiles and their molecular mechanisms of action on human health, would better understand its traditional therapies and guide their use in preclinical and clinical. This study aims to detect the critical therapeutic compounds, predict their targets, and explore potential therapeutic molecular mechanisms. This work first determined metabolites from roots, stems, and flowering twigs of S. epigaea by a widely targeted metabolomic analysis assay. Then, the drug likeness of the compounds and their pharmacokinetic profiles were screened by the ADMETlab server. The target proteins of active compounds were further analyzed by PPI combing with GO and KEGG cluster enrichment analysis. Finally, the interaction networks between essential compounds, targets, and disease-associated pathways were constructed, and the essential compounds binding to their possible target proteins were verified by molecular docking. Five key target proteins (EGFR, HSP90AA1, SRC, TNF, and CASP3) and twelve correlated metabolites, including aknadinine, cephakicine, homostephanoline, and N-methylliriodendronine associated with medical applications of S. epigaea, were identified, and the compounds and protein interactions were verified. The key active ingredients are mainly accumulated in the root, which indicates that the root is the main medicinal tissue. This study demonstrated that S. epigaea might exert the desired disease efficacy mainly through twelve components interacting via five essential target proteins. EGFR is the most critical one, which deserves further verification by biological studies.
Collapse
|
2474
|
Interaction of Pelargonium sidoides Compounds with Lactoferrin and SARS-CoV-2: Insights from Molecular Simulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095254. [PMID: 35564648 PMCID: PMC9101775 DOI: 10.3390/ijerph19095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023]
Abstract
(1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages.
Collapse
|
2475
|
Liu Y, Tan Y, Huang J, Wu C, Fan X, Stalin A, Lu S, Wang H, Zhang J, Zhang F, Wu Z, Li B, Huang Z, Chen M, Cheng G, Mou Y, Wu J. Revealing the Mechanism of Huazhi Rougan Granule in the Treatment of Nonalcoholic Fatty Liver Through Intestinal Flora Based on 16S rRNA, Metagenomic Sequencing and Network Pharmacology. Front Pharmacol 2022; 13:875700. [PMID: 35559233 PMCID: PMC9086680 DOI: 10.3389/fphar.2022.875700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The incidence of Nonalcoholic Fatty Liver (NAFL) is increasing year by year, growing evidence suggests that the intestinal flora plays a causative role in NAFL. Huazhi Rougan Granule (HRG) is commonly used in the clinical treatment of NAFL. It is reported that it can reduce lipids and protect the liver, but no research has confirmed whether the drug's effect is related to the intestinal flora. Therefore, we investigated whether the effect of HRG is related to the regulation of intestinal flora to further explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Methods: In this study, C57BL/6J mice were fed a high-fat diet for 8 weeks, and the high-fat diet plus HRG or polyene phosphatidylcholine capsules were each administered by gavage for 4 weeks. High-throughput sequencing, network pharmacology, and molecular docking were used to explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Results: HRG treatment can reduce body weight gain, lipid accumulation in liver and lipogenesis and reduce serum biochemical indexes in high-fat-fed mice. Analysis of intestinal flora showed that HRG changed the composition of intestinal flora, which was characterized by a decrease in the Firmicutes/Bacteroidetes ratio. Moreover, the species distribution was significantly correlated with AKP, HDL-C, and TG. Metagenetic analysis showed that HRG altered the functional composition and functional diversity of microorganisms, which was mainly characterized by an increase in the abundance of metabolic pathways. The network pharmacology results show that the mechanism of HRG in the treatment of NAFL through intestinal flora is mainly reflected in the biological process of gene function and related to infectious diseases, immune systems, and signal transduction pathways, such as cytokine-cytokine receptor interaction, Chagas disease, IL-17 signaling pathway and other signaling pathways. Conclusion: These results strongly suggest that HRG may alleviate NAFL by preventing IFD.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2476
|
Pan X, Wang H, Zhang Y, Wang X, Li C, Ji C, Zhang JZH. AA-Score: a New Scoring Function Based on Amino Acid-Specific Interaction for Molecular Docking. J Chem Inf Model 2022; 62:2499-2509. [PMID: 35452230 DOI: 10.1021/acs.jcim.1c01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The protein-ligand scoring function plays an important role in computer-aided drug discovery and is heavily used in virtual screening and lead optimization. In this study, we developed a new empirical protein-ligand scoring function with amino acid-specific interaction components for hydrogen bond, van der Waals, and electrostatic interactions. In addition, hydrophobic, π-stacking, π-cation, and metal-ligand interactions are also included in the new scoring function. To better evaluate the performance of the AA-Score, we generated several new test sets for evaluation of scoring, ranking, and docking performances, respectively. Extensive tests show that AA-Score performs well on scoring, docking, and ranking as compared to other widely used traditional scoring functions. The performance improvement of AA-Score benefits from the decomposition of individual interaction into amino acid-specific types. To facilitate applications, we developed an easy-to-use tool to analyze protein-ligand interaction fingerprint and predict binding affinity using the AA-Score. The source code and associated running examples can be found at https://github.com/xundrug/AA-Score-Tool.
