251
|
Molecular and Genetic Bases of Fruit Firmness Variation in Blueberry—A Review. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blueberry (Vaccinium spp.) has been recognized worldwide as a valuable source of health-promoting compounds, becoming a crop with some of the fastest rising consumer demand trends. Fruit firmness is a key target for blueberry breeding as it directly affects fruit quality, consumer preference, transportability, shelf life, and the ability of cultivars to be machine harvested. Fruit softening naturally occurs during berry development, maturation, and postharvest ripening. However, some genotypes are better at retaining firmness than others, and some are crispy, which is a putatively extra-firmness phenotype that provides a distinct eating experience. In this review, we summarized important studies addressing the firmness trait in blueberry, focusing on physiological and molecular changes affecting this trait at the onset of ripening and also the genetic basis of firmness variation across individuals. New insights into these topics were also achieved by using previously available data and historical records from the blueberry breeding program at the University of Florida. The complex quantitative nature of firmness in an autopolyploid species such as blueberry imposes additional challenges for the implementation of molecular techniques in breeding. However, we highlighted some recent genomics-based studies and the potential of a QTL (Quantitative Trait Locus) mapping analysis and genome editing protocols such as CRISPR/Cas9 to further assist and accelerate the breeding process for this important trait.
Collapse
|
252
|
Posé S, Marcus SE, Knox JP. Differential metabolism of pectic galactan in tomato and strawberry fruit: detection of the LM26 branched galactan epitope in ripe strawberry fruit. PHYSIOLOGIA PLANTARUM 2018; 164:95-105. [PMID: 29688577 DOI: 10.1111/ppl.12748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analyzed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed.
Collapse
Affiliation(s)
- Sara Posé
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
253
|
Rabiti D, Orfila C, Holmes M, Bordoni A, Sarkar A. In vitro oral processing of raw tomato: Novel insights into the role of endogenous fruit enzymes. J Texture Stud 2018; 49:351-358. [PMID: 29896842 DOI: 10.1111/jtxs.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023]
Abstract
During consumption of fruits, the breakdown of the fruit tissue due to oral processing (chewing, mixing with saliva) may activate or increase the rate of endogenous enzyme activities via the disruption of the cell wall, cellular decompartmentalization, and particle size reduction allowing the enzymes to reach their substrates. The aim of this study was to investigate the activity of one such endogenous fruit enzyme (pectin methylesterase [PME] [E.C. 3.1.1.11]) during in vitro oral processing of raw tomatoes and associated changes in viscosity and microstructure. Oral processing of tomatoes purees was examined in the presence of artificial saliva (AS) at 37°C. in vitro oral processing was followed using immunofluorescence microscopy, apparent viscosity measurements, spectrophotometric, and titrimetric techniques. The results demonstrated that PME had slight but significant activity in the tomato fruit during in vitro oral processing generating methanol as a function of oral processing time, which was further evidenced using immunolabeling techniques to detect methylated pectin epitopes. A significant shear-thinning behavior of the tomato puree was observed due to dilution and/or endogenous fruit enzyme activity. These results suggest that activity of other fruit enzymes, such as polygalacturonase, which catalyzed the depolymerization of unmethylated pectin chains, might have resulted in a decrease in viscosity, which compensated for the increased potential for gel formation (if any) caused by PME. These interesting insights into the role of endogenous fruit enzymes might pave the way to the understanding of fruit viscosity modification occurring in the mouth and help in rational design of new fruit-based products.
Collapse
Affiliation(s)
- Davide Rabiti
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
- School of Food Science, University of Bologna, Cesena, Italy
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna (IT), Bologna, Italy
| | - Anwesha Sarkar
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
254
|
Ding X, Li J, Pan Y, Zhang Y, Ni L, Wang Y, Zhang X. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato. Int J Mol Sci 2018; 19:ijms19061583. [PMID: 29861481 PMCID: PMC6032376 DOI: 10.3390/ijms19061583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6, of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb) of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA), gibberellin (GA), and salicylic acid (SA)). We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.
