251
|
Simon RP, Rumpf T, Linkuviene V, Matulis D, Akhtar A, Jung M. Cofactor Analogues as Active Site Probes in Lysine Acetyltransferases. J Med Chem 2019; 62:2582-2597. [PMID: 30785747 DOI: 10.1021/acs.jmedchem.8b01887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lysine acetyltransferases (KATs, also termed histone acetyltransferases, HATs) catalyze the acetylation of substrate lysine residues by employing the cofactor acetyl-coenzyme A (AcCoA), thereby providing a dynamic control mechanism of protein function. Because of their major involvement in cell development and homeostasis, small-molecule modulators of KAT activity are urgently needed to assess their therapeutic potential and for probing their underlying biology. Recent advances in the field suggest that targeting the cofactor binding site represents a promising strategy for identifying potent and selective ligands. Here, we present the synthesis of two functional cofactor-based chemical probes and their usage as mechanistic tools in a broadly applicable assay platform. A fluorescence polarization (FP)-based binding assay was combined with biolayer interferometry competition analysis and a FP competition activity immunoassay to enable easy, reliable, and profound evaluation of ligands that target the KAT cofactor binding site.
Collapse
Affiliation(s)
- Roman P Simon
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg im Breisgau , Germany
| | - Tobias Rumpf
- Department of Chromatin Regulation , Max-Planck-Institute of Immunobiology and Epigenetics , Stuebeweg 51 , 79108 Freiburg , Germany
| | - Vaida Linkuviene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center , Vilnius University , Saulėtekio 7 , 10257 Vilnius , Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center , Vilnius University , Saulėtekio 7 , 10257 Vilnius , Lithuania
| | - Asifa Akhtar
- Department of Chromatin Regulation , Max-Planck-Institute of Immunobiology and Epigenetics , Stuebeweg 51 , 79108 Freiburg , Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg im Breisgau , Germany
| |
Collapse
|
252
|
Wang T, Song P, Zhong T, Wang X, Xiang X, Liu Q, Chen H, Xia T, Liu H, Niu Y, Hu Y, Xu L, Shao Y, Zhu L, Qi H, Shen J, Hou T, Fodde R, Shao J. The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties. Oncogene 2019; 38:4932-4947. [PMID: 30804456 PMCID: PMC6756002 DOI: 10.1038/s41388-019-0763-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) has long been known for its tight association with chronic inflammation, thought to play a key role in tumor onset and malignant progression through the modulation of cancer stemness. However, the underlying molecular and cellular mechanisms are still largely elusive. Here we show that the IL-6/STAT3 inflammatory signaling axis induces the deacetylation of FRA1 at the Lys-116 residue located within its DNA-binding domain. The HDAC6 deacetylase underlies this key modification leading to the increase of FRA1 transcriptional activity, the subsequent transactivation of NANOG expression, and the acquisition of stem-like cellular features. As validated in a large (n = 123) CRC cohort, IL-6 secretion was invariably accompanied by increased FRA1 deacetylation at K116 and an overall increase in its protein levels, coincident with malignant progression and poor prognosis. Of note, combined treatment with the conventional cytotoxic drug 5-FU together with Tubastatin A, a HDAC6-specific inhibitor, resulted in a significant in vivo synergistic inhibitory effect on tumor growth through suppression of CRC stemness. Our results reveal a novel transcriptional and posttranslational regulatory cross-talk between inflammation and stemness signaling pathways that underlie self-renewal and maintenance of CRC stem cells and promote their malignant behavior. Combinatorial treatment aimed at the core regulatory mechanisms downstream of IL-6 may offer a novel promising approach for CRC treatment.
Collapse
Affiliation(s)
- Tingyang Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Song
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Zhong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tian Xia
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Normal University-Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, China
| | - Yumiao Niu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yingkuan Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
253
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
254
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
255
|
Abstract
Fatty acid amides represent a diverse and underappreciated family of lipids found in vertebrates and invertebrates. The most recognized, most studied, and best understood members of the fatty acid amide family are N-arachidonoylethanolamine (anandamide) and oleamide. Over 70 other fatty acid amides have been identified from biological systems and these non-anandamide and non-oleamide fatty acid amides are not well understood: their cellular functions, transport, biosynthesis, and degradation are, at best, partially elucidated. Most of the fatty acid amides are “orphan” ligands for “orphan” or unknown receptors. Interest in the fatty acid amides will wane without a more complete understanding of their function in vivo and most of these lipids will be mentioned in a few sentences in reviews on ananamide and/or olemide. In this commentary, we suggest that one strategy to dramatically increase our understanding of any member of the fatty acid amide family is the design, synthesis, and proper use of binding-based profiling probes (BBPPs) based on the structure of a specific fatty acid amide. A BBPP is an analog of a fatty acid amide that enables the controlled covalent attachment of the probe to a fatty acid amide-binding protein and, also, possesses a chemical moiety that will allow the purification and/or detection of the BBPP-labeled proteins. The identification of the proteins that specifically bind a fatty acid amide will foster a better understanding of the function, transport, and metabolism of a fatty acid amide.
Collapse
Affiliation(s)
- David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, FL, USA.,Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| |
Collapse
|
257
|
Abstract
PURPOSE OF REVIEW Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. RECENT FINDINGS Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. SUMMARY Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
258
|
Abstract
Epigenetic deregulation, such as the reduction of histone acetylation levels, is thought to be causally linked to various maladies associated with aging. Consequently, histone deacetylase inhibitors are suggested to serve as epigenetic therapy by increasing histone acetylation. However, previous work suggests that many non-histone proteins, including metabolic enzymes, are also acetylated and that post transitional modifications may impact their activity. Furthermore, deacetylase inhibitors were recently shown to impact the acetylation of a variety of proteins. By utilizing a novel technique to measure oxygen consumption rate from whole living tissue, we demonstrate that treatment of whole living fly heads by the HDAC/KDAC inhibitors sodium butyrate and Trichostatin A, induces a rapid and transient increase of oxygen consumption rate. In addition, our study indicates that the rate increase is markedly attenuated in midlife fly head tissue. Overall, our data suggest that HDAC/KDAC inhibitors may induce enhanced mitochondrial activity in a rapid manner. This observed metabolic boost provides further, but novel evidence, that treating various maladies with deacetylase inhibitors may be beneficial.
Collapse
|