Collapse
Affiliation(s)
- Xiaolin Pan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Hao Wang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Cuiyu Li
- Advanced Computing East China Sub-center, Suma Technology Co., Ltd., Kunshan 215300, China
| | - Changge Ji
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York 10003, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan Shanxi 030006, China
| |
Collapse
|
2477
|
Bojić T, Sencanski M, Perovic V, Milicevic J, Glisic S. In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092626. [PMID: 35565976 PMCID: PMC9101541 DOI: 10.3390/molecules27092626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease, is the focus of pharmacological research. One of the targets that attract the most attention for the potential therapy of AD is the serotonin 5HT6 receptor, which is the receptor situated exclusively in CNS on glutamatergic and GABAergic neurons. The neurochemical impact of this receptor supports the hypothesis about its role in cognitive, learning, and memory systems, which are of critical importance for AD. Natural products are a promising source of novel bioactive compounds with potential therapeutic potential as a 5HT6 receptor antagonist in the treatment of AD dementia. The ZINC-natural product database was in silico screened in order to find the candidate antagonists of 5-HT6 receptor against AD. A virtual screening protocol that includes both short-and long-range interactions between interacting molecules was employed. First, the EIIP/AQVN filter was applied for in silico screening of the ZINC database followed by 3D QSAR and molecular docking. Ten best candidate compounds were selected from the ZINC Natural Product database as potential 5HT6 Receptor antagonists and were proposed for further evaluation. The best candidate was evaluated by molecular dynamics simulations and free energy calculations.
Collapse
Affiliation(s)
- Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics-080, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
- Correspondence: (T.B.); (M.S.)
| | - Milan Sencanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
- Correspondence: (T.B.); (M.S.)
| | - Vladimir Perovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| | - Jelena Milicevic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| |
Collapse
|
2478
|
Missaoui K, Gonzalez-Klein Z, Jemli S, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J, Brini F. Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS One 2022; 17:e0266971. [PMID: 35417502 PMCID: PMC9007336 DOI: 10.1371/journal.pone.0266971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 01/15/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins, a part of the pathogenesis-related protein family, and numerous of them act as positive regulators during plant disease resistance, growth, and reproduction. These proteins are involved also in the intracellular transfer of lipids, as well as in plant immune responses. Besides their differences in sequences, they show similar features in their structure. However, they show distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. This study reports the identification, in silico characterization and purification of a novel member of the nsLTP2 protein family from durum wheat, TdLTP2. It was generated and purified using the combination of gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Its identity was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MALDI-TOF). TdLTP2 had been expressed in different stress to detect its localization; therefore, fluor-immunolocalization studies accomplished this data. In this approach, to assess the allergenicity of TdLTP2, thirty patients with baker’s asthma were enrolled and ELISA to detect the presence of specific IgE antibodies tested their sera. Moreover, the lipid-binding properties of TdLTP2 were examined in vitro and validated using a molecular docking study. In summary, our results demonstrate a new addition of member in plant nsLTPs family, TdLTP2, which can develop a better understanding about its biological functions and shed light on future applications.
Collapse
Affiliation(s)
- Khawla Missaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Maria Garrido-Arandia
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Araceli Diaz-Perales
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- * E-mail: (JTA); (FB)
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail: (JTA); (FB)
| |
Collapse
|
2479
|
Fang H, Wu Y, Xiao Q, He D, Zhou T, Liu W, Yang CH, Xie Y. Design, synthesis and evaluation of the Brigatinib analogues as potent inhibitors against tertiary EGFR mutants (EGFR del19/T790M/C797S and EGFR L858R/T790M/C797S). Bioorg Med Chem Lett 2022; 72:128729. [PMID: 35413415 DOI: 10.1016/j.bmcl.2022.128729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022]
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated encouraging clinical outcomes for patients with EGFR-mutated non-small cell lung cancer, a considerable number of patients will develop drug resistance and eventually undergo disease progression after taking EGFR-TKIs for a period of time. EGFRdel19/T790M/C797S and EGFRL858R/T790M/C797S are two most prevalent tertiary EGFR mutants identified in Osimertinib-resistant tumors and currently there is no therapy approved clinically targeting these mutants. In this study, we designed and synthesized a series of novel 4th generation EGFR inhibitors based on scaffold of Brigatinib. After extensive SAR studies, compound 23, the most promising candidate, exhibited strong biochemical potencies against EGFRdel19/T790M/C797S, EGFRL858R/T790M/C797S and other clinically relevant EGFR mutants while sparing wild type EGFR. In cellular assays, compound 23 potently inhibited proliferation of BaF3EGFR del19/T790M/C797S and PC-9EGFR del19/T790M/C797S. Moreover, compound 23 demonstrated good DMPK profile in mouse PK study.
