251
|
Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases. Brain Res 2009; 1314:235-52. [PMID: 19914222 DOI: 10.1016/j.brainres.2009.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 11/22/2022]
Abstract
From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review.
Collapse
|
252
|
Zyklophin, a systemically active selective kappa opioid receptor peptide antagonist with short duration of action. Proc Natl Acad Sci U S A 2009; 106:18396-401. [PMID: 19841255 DOI: 10.1073/pnas.0910180106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyclic peptide zyklophin {[N-benzylTyr(1),cyclo(D-Asp(5),Dap(8))-dynorphin A-(1-11)NH(2), Patkar KA, et al. (2005) J Med Chem 48: 4500-4503} is a selective peptide kappa opioid receptor (KOR) antagonist that shows activity following systemic administration. Systemic (1-3 mg/kg s.c.) as well as central (0.3-3 nmol intracerebroventricular, i.c.v.) administration of this peptide dose-dependently antagonizes the antinociception induced by the selective KOR agonist U50,488 in C57BL/6J mice tested in the 55 degrees C warm water tail withdrawal assay. Zyklophin administration had no effect on morphine- or SNC-80-mediated antinociception, suggesting that zyklophin selectively antagonizes KOR in vivo. Additionally, the antagonism of antinociception induced by centrally (i.c.v.) administered U50,488 following peripheral administration of zyklophin strongly suggests that the peptide crosses the blood-brain barrier to antagonize KOR in the CNS. Most importantly, the antagonist activity of zyklophin (3 mg/kg s.c.) lasts less than 12 h, which contrasts sharply with the exceptionally long duration of antagonism reported for the established small-molecule selective KOR antagonists such as nor-binaltorphimine (nor-BNI) that last weeks after a single administration. Systemically administered zyklophin (3 mg/kg s.c.) also prevented stress-induced reinstatement of cocaine-seeking behavior in a conditioned place preference assay. In conclusion, the peptide zyklophin is a KOR-selective antagonist that exhibits the desired shorter duration of action, and represents a significant advance in the development of KOR-selective antagonists.
Collapse
|
253
|
Fang WJ, Cui Y, Murray TF, Aldrich JV. Design, synthesis, and pharmacological activities of dynorphin A analogues cyclized by ring-closing metathesis. J Med Chem 2009; 52:5619-25. [PMID: 19715279 DOI: 10.1021/jm900577k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynorphin A (Dyn A) is an endogenous ligand for kappa opioid receptors. To restrict the conformational mobility, we synthesized several cyclic Dyn A-(1-11)NH(2) analogues on solid phase utilizing ring-closing metathesis (RCM) between the side chains of allylglycine (AllGly) residues incorporated in positions 2, 5, and/or 8. Cyclizations between the side chains of AllGly gave reasonable yields (56-74%) of all of the desired cyclic peptides. Both the cis and trans isomers were obtained for all of the cyclic peptides, with the ratio of cis to trans isomers depending on the position and stereochemistry of the AllGly. Most of the cyclic Dyn A-(1-11)NH(2) analogues examined exhibit low nanomolar binding affinity for kappa opioid receptors (K(i) = 0.84-11 nM). In two of the three cases, the configuration of the double bond has a significant influence on the opioid receptor affinities and agonist potency. All of the peptides inhibited adenylyl cyclase activity in a concentration-dependent manner with full or close to full agonist activity. These potent Dyn A analogues are the first ones cyclized by RCM.
Collapse
Affiliation(s)
- Wei-Jie Fang
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
254
|
Doremus-Fitzwater TL, Varlinskaya EI, Spear LP. Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn 2009; 72:114-23. [PMID: 19762139 DOI: 10.1016/j.bandc.2009.08.008] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adolescence is an evolutionarily conserved developmental phase characterized by hormonal, physiological, neural and behavioral alterations evident widely across mammalian species. For instance, adolescent rats, like their human counterparts, exhibit elevations in peer-directed social interactions, risk-taking/novelty seeking and drug and alcohol use relative to adults, along with notable changes in motivational and reward-related brain regions. After reviewing these topics, the present paper discusses conditioned preference and aversion data showing adolescents to be more sensitive than adults to positive rewarding properties of various drugs and natural stimuli, while less sensitive to the aversive properties of these stimuli. Additional experiments designed to parse specific components of reward-related processing using natural rewards have yielded more mixed findings, with reports of accentuated positive hedonic sensitivity during adolescence contrasting with studies showing less positive hedonic affect and reduced incentive salience at this age. Implications of these findings for adolescent substance abuse will be discussed.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | |
Collapse
|
255
|
Morani AS, Kivell B, Prisinzano TE, Schenk S. Effect of kappa-opioid receptor agonists U69593, U50488H, spiradoline and salvinorin A on cocaine-induced drug-seeking in rats. Pharmacol Biochem Behav 2009; 94:244-9. [PMID: 19747933 DOI: 10.1016/j.pbb.2009.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/29/2009] [Accepted: 09/01/2009] [Indexed: 11/16/2022]
Abstract
Our previous work indicated that pretreatment with the selective kappa-opioid receptor (KOPr) agonist, U69593, attenuated the ability of priming injections of cocaine to reinstate extinguished cocaine-seeking behavior. The present study expanded these initial tests to include other traditional KOPr agonists, U50488H, spiradoline (SPR), and salvinorin A (Sal A), an active constituent of the plant Salvia divinorum. Following acquisition and stabilization of cocaine self-administration, cocaine-produced drug-seeking was measured. This test was conducted in a single day and comprised an initial phase of self-administration, followed by a phase of extinguished responding. The final phase examined reinstatement of extinguished cocaine self-administration followed by a priming injection of cocaine (20.0mg/kg, intraperitoneal (I.P.)) in combination with the various KOPr agonists. Cocaine-induced drug-seeking was attenuated by pretreatment with U69593 (0.3mg/kg, subcutaneous (S.C.)), U50488H (30.0mg/kg, I.P.), SPR (1.0, 3.0mg/kg, I.P.) and Sal A (0.3, 1.0mg/kg, I.P.). Sal A (0.3, 1.0mg/kg, I.P.) had no effect on operant responding to obtain sucrose reinforcement or on cocaine-induced hyperactivity. These findings show that Sal A, like other traditional KOPr agonists attenuates cocaine-induced drug-seeking behavior.
