251
|
The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial–mesenchymal transition (EMT). Eur Surg 2015. [DOI: 10.1007/s10353-015-0339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
252
|
EMT-Inducing Molecular Factors in Gynecological Cancers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:420891. [PMID: 26356073 PMCID: PMC4556818 DOI: 10.1155/2015/420891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
Gynecologic cancers are the unregulated growth of neoplastic cells that arise in the cervix, ovaries, fallopian tubes, uterus, vagina, and vulva. Although gynecologic cancers are characterized by different signs and symptoms, studies have shown that they share common risk factors, such as smoking, obesity, age, exposure to certain chemicals, infection with human immunodeficiency virus (HIV), and infection with human papilloma virus (HPV). Despite recent advancements in the preventative, diagnostic, and therapeutic interventions for gynecologic cancers, many patients still die as a result of metastasis and recurrence. Since mounting evidence indicates that the epithelial-mesenchymal transition (EMT) process plays an essential role in metastatic relapse of cancer, understanding the molecular aberrations responsible for the EMT and its underlying signaling should be given high priority in order to reduce cancer morbidity and mortality.
Collapse
|
253
|
Lee WS, Kim N, Park YR, Oh HH, Myung E, Kim SH, Yu HM, Kim MY, Oak CY, Chung CY, Park HC, Myung DS, Cho SB, Joo YE. Myeloid cell leukemia-1 promotes epithelial-mesenchymal transition of human gastric cancer cells. Oncol Rep 2015; 34:1011-6. [PMID: 26058661 DOI: 10.3892/or.2015.4040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during cancer progression, and cancer stem cells have been shown to acquire the EMT phenotype. Myeloid cell leukemia-1 (Mcl-1) has been implicated in cancer progression and is overexpressed in a variety of human cancers. However, the interaction between Mcl-1 and EMT in human gastric cancer (GC) is unclear. We investigated the impact of Mcl-1 expression levels on EMT and the underlying signaling pathways in human GC cells. We used the human GC cell lines, AGS and SNU638, and small interfering RNAs (siRNAs) to evaluate the effects of Mcl-1 knockdown on cell adhesion, migration and invasion. Expression of Mcl-1 and other target genes was determined using reverse transcription-polymerase chain reaction assays and western blotting. The results revealed that expression levels of Mcl-1 mRNA and protein in the AGS and SNU638 cells were reduced following transfection with Mcl-1 siRNAs. Knockdown of Mcl-1 led to increased cellular adhesion to fibronectin and collagen. Expression levels of vimentin, MMP-2, MMP-9 and Snail protein were decreased following knockdown of Mcl-1. However, expression of E-cadherin was increased in the AGS cells following knockdown of Mcl-1. The expression of cancer stemness markers, such as CD44 and CD133, was not altered by knockdown of Mcl-1. Knockdown of Mcl-1 suppressed tumor cell migration and invasion in both human GC cell lines. Signaling cascades, including the β-catenin, MEK1/2, ERK1/2 and p38 pathways, were significantly blocked by knockdown of Mcl-1. Our results indicate that Mcl-1 expression induces EMT via β-catenin, MEK1/2 and MAPK signaling pathways, which subsequently stimulates the invasive and migratory capacity of human GC cells.
Collapse
Affiliation(s)
- Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young-Ran Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Seung-Hun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyung-Min Yu
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Mi-Young Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Chan-Young Oak
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Cho-Yun Chung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyung-Chul Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| |
Collapse
|
254
|
The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol 2015; 36:8379-87. [DOI: 10.1007/s13277-015-3566-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
|
255
|
Bill R, Christofori G. The relevance of EMT in breast cancer metastasis: Correlation or causality? FEBS Lett 2015; 589:1577-87. [DOI: 10.1016/j.febslet.2015.05.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
|
256
|
Sun Y, Ma L. The emerging molecular machinery and therapeutic targets of metastasis. Trends Pharmacol Sci 2015; 36:349-59. [PMID: 25939811 DOI: 10.1016/j.tips.2015.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/29/2015] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Metastasis is a 100-year-old research topic. Technological advances during the past few decades have led to significant progress in our understanding of metastatic disease. However, metastasis remains the leading cause of cancer-related mortalities. The lack of appropriate clinical trials for metastasis preventive drugs and incomplete understanding of the molecular machinery are major obstacles in metastasis prevention and treatment. Numerous processes, factors, and signaling pathways are involved in regulating metastasis. Here we discuss recent progress in metastasis research, including epithelial-mesenchymal plasticity, cancer stem cells, emerging molecular determinants and therapeutic targets, and the link between metastasis and therapy resistance.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Genes and Development Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
257
|
Ren ZX, Yu HB, Li JS, Shen JL, Du WS. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Biosci Rep 2015; 35:e00202. [PMID: 26182364 PMCID: PMC4613694 DOI: 10.1042/bsr20150070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 01/28/2023] Open
Abstract
Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification.