Collapse
Affiliation(s)
- Haotian Fang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yingming Wu
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China
| | - Qitao Xiao
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China
| | - Dongbo He
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China
| | - Tongrui Zhou
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China
| | - Wenzhong Liu
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China
| | - Chun-Hao Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yuli Xie
- Wigen Biomedicine Technology (Shanghai) Co., Ltd, No. 11, Lane 67, Libing Road, Shanghai 201210, PR China.
| |
Collapse
|
2480
|
Phenolic Compound Ethyl 3,4-Dihydroxybenzoate Retards Drug Efflux and Potentiates Antibiotic Activity. Antibiotics (Basel) 2022; 11:antibiotics11040497. [PMID: 35453250 PMCID: PMC9029221 DOI: 10.3390/antibiotics11040497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
The World Health Organization indicated that antibiotic resistance is one of the greatest threats to health, food security, and development in the world. Drug resistance efflux pumps are essential for antibiotic resistance in bacteria. Here, we evaluated the plant phenolic compound ethyl 3,4-dihydroxybenzoate (EDHB) for its efflux pump inhibitory (EPI) activity against drug-resistant Escherichia coli. The half-maximal inhibitory concentration, modulation assays, and time-kill studies indicated that EDHB has limited antibacterial activity but can potentiate the activity of antibiotics for drug-resistant E. coli. Dye accumulation/efflux and MALDI-TOF studies showed that EDHB not only significantly increases dye accumulation and reduces dye efflux but also increases the extracellular amount of antibiotics in the drug-resistant E. coli, indicating its interference with substrate translocation via a bacterial efflux pump. Molecular docking analysis using AutoDock Vina indicated that EDHB putatively posed within the distal binding pocket of AcrB and in close interaction with the residues by H-bonds and hydrophobic contacts. Additionally, EDHB showed an elevated postantibiotic effect on drug-resistant E. coli. Our toxicity assays showed that EDHB did not change the bacterial membrane permeability and exhibited mild human cell toxicity. In summary, these findings indicate that EDHB could serve as a potential EPI for drug-resistant E. coli.
Collapse
|
2481
|
Huang X, Rehman HM, Szöllősi AG, Zhou S. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13040653. [PMID: 35456457 PMCID: PMC9028201 DOI: 10.3390/genes13040653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: Modern, open-source databases provide an unprecedented wealth of information to help drug development. By combining data available in these databases with the proper bioinformatical tools, we can elucidate the molecular targets of natural compounds. One such molecule is curcumol, a guaiane-type sesquiterpenoid hemiketal isolated from Rhizoma Curcumae, which is used for a broad range of diseases in traditional Chinese and Indian medicine. It has been reported to exert anti-tumor activity, but the intrinsic molecular mechanism in hepatocellular carcinoma (HCC) is unclear. Therefore, the present study was designed to reveal the predictive targets and biological mechanisms of curcumol against HCC via a network pharmacology-based approach combined with bioinformatic analytics and to provide proof of concept for further similar investigations. Methods: Data available from open-source databases (Traditional Chinese Medicine Systems Pharmacology, Comparative Toxicogenomic Database, The Cancer Genome Atlas, the Human Protein Atlas project) was processed with the help of a variety of open-source tools (SwissADME, SwissTargetPrediction, JVenn, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, GeneMANIA, Cytoscape). Results: In the present study, the potential of curcumol against HCC was unraveled by network pharmacology-based elucidation. It suggests that curcumol shows exciting druggability with 44 potent homo sapiens biotargets against HCC. The GO terms and KEGG pathways enrichment analyses, curcumol-targets-pathways-HCC network, PPI network, and corresponding in-depth topological analyses, as well as survival analysis, molecular docking simulation indicate that the potential mechanism of curcumol against HCC is complicated, as it may act in various ways, mainly by inducing apoptosis and modulating the inflammatory response, increasing presentation of HCC-specific protein. Conclusion: The present study highlights the potential of curcumol against HCC, giving reference to further experimental study. It also presents a roadmap that can be followed to conduct in silico prescreening of other compounds of interest.
Collapse
Affiliation(s)
- Xufeng Huang
- Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Hafiz Muzzammel Rehman
- Alnoorians Group of Institutes 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Lahore 54000, Pakistan;
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Attila Gábor Szöllősi
- Department of Immunology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
2482
|
Ha T, Kim MS, Kang B, Kim K, Hong SS, Kang T, Woo J, Han K, Oh U, Choi CW, Hong GS. Lotus Seed Green Embryo Extract and a Purified Glycosyloxyflavone Constituent, Narcissoside, Activate TRPV1 Channels in Dorsal Root Ganglion Sensory Neurons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3969-3978. [PMID: 35343690 DOI: 10.1021/acs.jafc.1c07724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several studies have documented the broad-spectrum bioactivities of a lotus seed (Plumula nelumbinis [PN]) green embryo extract. However, the specific bioactive components and associated molecular mechanisms remain largely unknown. This study aimed to identify the ion channel-activating mechanisms of PN extracts. Using fluorometric imaging and patch-clamp recordings, PN extracts were screened for calcium channel activation in dorsal root ganglion (DRG) neurons. The TRPV1 channels in DRG neurons were strongly activated by the PN extract (mean amplitude of 131 ± 45 pA at 200 μg/mL) and its purified glycosyloxyflavone narcissoside (401 ± 271 pA at 100 μM). Serial treatment with a 200 μg/mL PN extract in TRPV1-overexpressing HEK293T cells induced robust desensitization to 10 ± 10% of the initial current amplitude. Thus, we propose that the PN extract and narcissoside function as TRPV1 agonists. This new finding may advance our knowledge regarding the traditional and scientific functions of PN in human health and disease.