Collapse
Affiliation(s)
- Aashish S Morani
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | | | | | | |
Collapse
|
256
|
Shin EJ, Jang CG, Bing G, Park DH, Oh CH, Koo KH, Oh KW, Yamada K, Nabeshima T, Kim HC. Prodynorphin gene deficiency potentiates nalbuphine-induced behavioral sensitization and withdrawal syndrome in mice. Drug Alcohol Depend 2009; 104:175-84. [PMID: 19559544 DOI: 10.1016/j.drugalcdep.2009.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/26/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Dynorphin is the presumed endogenous ligand for the kappa-opioid receptor. The dynorphin gene may play a role in psychotropic agent-mediated behavioral changes via dopaminergic modulation. Therefore, in this study, possible involvement of the dynorphin gene in nalbuphine-mediated behavioral responses was examined using prodynorphin (Pdyn) gene knock-out (-/-) mice. Pdyn gene deficiency potentiates nalbuphine-induced behavioral sensitization of locomotor activity and accumbal c-Fos expression. Administration of nalbuphine induced a significant increase in the dialysate dopamine level in the nucleus accumbens. This increase was more pronounced in the Pdyn (-/-) mice than in the wild-type (WT) mice. In addition, Pdyn (-/-) mice were more vulnerable to the naloxone-precipitated withdrawal syndrome (i.e., teeth chattering, wet dog shakes, forepaw tremors, jumping, weight loss, and global withdrawal score) after repeated treatment with nalbuphine than the WT mice. Consistently, nor-binaltorphimine, a kappa-opioid receptor antagonist, significantly potentiated nalbuphine-induced behavioral effects in WT mice, whereas U-50488H, a kappa-opioid receptor agonist, significantly attenuated these changes in Pdyn (-/-) mice in a dose-dependent manner. Our data suggest that the kappa-opioid receptor/dynorphin system is specifically modulated in response to behavioral sensitization and withdrawal signs induced by nalbuphine.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Abstract
The negative motivational aspects of withdrawal include symptoms of both anxiety and depression, and emerge after termination of chronic drug use as well as after acute drug exposure. States of acute withdrawal are an inherent part of intermittent drug use in humans, but the contribution of acute withdrawal to the development of addiction has received limited systematic investigation, because of a lack of preclinical models for withdrawal states that emerge spontaneously after acute drug exposure. Here, we have characterized a spontaneous increase in the magnitude of the acoustic startle reflex (ie, spontaneous withdrawal-potentiated startle) that emerges after acute morphine administration in rats, and compared the time course of startle potentiation and place conditioning. We find that startle potentiation seems to be related to a decrease in opiate receptor occupancy and reflects an anxiety-like state with a pharmacological profile similar to other signs of opiate withdrawal. Spontaneous startle potentiation emerges before the rewarding effects of morphine have subsided, even though naloxone administration after a single morphine exposure causes both startle potentiation and conditioned place aversion (CPA). These results show that negative emotional signs of withdrawal develop after just one exposure to morphine, and are likely a recurrent aspect of intermittent drug use that may contribute to the earliest adaptations underlying the development of addiction. Furthermore, the dissociation between spontaneous startle potentiation and CPA suggests anxiogenic and dysphoric manifestations of opiate withdrawal may be mediated by distinct neural mechanisms that are progressively engaged as withdrawal unfolds.
Collapse
|
258
|
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 2009; 1314:44-55. [PMID: 19716811 DOI: 10.1016/j.brainres.2009.08.062] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/08/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022]
Abstract
Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin-releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.
