251
|
Abstract
The mechanisms that drive the spiral wrapping of the myelin sheath around axons are poorly understood. Two papers in this issue of Developmental Cell demonstrate that actin disassembly, rather than actin assembly, predominates during oligodendrocyte maturation and is critical for the genesis of the central myelin sheath.
Collapse
Affiliation(s)
- Jayshree Samanta
- New York University Neuroscience Institute, Departments of Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA
| | - James L Salzer
- New York University Neuroscience Institute, Departments of Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
252
|
Poitelon Y, Bogni S, Matafora V, Della-Flora Nunes G, Hurley E, Ghidinelli M, Katzenellenbogen BS, Taveggia C, Silvestri N, Bachi A, Sannino A, Wrabetz L, Feltri ML. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun 2015; 6:8303. [PMID: 26383514 PMCID: PMC4576721 DOI: 10.1038/ncomms9303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. Neuron–glia interactions are critical in the nervous system, where they result in the extension of glial pseudopodia. Poitelon et al. isolate these protrusions using an in vitro assay, and, by characterising their proteomes, identify Prohibitin-2 as a regulator of myelination.
Collapse
Affiliation(s)
- Y Poitelon
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - S Bogni
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - V Matafora
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - G Della-Flora Nunes
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - E Hurley
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - M Ghidinelli
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - B S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana Illinois 61801, USA
| | - C Taveggia
- Division of Neuroscience, San Raffaele Hospital, Milano 20132, Italy
| | - N Silvestri
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - A Bachi
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - A Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - L Wrabetz
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - M L Feltri
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|