Collapse
Affiliation(s)
- Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mi-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bokeum Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seong Su Hong
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junhyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2483
|
Lu C, Liu S, Shi W, Yu J, Zhou Z, Zhang X, Lu X, Cai F, Xia N, Wang Y. Systemic evolutionary chemical space exploration for drug discovery. J Cheminform 2022; 14:19. [PMID: 35365231 PMCID: PMC8973791 DOI: 10.1186/s13321-022-00598-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. Compared with other screening technologies, computational de novo design has become a popular approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug design, that miniaturized a “lego-building” process within the pocket of a certain target. The key to virtual hits generation was then turned into a computational search problem. To enhance search and optimization, human intelligence and deep learning were integrated. Application of SECSE against phosphoglycerate dehydrogenase (PHGDH), proved its potential in finding novel and diverse small molecules that are attractive starting points for further validation. This platform is open-sourced and the code is available at http://github.com/KeenThera/SECSE.
Collapse
Affiliation(s)
- Chong Lu
- Keen Therapeutics Co., Ltd., Shanghai, China
| | - Shien Liu
- Keen Therapeutics Co., Ltd., Shanghai, China
| | - Weihua Shi
- Keen Therapeutics Co., Ltd., Shanghai, China
| | - Jun Yu
- Keen Therapeutics Co., Ltd., Shanghai, China
| | - Zhou Zhou
- Keen Therapeutics Co., Ltd., Shanghai, China
| | | | - Xiaoli Lu
- Keen Therapeutics Co., Ltd., Shanghai, China
| | - Faji Cai
- Keen Therapeutics Co., Ltd., Shanghai, China
| | | | - Yikai Wang
- Keen Therapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
2484
|
Modeling glycosaminoglycan–protein complexes. Curr Opin Struct Biol 2022; 73:102332. [DOI: 10.1016/j.sbi.2022.102332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
|
2485
|
Mollahosseini A, Saadati S, Abdelrasoul A. A Comparative Assessment of Human Serum Proteins Interactions with Hemodialysis Clinical Membranes using Molecular Dynamics Simulation. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering University of Saskatchewan 57 Campus Drive Saskatoon Saskatchewan S7N 5A9 Canada
| | - Shaghayegh Saadati
- Department of Chemical and Biological Engineering University of Saskatchewan 57 Campus Drive Saskatoon Saskatchewan S7N 5A9 Canada
- Division of Biomedical Engineering University of Saskatchewan 57 Campus Drive Saskatoon Saskatchewan S7N 5A9 Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering University of Saskatchewan 57 Campus Drive Saskatoon Saskatchewan S7N 5A9 Canada
- Division of Biomedical Engineering University of Saskatchewan 57 Campus Drive Saskatoon Saskatchewan S7N 5A9 Canada
| |
Collapse
|
2486
|
Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022; 14:v14040729. [PMID: 35458459 PMCID: PMC9029575 DOI: 10.3390/v14040729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dolutegravir-based antiretroviral therapy (ART) has been scaled up in many developing countries, including Ethiopia. However, subtype-dependent polymorphic differences might influence the occurrence of HIV-drug-resistance mutations (HIVDRMs). We analyzed the prevalence of pre-treatment integrase strand transfer inhibitor (INSTI) HIVDRMs and naturally occurring polymorphisms (NOPs) of the integrase gene, using plasma samples collected as part of the national HIVDR survey in Ethiopia in 2017. We included a total of 460 HIV-1 integrase gene sequences from INSTI-naïve (n = 373 ART-naïve and n = 87 ART-experienced) patients. No dolutegravir-associated HIVDRMs were detected, regardless of previous exposure to ART. However, we found E92G in one ART-naïve patient specimen and accessory mutations in 20/460 (4.3%) of the specimens. Moreover, among the 288 integrase amino acid positions of the subtype C, 187/288 (64.9%) were conserved (<1.0% variability). Analysis of the genetic barrier showed that the Q148H/K/R dolutegravir resistance pathway was less selected in subtype C. Docking analysis of the dolutegravir showed that protease- and reverse-transcriptase-associated HIVDRMs did not affect the native structure of the HIV-1 integrase. Our results support the implementation of a wide scale-up of dolutegravir-based regimes. However, the detection of polymorphisms contributing to INSTI warrants the continuous surveillance of INSTI resistance.
Collapse
|
2487
|
Ben Ayed R, Chirmade T, Hanana M, Khamassi K, Ercisli S, Choudhary R, Kadoo N, Karunakaran R. Comparative Analysis and Structural Modeling of Elaeis oleifera FAD2, a Fatty Acid Desaturase Involved in Unsaturated Fatty Acid Composition of American Oil Palm. BIOLOGY 2022; 11:529. [PMID: 35453727 PMCID: PMC9032008 DOI: 10.3390/biology11040529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain high-yielding varieties with improved oil content and quality. The fatty acid composition and particularly the oleic/linoleic acid ratio are major factors influencing oil quality. Our work focused on a fatty acid desaturase (FAD) enzyme involved in the desaturation and conversion of oleic acid to linoleic acid. Following the in silico identification and annotation of Elaeis oleifera FAD2, its molecular and structural features characterization was performed to better understand the mechanistic bases of its enzymatic activity. EoFAD2 is 1173 nucleotides long and encodes a protein of 390 amino acids that shares similarities with other FADs. Interestingly, the phylogenetic study showed three distinguished groups where EoFAD2 clustered among monocotyledonous taxa. EoFAD2 is a membrane-bound protein with five transmembrane domains presumably located in the endoplasmic reticulum. The homodimer organization model of EoFAD2 enzyme and substrates and respective substrate-binding residues were predicted and described. Moreover, the comparison between 24 FAD2 sequences from different species generated two interesting single-nucleotide polymorphisms (SNPs) associated with the oleic/linoleic acid contents.