Collapse
Affiliation(s)
- M R Bruchas
- University of Washington, Department of Pharmacology, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
259
|
Xi ZX, Gardner EL. Hypothesis-driven medication discovery for the treatment of psychostimulant addiction. ACTA ACUST UNITED AC 2009; 1:303-27. [PMID: 19430578 DOI: 10.2174/1874473710801030303] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Psychostimulant abuse is a serious social and health problem, for which no effective treatments currently exist. A number of review articles have described predominantly 'clinic'-based pharmacotherapies for the treatment of psychostimulant addiction, but none have yet been shown to be definitively effective for use in humans. In the present article, we review various 'hypothesis'- or 'mechanism'-based pharmacological agents that have been studied at the preclinical level and evaluate their potential use in the treatment of psychostimulant addiction in humans. These compounds target brain neurotransmitter or neuromodulator systems, including dopamine (DA), gamma-aminobutyric acid (GABA), endocannabinoid, glutamate, opioid and serotonin, which have been shown to be critically involved in drug reward and addiction. For drugs in each category, we first briefly review the role of each neurotransmitter system in psychostimulant actions, and then discuss the mechanistic rationale for each drug's potential anti-addiction efficacy, major findings with each drug in animal models of psychostimulant addiction, abuse liability and potential problems, and future research directions. We conclude that hypothesis-based medication development strategies could significantly promote medication discovery for the effective treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
260
|
Mysels D, Sullivan MA. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use. Am J Addict 2009; 18:272-6. [PMID: 19444730 PMCID: PMC5846103 DOI: 10.1080/10550490902925862] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There is increasing evidence that the kappa-opiate receptor, in addition to the mu-opiate receptor, plays an important role in substance use pathophysiology and behavior. As dopamine activity is upregulated through chronic substance use, kappa receptor activity, mediated through the peptide dynorphin, is upregulated in parallel. Dynorphin causes dysphoria and decreased locomotion, and the upregulation of its activity on the kappa receptor likely dampens the excitation caused by increased dopaminergic activity. This feedback mechanism may have significant clinical implications for treating drug dependent patients in various stages of their pathology.
Collapse
Affiliation(s)
- David Mysels
- Division on Substance Use Research, Columbia Presbyterian Medical Center/New York State Psychiatric Institution, New York, New York 10032, USA.
| | | |
Collapse
|
261
|
Koob GF, Kenneth Lloyd G, Mason BJ. Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nat Rev Drug Discov 2009; 8:500-15. [PMID: 19483710 DOI: 10.1038/nrd2828] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current pharmacotherapies for addiction represent opportunities for facilitating treatment and are forming a foundation for evaluating new medications. Furthermore, validated animal models of addiction and a surge in understanding of neurocircuitry and neuropharmacological mechanisms involved in the development and maintenance of addiction - such as the neuroadaptive changes that account for the transition to dependence and the vulnerability to relapse - have provided numerous potential therapeutic targets. Here, we emphasize a 'Rosetta Stone approach', whereby existing pharmacotherapies for addiction are used to validate and improve animal and human laboratory models to identify viable new treatment candidates. This approach will promote translational research and provide a heuristic framework for developing efficient and effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400 La Jolla, California 92037, USA.
| | | | | |
Collapse
|
262
|
Pautassi RM, Nizhnikov ME, Spear NE. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model. Neurosci Biobehav Rev 2009; 33:953-74. [PMID: 19428502 PMCID: PMC2693872 DOI: 10.1016/j.neubiorev.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Collapse
Affiliation(s)
- Ricardo M Pautassi
- Center for Development and Behavioral Neuroscience, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| | | | | |
Collapse
|
263
|
Prodynorphin gene disruption increases the sensitivity to nicotine self-administration in mice. Int J Neuropsychopharmacol 2009; 12:615-25. [PMID: 18937881 DOI: 10.1017/s1461145708009450] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The endogenous opioid system has been reported to participate in nicotine behavioural responses. The aim of the study was to determine the contribution of the endogenous peptides derived from prodynorphin in acute and chronic nicotine responses, mainly those related to its addictive properties. Locomotion and nociception were evaluated after acute nicotine administration in prodynorphin knockout mice. In addition, nicotine rewarding properties were investigated in the place-conditioning and the intravenous self-administration paradigms. The somatic signs of nicotine withdrawal were also analysed after the injection of the nicotinic antagonist mecamylamine in nicotine-dependent mice. The hypolocomotor and antinociceptive effects induced by acute nicotine administration were not modified in knockout (KO) animals. Nicotine also produced similar conditioned place preference in both genotypes. However, a shift to the left in the percentage of acquisition of intravenous nicotine-self administration was observed in prodynorphin KO mice. Indeed, a significant increase in the number of KO mice acquiring this operant behaviour was revealed when low doses of nicotine were used. Nicotine physical dependence was similar in wild-type and KO animals. These findings reveal a specific role of endogenous peptides derived from prodynorphin in nicotine self-administration, probably through the modulation of its aversive effects.