Collapse
Affiliation(s)
- Zhou-Xin Ren
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Hai-Bin Yu
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Jian-Sheng Li
- Institute of Gerontology, Henan University of Traditional Chinese Medicine, Longzihu University Park, Zhengzhou, Henan 450046, China
| | - Jun-Ling Shen
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Wen-Sen Du
- Affiliated Hospital of Henan Academy of Traditional Chinese Medicine, Zhengzhou, Henan 450004, China
| |
Collapse
|
258
|
Negative feedback loop between p66Shc and ZEB1 regulates fibrotic EMT response in lung cancer cells. Cell Death Dis 2015; 6:e1708. [PMID: 25837484 PMCID: PMC4650543 DOI: 10.1038/cddis.2015.74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) program is crucial for the epithelial cancer progression and fibrotic diseases. Our previous work has demonstrated that p66Shc, a focal adhesion-associated adaptor protein, is frequently downregulated in lung cancers and its depletion promotes metastasis behavior through anoikis resistance. However, mechanism underlying loss of p66Shc and EMT response is not fully understood. Here, we showed that p66Shc deficiency enhanced the expression of ZEB1, the known mesenchymal transcription factor and consequently increased Vimentin, and decreased epithelial markers of E-cadherin and β-catenin. p66Shc depletion also increased cell invasion and migration. In addition, ChIP and luciferase assays showed that these effects were directly mediated by ZEB1 repression of p66Shc promoter. Thus, our findings define a critical role of p66Shc in the suppression of fibrotic EMT response with a negative feedback loop between p66Shc and ZEB1 in lung epithelial cancer cells.
Collapse
|
259
|
A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun 2015; 458:509-514. [PMID: 25666946 DOI: 10.1016/j.bbrc.2015.01.141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer.
Collapse
|
260
|
Abstract
Metastatic disease is responsible for 90% of death from solid tumors. However, only a minority of metastasis-specific targets has been exploited therapeutically, and effective prevention and suppression of metastatic disease is still an elusive goal. In this review, we will first summarize the current state of knowledge about the molecular features of the disease, with particular focus on steps and targets potentially amenable to therapeutic intervention. We will then discuss the reasons underlying the paucity of metastatic drugs in the current oncological arsenal and potential ways to overcome this therapeutic gap. We reason that the discovery of novel promising targets, an increased understanding of the molecular features of the disease, the effect of disruptive technologies, and a shift in the current preclinical and clinical settings have the potential to create more successful drug development endeavors.
Collapse
Affiliation(s)
- Yari Fontebasso
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
261
|
A549 cells adapted to high nitric oxide show reduced surface CEACAM expression and altered adhesion and migration properties. Tumour Biol 2014; 36:1871-9. [PMID: 25500969 DOI: 10.1007/s13277-014-2789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
The migration and adhesion properties of tumors affect their metastatic rate. In the present study, we investigated carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1, 5, and 6 expression in high nitric oxide (HNO)-adapted lung cancer cells compared to parent cells. We observed high transcript levels of CEACAM 1 (4S, 4L), CEACAM 5, and CEACAM 6 in HNO cells compared to parent cells. However, the surface expression was low in HNO cells. Interestingly, the intracellular protein levels were high for these three CEACAMs. We confirmed these results with immunohistochemical experiments. Further, the adhesion and migration assays showed reduced clumping in HNO-adapted A549 (A549-HNO) cells and faster migration rates, respectively. These results document the altered adhesion and migration properties of cells adapted to HNO. Further, our studies also indicate a dynamic regulation of CEACAM protein expression and surface transport in HNO cells.
Collapse
|
262
|
Voltage-gated sodium channel blockade for inhibition of EMT. Trends Pharmacol Sci 2014; 35:621. [DOI: 10.1016/j.tips.2014.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022]
|
263
|
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2014; 141:1697-713. [PMID: 25270087 DOI: 10.1007/s00432-014-1840-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. METHODS In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. RESULTS Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. CONCLUSIONS The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions.
Collapse
Affiliation(s)
- Danupon Nantajit
- Radiation Oncology Unit, Chulabhorn Hospital, Bangkok, 10210, Thailand
| | | | | |
Collapse
|
264
|
Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer. Physiol Genomics 2014; 46:699-724. [PMID: 25096367 PMCID: PMC4187119 DOI: 10.1152/physiolgenomics.00062.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.
Collapse
Affiliation(s)
- Tim N Beck
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Adaeze J Chikwem
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
265
|
Stewart TA, Yapa KTDS, Monteith GR. Altered calcium signaling in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2502-11. [PMID: 25150047 DOI: 10.1016/j.bbamem.2014.08.016] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023]
Abstract
It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Kunsala T D S Yapa
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|