Collapse
Affiliation(s)
- Rayda Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, Sfax 3018, Tunisia
| | - Tejas Chirmade
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam Lif 2050, Tunisia;
| | - Khalil Khamassi
- Field Crop Laboratory (LR16INRAT02), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis 1004, Tunisia;
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Narendra Kadoo
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
2488
|
Fedortsov N, Budkevich E, Evdokimov I, Ryabtseva S, Budkevich R. Bovine serum albumin with gallic acid: Molecular modeling and physicochemical profiling. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-163-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Gallic acid is a biologically active natural compound with strong antioxidant properties. Gallic acid is highly soluble and stable. It is known to increase the thermal stability of protein. However, its bioavailability is low, but interaction with proteins can solve this problem. Bovine serum albumin can bind various ligands, including polyphenols. The resulting complex of gallic acid and bovine serum albumin can become a promising functional food additive.
Study objects and methods. This research featured in silico molecular modeling of gallic acid and bovine serum albumin using the HyperChem program. The methods of infrared spectrometry, potentiometry, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) made it possible to describe the physicochemical profile of the complex.
Results and discussion. The molecular modeling confirmed that hydrophobic interactions were responsible for the chemical bond between gallic acid and bovine serum albumin. The SDS-PAGE test showed that the protein molecule remained intact. The reducing properties of the complex grew as the concentration of gallic acid increased. At 100 mg/L of gallic acid, the reducing properties were 7.8 ± 1.3 mg/L equivalent of gallic acid. At 200 and 300 mg/L, the values reached 15.90 ± 2.65 and 23.30 ± 5.05 mg/L, respectively. The IR spectrometry revealed a significant difference between the samples with different concentrations of gallic acid.
Conclusion. The research managed to predict the properties of the complex of bovine serum albumin and gallic acid during its formation. The resulting complex had the highest reducing properties at 0.69 g of bovine serum albumin and 300 mg of gallic acid. The obtained parameters can be used in the food industry to develop new food additives.
Collapse
|
2489
|
Krzemińska A, Kwiatos N, Arenhart Soares F, Steinbüchel A. Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. Int J Mol Sci 2022; 23:ijms23063335. [PMID: 35328756 PMCID: PMC8950311 DOI: 10.3390/ijms23063335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus bisporus as a model enzyme. Recently, 98% of human genome proteins were elucidated by AlphaFold. Herein, the AlphaFold structure of human tyrosinase and the previous model were compared. Moreover, tyrosinase-related proteins 1 and 2 were included, along with inhibition studies employing kojic and cinnamic acids. Peptides are widely studied for their inhibitory activity of skin-related enzymes. Cyanophycin is an amino acid polymer produced by cyanobacteria and is built of aspartic acid and arginine; arginine can be also replaced by other amino acids. A new set of cyanophycin-derived dipeptides was evaluated as potential inhibitors. Aspartate–glutamate showed the strongest interaction and was chosen as a leading compound for future studies.
Collapse
|
2490
|
Shulga DA, Ivanov NN, Palyulin VA. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions. Molecules 2022; 27:1985. [PMID: 35335347 PMCID: PMC8951103 DOI: 10.3390/molecules27061985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
The notion of a contribution of a specific group in an organic molecule's property and/or activity is both common in our thinking and is still not strictly correct due to the inherent non-additivity of free energy with respect to molecular fragments composing a molecule. The fragment- based drug discovery (FBDD) approach has proven to be fruitful in addressing the above notions. The main difficulty of the FBDD, however, is in its reliance on the low throughput and expensive experimental means of determining the fragment-sized molecules binding. In this article we propose a way to enhance the throughput and availability of the FBDD methods by judiciously using an in silico means of assessing the contribution to ligand-receptor binding energy of fragments of a molecule under question using a previously developed in silico Reverse Fragment Based Drug Discovery (R-FBDD) approach. It has been shown that the proposed structure-based drug discovery (SBDD) type of approach fills in the vacant niche among the existing in silico approaches, which mainly stem from the ligand-based drug discovery (LBDD) counterparts. In order to illustrate the applicability of the approach, our work retrospectively repeats the findings of the use case of an FBDD hit-to-lead project devoted to the experimentally based determination of additive group efficiency (GE)-an analog of ligand efficiency (LE) for a group in the molecule-using the Free-Wilson (FW) decomposition. It is shown that in using our in silico approach to evaluate fragment contributions of a ligand and to estimate GE one can arrive at similar decisions as those made using the experimentally determined activity-based FW decomposition. It is also shown that the approach is rather robust to the choice of the scoring function, provided the latter demonstrates a decent scoring power. We argue that the proposed approach of in silico assessment of GE has a wider applicability domain and expect that it will be widely applicable to enhance the net throughput of drug discovery based on the FBDD paradigm.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
2491
|