Collapse
|
264
|
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123:353-70. [PMID: 19481570 DOI: 10.1016/j.pharmthera.2009.05.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
Since the first description of their opioid properties three decades ago, dynorphins have increasingly been thought to play a regulatory role in numerous functional pathways of the brain. Dynorphins are members of the opioid peptide family and preferentially bind to kappa opioid receptors. In line with their localization in the hippocampus, amygdala, hypothalamus, striatum and spinal cord, their functions are related to learning and memory, emotional control, stress response and pain. Pathophysiological mechanisms that may involve dynorphins/kappa opioid receptors include epilepsy, addiction, depression and schizophrenia. Most of these functions were proposed in the 1980s and 1990s following histochemical, pharmacological and electrophysiological experiments using kappa receptor-specific or general opioid receptor agonists and antagonists in animal models. However, at that time, we had little information on the functional relevance of endogenous dynorphins. This was mainly due to the complexity of the opioid system. Besides actions of peptides from all three classical opioid precursors (proenkephalin, prodynorphin, proopiomelanocortin) on the three classical opioid receptors (delta, mu and kappa), dynorphins were also shown to exert non-opioid effects mainly through direct effects on NMDA receptors. Moreover, discrepancies between the distribution of opioid receptor binding sites and dynorphin immunoreactivity contributed to the difficulties in interpretation. In recent years, the generation of prodynorphin- and opioid receptor-deficient mice has provided the tools to investigate open questions on network effects of endogenous dynorphins. This article examines the physiological, pathophysiological and pharmacological implications of dynorphins in the light of new insights in part obtained from genetically modified animals.
Collapse
Affiliation(s)
- Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
265
|
Goodarzi A, Vousooghi N, Sedaghati M, Mokri A, Zarrindast MR. Dopamine receptors in human peripheral blood lymphocytes: changes in mRNA expression in opioid addiction. Eur J Pharmacol 2009; 615:218-22. [PMID: 19445922 DOI: 10.1016/j.ejphar.2009.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
Abstract
Gradual adaptations of the brain to repeated drug exposure may induce addiction. Brain mesolimbic dopaminergic pathway is the site of the effect of addictive drugs. The dopamine receptors in peripheral blood lymphocytes may reflect the status of homologous brain receptors. In the present study, the effects of opioid addiction on mRNA expression of dopamine D(3), D(4) and D(5) receptors in human peripheral blood lymphocytes were investigated, using a real-time PCR method. Four groups each comprising 30 individuals were enrolled in the study: opioid addicted, methadone maintained, long-term abstinent and normal subjects. The results indicated that dopamine D(3) receptor mRNA expression was increased in addicted and methadone maintained subjects by a factor of 1.74 and 1.98, respectively, but no change was observed in the abstinent group. The dopamine D(4) receptor mRNA expression was reduced in abstinent and addicted subjects (but not in the methadone group) and reached 0.44 and 0.53 the amount of the control group, respectively. Expression of dopamine D(5) receptor mRNA showed a significant reduction in abstinent subjects (0.41 the amount of the control group). However, in the addicted and methadone maintained groups, the change of expression level was not statistically significant. It can be concluded that persisting deficiency of dopamine D(4) and D(5) receptors may be a risk factor urging individuals to addiction, and methadone may exert its therapeutic effects through normalizing mRNA expression of these receptors. The dopamine D(3) receptor may have a negative feedback role in addiction; however, we have no explanation for the persisting up-regulation of this receptor in methadone subjects.
Collapse
Affiliation(s)
- Ali Goodarzi
- Institute for Cognitive Sciences Studies, Tehran, Iran
| | | | | | | | | |
Collapse
|
266
|
Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS JOURNAL 2009; 11:312-22. [PMID: 19430912 DOI: 10.1208/s12248-009-9105-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/26/2009] [Indexed: 11/30/2022]
Abstract
While narcotic analgesics such as morphine, which act preferentially through mu opioid receptors, remain the gold standard in the treatment of severe pain, their use is limited by detrimental liabilities such as respiratory depression and drug dependence. Thus, there has been considerable interest in developing ligands for kappa opioid receptors (KOR) as potential analgesics and for the treatment of a variety of other disorders. These include effects mediated both by central receptors, such as antidepressant activity and a reduction in cocaine-seeking behavior, and activity resulting from the activation of peripheral receptors, such as analgesic and anti-inflammatory effects. While the vast majority of opioid receptor ligands that have progressed in preclinical development have been small molecules, significant advances have been made in recent years in identifying opioid peptide analogs that exhibit promising in vivo activity. This review will focus on possible therapeutic applications of ligands for KOR and specifically on the potential development of peptide ligands for these receptors.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., 4050 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