Collapse
Affiliation(s)
- Xing Ding
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yue Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Lei Ni
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yaling Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
255
|
Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, Jing Y, Meng L, Zhu B, Zhu H, Chen J, Jiang CZ, Grierson D, Luo Y, Fu DQ. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. HORTICULTURE RESEARCH 2018; 5:75. [PMID: 30588320 PMCID: PMC6303401 DOI: 10.1038/s41438-018-0111-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 05/18/2023]
Abstract
Ripening of the model fruit tomato (Solanum lycopersicum) is controlled by a transcription factor network including NAC (NAM, ATAF1/2, and CUC2) domain proteins such as No-ripening (NOR), SlNAC1, and SlNAC4, but very little is known about the NAC targets or how they regulate ripening. Here, we conducted a systematic search of fruit-expressed NAC genes and showed that silencing NOR-like1 (Solyc07g063420) using virus-induced gene silencing (VIGS) inhibited specific aspects of ripening. Ripening initiation was delayed by 14 days when NOR-like1 function was inactivated by CRISPR/Cas9 and fruits showed obviously reduced ethylene production, retarded softening and chlorophyll loss, and reduced lycopene accumulation. RNA-sequencing profiling and gene promoter analysis suggested that genes involved in ethylene biosynthesis (SlACS2, SlACS4), color formation (SlGgpps2, SlSGR1), and cell wall metabolism (SlPG2a, SlPL, SlCEL2, and SlEXP1) are direct targets of NOR-like1. Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and dual-luciferase reporter assay (DLR) confirmed that NOR-like1 bound to the promoters of these genes both in vitro and in vivo, and activated their expression. Our findings demonstrate that NOR-like1 is a new positive regulator of tomato fruit ripening, with an important role in the transcriptional regulatory network.
Collapse
Affiliation(s)
- Ying Gao
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Wei Wei
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Xiaodan Zhao
- College of Food Science, Beijing Technology and Business University, 100037 Beijing, China
| | - Xiaoli Tan
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Zhongqi Fan
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Yiping Zhang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yuan Jing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Lanhuan Meng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Benzhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongliang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Jianye Chen
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA
| | - Donald Grierson
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yunbo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
256
|
Julio-González LC, Matas AJ, Mercado JA. Caracterización de indicadores de la calidad del fruto en líneas de fresa transgénicas con genes silenciados que codifican para enzimas pectinolíticas. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n1.73673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Se han evaluado algunos indicadores de calidad del fruto en líneas transgénicas de fresa con los genes de poligalacturonasa FaPG1 (líneas PG) o pectato liasa FaplC (líneas APEL) silenciados. Se analizaron dos líneas independientes por genotipo transgénico. No se observaron diferencias en el contenido de sólidos solubles entre las líneas transgénicas y el control. De igual forma, la acidez total y el pH fueron similares en las líneas PG29, APEL21 y el control; sin embargo, la acidez de los frutos de las líneas PG62 y APEL39 fue superior al control. Los parámetros de color L*, a* y b* fueron similares en todos los genotipos; sin embargo, el contenido en antocianos fue menor en la línea APEL21. Los valores más altos de firmeza de fruto, estimada mediante un ensayo de extrusión, se observaron en las dos líneas transgénicas PG y en la línea APEL39. En cuanto a las pérdidas por goteo (drip loss), la línea APEL39 presentó un valor mayor que el control, pero la línea APEL21 registró valores menores. El contenido de compuestos fenólicos se analizó en la línea PG29, no encontrándose diferencias estadísticas con respecto al control. Finalmente, la capacidad del fruto para captar radicales libres fue ligeramente menor en la línea PG29 que en el control. Los resultados indican que el silenciamiento de los genes de pectinasas incrementa significativamente la firmeza de la fresa sin modificar sustancialmente parámetros de calidad del fruto maduro como color, acidez, sólidos solubles o contenido en antocianos.
Collapse
|