Zámocký M, Musil M, Danchenko M, Ferianc P, Chovanová K, Baráth P, Poljovka A, Bednář D. Deep Insights into the Specific Evolution of Fungal Hybrid B Heme Peroxidases. BIOLOGY 2022; 11:biology11030459. [PMID: 35336832 PMCID: PMC8945051 DOI: 10.3390/biology11030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Fungi are well equipped to cope with oxidative stress and the reactive oxygen species that are, in the case of phytopathogens, produced mainly by the plant host for defence purposes. Peroxidases represent the major line of evolution for rapid decomposition of harmful peroxides in all aerobically metabolising organisms. In all the sequenced fungal genomes, many divergent genes coding for various peroxidases have been discovered, and Hybrid B heme peroxidases represent a distinctive mode of fungal-gene evolution within a large peroxidase–catalase superfamily that ranges from bacteria to plants. Abstract In this study, we focus on a detailed bioinformatics analysis of hyBpox genes, mainly within the genomes of Sclerotiniaceae (Ascomycota, Leotiomycetes), which is a specifically evolved fungal family of necrotrophic host generalists and saprophytic or biotrophic host specialists. Members of the genus Sclerotium produce only sclerotia and no fruiting bodies or spores. Thus, their physiological role for peroxidases remains open. A representative species, S. cepivorum, is a dangerous plant pathogen causing white rot in Allium species, particularly in onions, leeks, and garlic. On a worldwide basis, the white rot caused by this soil-borne fungus is apparently the most serious threat to Allium-crop production. We have also found very similar peroxidase sequences in the related fungus S. sclerotiorum, although with minor yet important modifications in the architecture of its active centre. The presence of ScephyBpox1-specific mRNA was confirmed by transcriptomic analysis. The presence of Hybrid B peroxidase at the protein level as the sole extracellular peroxidase of this fungus was confirmed in the secretome of S. cepivorum through detailed proteomic analyses. This prompted us to systematically search for all available genes coding for Hybrid B heme peroxidases in the whole fungal family of Sclerotiniaceae. We present here a reconstruction of their molecular phylogeny and analyse the unique aspects of their conserved-sequence features and structural folds in corresponding ancestral sequences.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
- Correspondence: or ; Tel.: +421-2-5930-7481
| | - Miloš Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic; (M.M.); (D.B.)
- International Clinical Research Centre, St. Anne’s University Hospital Brno, CZ-65691 Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| | - Maksym Danchenko
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (M.D.); (P.B.)
| | - Peter Ferianc
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - Katarína Chovanová
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (M.D.); (P.B.)
| | - Andrej Poljovka
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic; (M.M.); (D.B.)
- International Clinical Research Centre, St. Anne’s University Hospital Brno, CZ-65691 Brno, Czech Republic
| |
Collapse
|
2492
|
Drug repurposing in silico screening platforms. Biochem Soc Trans 2022; 50:747-758. [PMID: 35285479 DOI: 10.1042/bst20200967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Over the last decade, for the first time, substantial efforts have been directed at the development of dedicated in silico platforms for drug repurposing, including initiatives targeting cancers and conditions as diverse as cryptosporidiosis, dengue, dental caries, diabetes, herpes, lupus, malaria, tuberculosis and Covid-19 related respiratory disease. This review outlines some of the exciting advances in the specific applications of in silico approaches to the challenge of drug repurposing and focuses particularly on where these efforts have resulted in the development of generic platform technologies of broad value to researchers involved in programmatic drug repurposing work. Recent advances in molecular docking methodologies and validation approaches, and their combination with machine learning or deep learning approaches are continually enhancing the precision of repurposing efforts. The meaningful integration of better understanding of molecular mechanisms with molecular pathway data and knowledge of disease networks is widening the scope for discovery of repurposing opportunities. The power of Artificial Intelligence is being gainfully exploited to advance progress in an integrated science that extends from the sub-atomic to the whole system level. There are many promising emerging developments but there are remaining challenges to be overcome in the successful integration of the new advances in useful platforms. In conclusion, the essential component requirements for development of powerful and well optimised drug repurposing screening platforms are discussed.
Collapse
|
2493
|
Calzada F, Garcia-Hernandez N, Hidalgo-Figueroa S, Bautista E, Barbosa E, Velázquez C, Hernández-Caballero ME. Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules 2022; 27:1687. [PMID: 35268788 PMCID: PMC8911839 DOI: 10.3390/molecules27051687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Heliangolide-type sesquiterpene lactones (HTSLs) are phytocompounds with several pharmacological activities including cytotoxic and antitumor activity. Both bioactivities are related to an α-methylene-γ-lactone moiety and an ester group on carbon C-8 in the sesquiterpene lactone (SL) structure. Two HTSLs, incomptines A (AI) and B (IB) isolated from Decachaeta incompta, were evaluated for their cytotoxic activity on three leukemia cell lines: HL-60, K-562, and REH cells. Both compounds were subjected to a molecular docking study using target proteins associated with cancer such as topoisomerase IIα, topoisomerase IIβ, dihydrofolate reductase, methylenetetrahydrofolate dehydrogenase, and Bcl-2-related protein A1. Results show that IA and IB exhibit cytotoxic activity against all cell lines used. The CC50 value of IA was 2-4-fold less than etoposide and methotrexate, two anticancer drugs used as positive controls. The cytotoxic activity of IB was close to that of etoposide and methotrexate. The molecular docking analysis showed that IA and IB have important interaction on all targets used. These findings suggest that IA and IB may serve as scaffolds for the development of new treatments for different types of leukemia.