267
|
Affiliation(s)
- Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
268
|
Baker LE, Panos JJ, Killinger BA, Peet MM, Bell LM, Haliw LA, Walker SL. Comparison of the discriminative stimulus effects of salvinorin A and its derivatives to U69,593 and U50,488 in rats. Psychopharmacology (Berl) 2009; 203:203-11. [PMID: 19153716 DOI: 10.1007/s00213-008-1458-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 12/28/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND RATIONALE Research interests regarding the psychopharmacology of salvinorin A have been motivated by the recreational use and widespread media focus on the hallucinogenic plant, Salvia divinorum. Additionally, kappa opioid (KOP) receptor ligands may have therapeutic potential in the treatment of some neuropsychiatric conditions, including drug dependence and mood disorders. Salvinorin A is a selective KOP agonist, but only a few studies have explored the discriminative stimulus effects of this compound. OBJECTIVE This study compared the discriminative stimulus effects of salvinorin A and two synthetic derivatives of salvinorin B to the KOP agonists, U69,593 and U50,488. MATERIALS AND METHODS Sixteen male Sprague-Dawley rats trained to discriminate U69,593 (0.13 mg/kg, s.c., N = 8) or U50,488 (3.0 mg/kg, i.p., N = 8) under a fixed-ratio 20 schedule of food reinforcement were administered substitution tests with salvinorin A (0.125-3.0 mg/kg, i.p.). The animals trained to discriminate U69,593 were also administered substitution tests with salvinorin B ethoxymethyl ether (0.005-0.10 mg/kg, i.p.) and salvinorin B methoxymethyl ether (0.03-0.10 mg/kg, i.p.). Another eight rats were trained to discriminate 2.0 mg/kg salvinorin A and tested with U69,593 (0.04-0.32 mg/kg) and U50,488 (0.4-3.2 mg/kg). RESULTS Salvinorin A and both synthetic derivatives of salvinorin B substituted completely for U69,593. Additionally, cross-generalization was observed between salvinorin A and both KOP agonists. CONCLUSION These findings support previous reports indicating that the discriminative stimulus effects of salvinorin A are mediated by kappa receptors. Future studies may assist in the development and screening of salvinorin A analogs for potential pharmacotherapy.
Collapse
Affiliation(s)
- Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | | | | | | | | | | | | |
Collapse
|
269
|
Wiley MD, Poveromo LB, Antapasis J, Herrera CM, Bolaños-Guzmán CA. Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate. Neuropsychopharmacology 2009; 34:1339-50. [PMID: 18923399 PMCID: PMC2656574 DOI: 10.1038/npp.2008.188] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methylphenidate (MPH) is commonly prescribed in childhood and adolescence for the treatment of attention-deficit/hyperactivity disorders. In rodents, MPH exposure during preadolescence (postnatal days (PD) 20-35) causes decreased sensitivity to drug and natural rewards, while enhancing a negative emotional state characterized by increased sensitivity to aversive situations later in adulthood. It has been proposed that this behavioral profile may be mediated, at least in part, by changes in the expression of dynorphin, the endogenous ligand for kappa-opioid receptors (KORs). Because increases in dynorphin activity and activation of KOR induce aversive states, we examined the possibility that these behavioral deficits may be mediated by changes in KOR function, and that MPH-exposed rats would demonstrate increased sensitivity to the kappa-agonist U-50488. Sprague-Dawley male rats were treated with MPH (2 mg/kg) or its saline vehicle (VEH) during PD20-35. When adults (PD90+), these rats were divided into groups receiving saline, U-50488 (5 mg/kg), or nor-binaltorphimine (20 mg/kg), a kappa-antagonist, and their behavioral reactivity to various emotion-eliciting stimuli was assessed. Results show that MPH exposure decreases cocaine place conditioning and sucrose preference, while increasing vulnerability to anxiety (elevated plus maze)- and stress (forced swimming)-eliciting situations, and that these behavioral deficits can be intensified by U-50488, while being normalized by nor-binaltorphimine treatment. These results are consistent with the notion that dysregulated dynorphin/kappa-opioid systems may mediate deficits in behavioral responding after developmental MPH exposure. Moreover, these findings further support the idea of kappa-antagonists as potential pharmacotherapy for the treatment of anxiety- and depression-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Carlos A. Bolaños-Guzmán
- Corresponding author: Dr. CA Bolaños. Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, P.O. Box 3064301, Tallahassee, FL 32306-4301. Tel: (850) 644-2627; Fax (850) 645-7518;
| |
Collapse
|
270
|
Prisinzano TE. Natural products as tools for neuroscience: discovery and development of novel agents to treat drug abuse. JOURNAL OF NATURAL PRODUCTS 2009; 72:581-7. [PMID: 19099466 PMCID: PMC2788013 DOI: 10.1021/np8005748] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Much of what we know about the neurosciences is the direct result of studying psychoactive natural products. Unfortunately, there are many gaps in our understanding of the basic biological processes that contribute to the etiology of many CNS disorders. The investigation of psychoactive natural products offers an excellent approach to identify novel agents to treat CNS disorders and to find new chemical tools to better elucidate their biological mechanisms. This review will detail recent progress in a program directed toward investigating psychoactive natural products with the goal of treating drug abuse by targeting kappa opioid receptors.