Collapse
Affiliation(s)
- Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades-2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Normand Garcia-Hernandez
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elihú Bautista
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | | |
Collapse
|
2494
|
Alhayek A, Khan ES, Schönauer E, Däinghaus T, Shafiei R, Voos K, Han MK, Ducho C, Posselt G, Wessler S, Brandstetter H, Haupenthal J, del Campo A, Hirsch AK. Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections. ADVANCED THERAPEUTICS 2022; 5:2100222. [PMID: 35310821 PMCID: PMC7612511 DOI: 10.1002/adtp.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/02/2023]
Abstract
Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| | - Essak S. Khan
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Tobias Däinghaus
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Katrin Voos
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Mitchell K.L. Han
- Leibniz Institute for New Materials (INM) Saarl and University Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Gernot Posselt
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Aránzazu del Campo
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department Saarland University 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
2495
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
2496
|
Fan J, Zhou J, Qu Z, Peng H, Meng S, Peng Y, Liu T, Luo Q, Dai L. Network Pharmacology and Molecular Docking Elucidate the Pharmacological Mechanism of the OSTEOWONDER Capsule for Treating Osteoporosis. Front Genet 2022; 13:833027. [PMID: 35295951 PMCID: PMC8918533 DOI: 10.3389/fgene.2022.833027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis (OP) is a serious and common bone metabolic disease with bone mass loss and bone microarchitectural deterioration. The OSTEOWONDER capsule is clinically used to treat OP. However, the potential regulatory mechanism of the OSTEOWONDER capsule in treatment of OP remains largely unknown.Methods: The bioactive compounds of herbs and their targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of OP were screened out based on GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The gene modules and hub genes of OP were identified using a weighted gene co-expression network analysis (WGCNA). Then, an herb-compound-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein–protein interaction (PPI) network was constructed to identify hub targets of OP. Finally, molecular docking was performed to explore the interaction between compounds and targets.Results: A total of 148 compounds of eight herbs and the corresponding 273 targets were identified based on the TCMSP database. A total of 4,929 targets of OP were obtained based on GeneCards, DisGeNET, and OMIM databases. In addition, six gene modules and 4,235 hub genes of OP were screened out based on WGCNA. Generally, an herb-compound-target network, including eight herbs, 84 compounds, and 58 targets, was constructed to investigate the therapeutic mechanism of the OSTEOWONDER capsule for OP. The biofunction analysis indicated 58 targets mainly associated with the bone metabolism, stimulation response, and immune response. EGFR, HIF1A, MAPK8, IL6, and PPARG were identified as the hub therapeutic targets in OP. Moreover, the interaction between EGFR, HIF1A, MAPK8, IL6, PPARG, and the corresponding compounds (quercetin and nobiletin) was analyzed using molecular docking.Conclusion: Our finding discovered the possible therapeutic mechanisms of the OSTEOWONDER capsule and supplied the potential therapeutic targets for OP.
Collapse
Affiliation(s)
- Jiashuang Fan
- Department of Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianli Zhou
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Zhuan Qu
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hangya Peng
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Shuhui Meng
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Yaping Peng
- Medical School, Kunming Medical University, Kunming, China
| | - Tengyan Liu
- Medical School, Kunming Medical University, Kunming, China
| | - Qiu Luo
- Department of Internal Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
- *Correspondence: Qiu Luo, ; Lifen Dai,
| | - Lifen Dai
- Department of Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Internal Medicine, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
- *Correspondence: Qiu Luo, ; Lifen Dai,
| |
Collapse
|
2497
|
Defining Diffuse Large B-Cell Lymphoma Immunotypes by CD8+ T Cells and Natural Killer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3168172. [PMID: 35237321 PMCID: PMC8885174 DOI: 10.1155/2022/3168172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
Abstract
Background There is a poor prognosis for diffuse large B-cell lymphoma (DLBCL), one of the most common types of non-Hodgkin lymphoma (NHL). Through gene expression profiles, this study intends to reveal potential subtypes among patients with DLBCL by evaluating their prognostic impact on immune cells. Methods Immune subtypes were developed based on CD8+ T cells and natural killer cells calculated from gene expression profiles. The comparison of prognoses and enriched pathways was made between immune subtypes. Following this validation step, samples from the independent data set were analyzed to determine the correlation between immune subtype and prognosis and immune checkpoint blockade (ICB) response. To provide a model to predict the DLBCL immune subtypes, machine learning methods were used. The virtual screening and molecular docking were adopted to identify small molecules to target the immune subtype biomarkers. Results A training data set containing 432 DLBCL samples from five data sets and a testing dataset containing 420 DLBCL samples from GSE10846 were used to develop and validate immune subtypes. There were two novel immune subtypes identified in this study: an inflamed subtype (IS) and a noninflamed subtype (NIS). When compared with NIS, IS was associated with higher levels of immune cells and a better prognosis for immunotherapy. Based on the random forest algorithm, a robust machine learning model has been established by 12 hub genes, and the area under the curve (AUC) value is 0.948. Three small molecules were selected to target NIS biomarkers, including VGF, RAD54L, and FKBP8. Conclusion This study assessed immune cells as prognostic factors in DLBCL, constructed an immune subtype that could be used to identify patients who would benefit from ICB, and constructed a model to predict the immune subtype.