Collapse
Affiliation(s)
- Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
271
|
Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci U S A 2009; 106:1983-8. [PMID: 19181855 DOI: 10.1073/pnas.0812491106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cocaine exposure induces long-lasting molecular and structural adaptations in the brain. In this study, we show that tissue plasminogen activator (tPA), an extracellular protease involved in neuronal plasticity, modulates the biochemical and behavioral response to cocaine. When injected in the acute binge paradigm, cocaine enhanced tPA activity in the amygdala, which required activation of corticotropin-releasing factor type-1 (CRF-R1) receptors. Compared with WT mice, tPA-/- mice injected with cocaine displayed attenuated phosphorylation of ERK, cAMP response element binding protein (CREB), and dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) and blunted induction of immediate early genes (IEGs) c-Fos, Egr-1, and Homer 1a in the amygdala and the nucleus accumbens (NAc). tPA-/- mice also displayed significantly higher basal preprodynorphin (ppDyn) mRNA levels in the NAc in comparison to WT mice, and cocaine decreased ppDyn mRNA levels in tPA-/- mice only. Cocaine-induced locomotor sensitization and conditioned place preference (CPP) were attenuated in tPA-/- mice. Cocaine exposure also had an anxiolytic effect in tPA-/- but not WT mice. These results identify tPA as an important and novel component of the signaling pathway that modulates cocaine-induced changes in neuroadaptation and behavior.
Collapse
|
272
|
The dynorphin/kappa opioid receptor system: a new target for the treatment of addiction and affective disorders? Neuropsychopharmacology 2009; 34:247. [PMID: 19079072 DOI: 10.1038/npp.2008.165] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
273
|
Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M. Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum. Psychopharmacology (Berl) 2009; 201:507-16. [PMID: 18807250 DOI: 10.1007/s00213-008-1315-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/21/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Nicotine displays rewarding and aversive effects, and while dopamine has been linked with nicotine's reward, the neurotransmitter(s) involved with aversion remains speculative. The kappa-dynorphinergic system has been associated with negative motivational and affective states, and whether dynorphin (Dyn) contributes to the behavioral pharmacology of nicotine is a pertinent question. OBJECTIVE We determined whether administration of a single dose of nicotine alters the biosynthesis of Dyn in the striatum of mice. RESULTS Nicotine free base, 1 mg/kg, sc, induced a biphasic, protracted increase of striatal Dyn, an initial rise by 1 h, which declined to control levels by 2 h, and a subsequent increase, between 6 and 12 h, lasting over 24 h. At 1 h, the nicotine effect was dose dependent, with doses>or=0.5 mg/kg inducing a response. Prodynorphin mRNA increased by 30 min for over 24 h, and in situ hybridization demonstrated elevated signal in caudate/putamen and nucleus accumbens. The nicotinic antagonist mecamylamine prevented the Dyn response, and a similar effect was observed with D1- and D2-like dopamine receptor antagonists, SCH 23390, sulpiride, and haloperidol. The glutamate NMDA receptor antagonist MK-801 reversed the nicotine-induced increase of Dyn, while the AMPA antagonist NBQX had a marginal effect. CONCLUSIONS We interpret our findings to indicate that acute nicotine enhances the synthesis and release of striatal Dyn. We propose that nicotine influences Dyn primarily through dopamine release and that glutamate plays a modulatory role. A heightened dynorphinergic tone may contribute to the aversive effects of nicotine in naive animals and first-time tobacco smokers.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Psychiatry, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
274
|
Béguin C, Duncan KK, Munro TA, Ho DM, Xu W, Liu-Chen LY, Carlezon WA, Cohen BM. Modification of the furan ring of salvinorin A: identification of a selective partial agonist at the kappa opioid receptor. Bioorg Med Chem 2008; 17:1370-80. [PMID: 19147366 DOI: 10.1016/j.bmc.2008.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/26/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
In an effort to find novel agents which selectively target the kappa opioid receptor (KOPR), we modified the furan ring of the highly potent and selective KOPR agonist salvinorin A. Introduction of small substituents at C-16 was well tolerated. 12-epi-Salvinorin A, synthesized in four steps from salvinorin A, was a selective partial agonist at the KOPR. No clear SAR patterns were observed for C-13 aryl ketones. Introducing a hydroxymethylene group between C-12 and the furan ring was tolerated. Small C-13 esters and ethers gave weak KOPR agonists, while all C-13 amides were inactive. Finally, substitution of oxadiazoles for the furan ring abolished affinity for the KOPR. None of the compounds displayed any KOPR antagonism or any affinity for mu or delta opioid receptors.
Collapse
Affiliation(s)
- Cécile Béguin
- Mailman Research Center, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
276
|
Manhães AC, Guthierrez MC, Filgueiras CC, Abreu-Villaça Y. Anxiety-like behavior during nicotine withdrawal predict subsequent nicotine consumption in adolescent C57BL/6 mice. Behav Brain Res 2008; 193:216-24. [DOI: 10.1016/j.bbr.2008.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/28/2008] [Indexed: 11/16/2022]
|
277
|
Shippenberg TS, LeFevour A, Chefer VI. Targeting endogenous mu- and delta-opioid receptor systems for the treatment of drug addiction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:442-53. [PMID: 19128202 PMCID: PMC3730841 DOI: 10.2174/187152708786927813] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug addiction is a chronic, relapsing disorder that is characterized by a compulsion to take drug regardless of the adverse consequences that may ensue. Although the involvement of mesoaccumbal dopamine neurons in the initiation of drug abuse is well-established, neuroadaptations within the limbic cortical- striatopallidal circuit that occur as a consequence of repeated drug use are thought to lead to the behavioral dysregulation that characterizes addiction. Opioid receptors and their endogenous ligands are enriched in brain regions comprising this system and are, thus, strategically located to modulate neurotransmission therein. This article will review data suggesting an important role of mu-opioid receptor (MOPr) and delta opioid receptor (DOPr) systems in mediating the rewarding effects of several classes of abused drugs and that aberrant activity of these opioid systems may not only contribute to the behavioral dysregulation that characterizes addiction but to individual differences in addiction vulnerability.
Collapse
Affiliation(s)
- T S Shippenberg
- Integrative Neuroscience Section, NIH/ NIDA Intramural Research Program, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
278
|
Abstract
Recent discoveries about the effects of drugs of abuse on the brain and the mechanisms of their addictions; new chemical compounds, including immunotherapies; and new actions of available medications are offering many opportunities for the discovery and development of novel medications to treat addictive disorders. Furthermore, advancements in the understanding of the genetic and epigenetic basis of drug addiction and the pharmacogenetics of the safety and/or efficacy of the medications are providing opportunities for more individualized pharmacotherapy approaches. Although multiple medications have been investigated for treating addictions, only a handful have shown acceptable safety and efficacy and are approved by the US Food and Drug Administration. This article reviews the current medications that are medically safe and have shown promising results for treating opioid, cocaine, methamphetamine, and cannabis addictions.
Collapse
|
279
|
Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 2008; 200:59-70. [PMID: 18575850 PMCID: PMC2680147 DOI: 10.1007/s00213-008-1122-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/19/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Prior activation of the kappa opioid system by repeated stress or agonist administration has been previously shown to potentiate the rewarding properties of subsequently administered cocaine. In the present study, intermittent and uncontrollable footshock, a single session of forced swim, or acute administration of the kappa agonist U50,488 (5 mg/kg) were found to reinstate place preference in mice previously conditioned with cocaine (15 mg/kg) and subsequently extinguished by repeated training sessions without drug. RESULTS AND DISCUSSION Stress-induced reinstatement did not occur for mice pretreated with the kappa opioid receptor antagonist norbinaltorphimine (10 mg/kg) and did not occur in mice lacking either kappa opioid receptors (KOR -/-) or prodynorphin (Dyn -/-). In contrast, the initial cocaine conditioning and extinction rates were not significantly affected by disruption of the kappa opioid system. Cocaine-injection also reinstated conditioned place preference in extinguished mice; however, cocaine-primed reinstatement was not blocked by kappa opioid system disruption. CONCLUSION The results suggest that stress-induced drug craving in mice may require activation of the dynorphin/kappa opioid system.
Collapse
|
280
|
Koob GF. A role for brain stress systems in addiction. Neuron 2008; 59:11-34. [PMID: 18614026 PMCID: PMC2748830 DOI: 10.1016/j.neuron.2008.06.012] [Citation(s) in RCA: 753] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/27/2008] [Accepted: 06/20/2008] [Indexed: 12/21/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
281
|
Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ. Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 2008; 55:41-6. [PMID: 18538358 DOI: 10.1016/j.neuropharm.2008.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 11/18/2022]
Abstract
Interest in development of therapeutics targeting brain neuropeptide systems for treatment of cocaine addiction (e.g., kappa opioid agonists) is based on animal data showing interactions between the neuropeptides, brain dopamine, and cocaine. In this autopsied brain study, our major objective was to establish by radioimmunoassay whether levels of dynorphin and other neuropeptides (e.g., metenkephalin, neurotensin and substance P) are increased in the dopamine-rich caudate, putamen, and nucleus accumbens of human chronic cocaine users (n=12) vs. matched control subjects (n=17) as predicted by animal findings. Changes were limited to markedly increased dynorphin immunoreactivity in caudate (+92%), decreased caudate neurotensin (-49%), and a trend for increased dynorphin (+75%) in putamen. In other examined subcortical/cerebral cortical areas dynorphin levels were normal with the striking exception of the ventral pallidum (+346%), whereas cerebral cortical metenkephalin levels were generally decreased and neurotensin variably changed. Our finding that, in contradistinction to animal data, the other striatal neuropeptides were not increased in human cocaine users could be explained by differences in pattern and contingency between human drug users and the animal models. However, the human dynorphin observations parallel well animal findings and suggest that the dynorphin system is upregulated, manifested as elevated neuropeptide levels, after chronic drug exposure in striatum and ventral pallidum. Our postmortem brain data suggest involvement of striatal dynorphin systems in human cocaine users and should add to the interest in the testing of new dynorphin-related therapeutics for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
282
|
Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154:384-96. [PMID: 18414400 DOI: 10.1038/bjp.2008.100] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the mu-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. Receptor tolerance appears to involve enhancement of mechanisms of receptor regulation, including desensitization and internalization. Adaptations causing cellular tolerance are more complex but several important processes have been identified including upregulation of cAMP/PKA and cAMP response element-binding signalling and perhaps the mitogen activated PK cascades in opioid sensitive neurons that might not only influence tolerance and withdrawal but also synaptic plasticity during cycles of intoxication and withdrawal. The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with mu-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse.