Collapse
|
2498
|
Bharathi M, Sivamaruthi BS, Kesika P, Thangaleela S, Chaiyasut C. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Mar Drugs 2022; 20:md20020148. [PMID: 35200677 PMCID: PMC8877529 DOI: 10.3390/md20020148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed’s bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed’s compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (−6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (−6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (−6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients.
Collapse
Affiliation(s)
- Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| |
Collapse
|
2499
|
Hanif M, Khan S, Farooq U, Nouroz F, Sarwar R. Unraveling the possible inhibitors for Chorismate synthase to combat tuberculosis using in silico approach. J Biomol Struct Dyn 2022; 41:2823-2830. [PMID: 35168481 DOI: 10.1080/07391102.2022.2039298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tuberculosis antibiotic resistance is a huge concern to the global population. The goal of this study was to find new and effective compounds to treat multidrug-resistant tuberculosis by targeting Chorismate synthase (CS), a crucial enzyme for Mycobacterium tuberculosis survival (MbT). The potential of a library of compounds as selective anti - tuberculosis drugs was investigated. Docking was first conducted using MoE to determine the effectiveness of the compounds. Molecular docking studies followed by MD simulation studies (total of 500 ns) in combination with free energy calculations grade the ligands in terms of their binding affinities. In the ligand bound state of the CS, MD simulations revealed a change from stretched to bended motional shift in loop L19. The RMSF analysis also revealed this flexibility, which was confirmed by visual inspection of L19 at various time intervals during the experiment. It appears that ZF1(-25.43Kcal/mol) and ZF2 (-22.04Kcal/mol) form hbonds and have a high binding energy in the active region of protein. Residues wise distribution of binding energy reveals that Arg144, Trp4, Thr6, and L19 amino acid residues are engaged in binding of CS with inhibitors. In summary, the findings suggest that compounds ZF1 and ZF2 may be more effective and selective anti-TB agents than currently available drugs. Also the role of L19, mediated by αH9 and αH5 in the retention of ligand inside the active pocket, through the formation of lid was also revealed. This knowledge will aid in the discovery of drugs that are potent CS inhibitors. More experimental research and a better understanding of the structure-activity relationship could aid in the development of possible candidates with better CS inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Sara Khan
- Department of Chemistry, COMSATS University, Islamabad - Abbottabad Campus, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Islamabad - Abbottabad Campus, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University, Islamabad - Abbottabad Campus, Pakistan
| |
Collapse
|
2500
|
Calzada F, Bautista E, Hidalgo-Figueroa S, García-Hernández N, Velázquez C, Barbosa E, Valdes M, Solares-Pascasio JI. Understanding the Anti-Diarrhoeal Properties of Incomptines A and B: Antibacterial Activity against Vibrio cholerae and Its Enterotoxin Inhibition. Pharmaceuticals (Basel) 2022; 15:ph15020196. [PMID: 35215308 PMCID: PMC8875560 DOI: 10.3390/ph15020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Incomptines A (IA) and B (IB) are two sesquiterpene lactones with antiprotozoal, antibacterial, cytotoxic, antitumor, spermicidal, and phytotoxic properties. The antibacterial activity of IA and IB against bacteria causing diarrhoea have been reported; however, no information is available regarding their antibacterial activity on Vibrio cholerae. In this work, both compounds were evaluated for their anti-diarrhoeal potential using the bacterium V. cholerae, sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis on cholera toxin, and a cholera toxin-induced diarrhoea model in male Balb/c mice. In addition, a molecular docking study was carried out to understand the interaction of IA and IB with cholera toxin. In terms of antibacterial activity, IB was three times more active than IA on V. cholerae. In the case of SDS-PAGE analysis and the in silico study, IA was most effective, revealing its potential binding mode at a molecular level. In terms of anti-diarrhoeal activity, IA was 10 times more active than IB and racecadotril, an antisecretory drug used as positive control; the anti-diarrheal activity of IB was also closer than racecadotril. The results obtained from in vitro, in vivo, and computational studies on V. cholerae and cholera toxin support the potential of IA and IB as new anti-diarrhoeal compounds.
Collapse
Affiliation(s)
- Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
- Correspondence:
| | - Elihu Bautista
- CONACYT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico; (E.B.); (S.H.-F.)
| | - Sergio Hidalgo-Figueroa
- CONACYT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico; (E.B.); (S.H.-F.)
| | - Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2º Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Cd Mexico 11340, Mexico;
| | - Miguel Valdes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
| | - Jesús Iván Solares-Pascasio
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
| |
Collapse
|