Collapse
Affiliation(s)
- M J Christie
- Pain Management Research Institute and Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia.
| |
Collapse
|
283
|
Cleck JN, Blendy JA. Making a bad thing worse: adverse effects of stress on drug addiction. J Clin Invest 2008; 118:454-61. [PMID: 18246196 DOI: 10.1172/jci33946] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sustained exposure to various psychological stressors can exacerbate neuropsychiatric disorders, including drug addiction. Addiction is a chronic brain disease in which individuals cannot control their need for drugs, despite negative health and social consequences. The brains of addicted individuals are altered and respond very differently to stress than those of individuals who are not addicted. In this Review, we highlight some of the common effects of stress and drugs of abuse throughout the addiction cycle. We also discuss both animal and human studies that suggest treating the stress-related aspects of drug addiction is likely to be an important contributing factor to a long-lasting recovery from this disorder.
Collapse
Affiliation(s)
- Jessica N Cleck
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6055, USA
| | | |
Collapse
|
284
|
Edenberg HJ, Wang J, Tian H, Pochareddy S, Xuei X, Wetherill L, Goate A, Hinrichs T, Kuperman S, Nurnberger JI, Schuckit M, Tischfield JA, Foroud T. A regulatory variation in OPRK1, the gene encoding the kappa-opioid receptor, is associated with alcohol dependence. Hum Mol Genet 2008; 17:1783-9. [PMID: 18319328 PMCID: PMC2405904 DOI: 10.1093/hmg/ddn068] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Variations in OPRK1, which encodes the κ-opioid receptor, are associated with the risk for alcohol dependence. Sequencing DNAs with higher and lower risk haplotypes revealed an insertion/deletion (indel) with a net addition of 830 bp located 1986 bp upstream of the translation start site (1389 bp upstream of the transcription start site). We demonstrated that the upstream region extending from −1647 to −10 bp or from −2312 to −10 bp (relative to the translation start site) could function as a promoter in transient transfection assays. We then determined that the presence of the indel reduced transcriptional activity by half. We used a PCR assay to genotype individuals in 219 multiplex alcohol-dependent families of European American descent for the presence or absence of this indel. Family-based association analyses detected significant evidence of association of this insertion with alcoholism; the longer allele (with the indel), which had lower expression, is associated with higher risk for alcoholism. This indel is, therefore, a functional regulatory variation likely to explain at least part of the association of OPRK1 with alcohol dependence.
Collapse
Affiliation(s)
- Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Licata SC, Rowlett JK. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond. Pharmacol Biochem Behav 2008; 90:74-89. [PMID: 18295321 DOI: 10.1016/j.pbb.2008.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/14/2007] [Accepted: 01/02/2008] [Indexed: 01/12/2023]
Abstract
Over the past several decades, benzodiazepines and the newer non-benzodiazepines have become the anxiolytic/hypnotics of choice over the more readily abused barbiturates. While all drugs from this class act at the GABA(A) receptor, benzodiazepine-type drugs offer the clear advantage of being safer and better tolerated. However, there is still potential for these drugs to be abused, and significant evidence exists to suggest that this is a growing problem. This review examines the behavioral determinants of the abuse and dependence liability of benzodiazepine-type drugs. Moreover, the pharmacological and putative biochemical basis of the abuse-related behavior is discussed.
Collapse
Affiliation(s)
- Stephanie C Licata
- McLean Hospital/Harvard Medical School, Behavioral Psychopharmacology Research Laboratory, 115 Mill Street, Belmont, MA 02478, United States.
| | | |
Collapse
|
286
|
Hoebel BG, Avena NM, Rada P. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 2007; 7:617-27. [PMID: 18023617 DOI: 10.1016/j.coph.2007.10.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
Understanding systems for approach and avoidance is basic for behavioral neuroscience. Research on the neural organization and functions of the dorsal striatum in movement disorders, such as Huntington's and Parkinson's Disease, can inform the study of the nucleus accumbens (NAc) in motivational disorders, such as addiction and depression. We propose opposing roles for dopamine (DA) and acetylcholine (ACh) in the NAc in the control of GABA output systems for approach and avoidance. Contrary to DA, which fosters approach, ACh release is a correlate or cause of meal satiation, conditioned taste aversion and aversive brain stimulation. ACh may also counteract excessive DA-mediated approach behavior as revealed during withdrawal from drugs of abuse or sugar when the animal enters an ACh-mediated state of anxiety and behavioral depression. This review summarizes evidence that ACh is important in the inhibition of behavior when extracellular DA is high and the generation of an anxious or depressed state when DA is relatively low.
Collapse
Affiliation(s)
- Bartley G Hoebel
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | | | | |
Collapse
|