251
|
Predicted amino acid motif repeats in proteins potentially encode extensive multivalent macromolecular assemblies in the human proteome. Curr Opin Struct Biol 2019; 54:171-178. [PMID: 30978654 DOI: 10.1016/j.sbi.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/31/2023]
Abstract
There are emerging interests in understanding higher order assemblies of biopolymers within and between cells, such as protein-protein and protein-RNA biomolecular condensates. These biomolecular condensates are thought to assemble/disassemble via multivalent interactions, including those mediated particularly by unique repeated amino acid motifs (URM). We asked how common are proteins with such URMs, their incidence and abundance, by exhaustively enumerating repeating motifs of length 3-10 in the human proteome. We found that URMs are very common and widely distributed across the human proteome. Moreover, the number of repetitions and intervals between them do not correlate with their lengths, which suggests that the number of repeats among proteins in the proteome is independent of length, contrary to the notion that short motifs are more abundant then long motifs. Finally, we describe two examples of URMs in proteins known to form higher order biopolymer assemblies: multi-PDZ domain-containing proteins and the FUS family of RNA binding proteins. For the FUS family, we predicted a known sequence 'grammar', specific motifs and interval sequence compositions that are essential to phase separation and material properties of condensates formed by this family of proteins. In PDZ domain-containing proteins we found a novel repeated motif that was surprisingly both within and between individual PDZ domains. We speculate that these motifs could be binding sites for multivalent interactions, a residual result of the mechanism by which PDZ-domain duplications occurred or that the linker sequences between PDZ domains may encode cryptic PDZ domains.
Collapse
|
252
|
Verdile V, De Paola E, Paronetto MP. Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Front Genet 2019; 10:173. [PMID: 30967892 PMCID: PMC6440380 DOI: 10.3389/fgene.2019.00173] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Phase separation is a physiological process occurring spontaneously when single-phase molecular complexes separate in two phases, a concentrated phase and a more diluted one. Eukaryotic cells employ phase transition strategies to promote the formation of intracellular territories not delimited by membranes with increased local RNA concentration, such as nucleolus, paraspeckles, P granules, Cajal bodies, P-bodies, and stress granules. These organelles contain both proteins and coding and non-coding RNAs and play important roles in different steps of the regulation of gene expression and in cellular signaling. Recently, it has been shown that most human RNA-binding proteins (RBPs) contain at least one low-complexity domain, called prion-like domain (PrLD), because proteins harboring them display aggregation properties like prion proteins. PrLDs support RBP function and contribute to liquid–liquid phase transitions that drive ribonucleoprotein granule assembly, but also render RBPs prone to misfolding by promoting the formation of pathological aggregates that lead to toxicity in specific cell types. Protein–protein and protein-RNA interactions within the separated phase can enhance the transition of RBPs into solid aberrant aggregates, thus causing diseases. In this review, we highlight the role of phase transition in human disease such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and in cancer. Moreover, we discuss novel therapeutic strategies focused to control phase transitions by preventing the conversion into aberrant aggregates. In this regard, the stimulation of chaperone machinery to disassemble membrane-less organelles, the induction of pathways that could inhibit aberrant phase separation, and the development of antisense oligonucleotides (ASOs) to knockdown RNAs could be evaluated as novel therapeutic strategies for the treatment of those human diseases characterized by aberrant phase transition aggregates.
Collapse
Affiliation(s)
- Veronica Verdile
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
253
|
Potapova TA, Gerton JL. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res 2019; 27:109-127. [PMID: 30656516 DOI: 10.1007/s10577-018-9600-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus constitutes a prominent nuclear compartment, a membraneless organelle that was first documented in the 1830s. The fact that specific chromosomal regions were present in the nucleolus was recognized by Barbara McClintock in the 1930s, and these regions were termed nucleolar organizing regions, or NORs. The primary function of ribosomal DNA (rDNA) is to produce RNA components of ribosomes. Yet, ribosomal DNA also plays a pivotal role in nuclear organization by assembling the nucleolus. This review is focused on the rDNA and associated proteins in the context of genome organization. Recent advances in understanding chromatin organization suggest that chromosomes are organized into topological domains by a DNA loop extrusion process. We discuss the perspective that rDNA may also be organized in topological domains constrained by structural maintenance of chromosome protein complexes such as cohesin and condensin. Moreover, biophysical studies indicate that the nucleolar compartment may be formed by active processes as well as phase separation, a perspective that lends further insight into nucleolar organization. The application of the latest perspectives and technologies to this organelle help further elucidate its role in nuclear structure and function.
Collapse
Affiliation(s)
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
254
|
Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, Lin Y, Peeples WB, Saltzberg D, Soniat M, Baumhardt JM, Oldenbourg R, Sali A, Fawzi NL, Rosen MK, Chook YM. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 2019; 173:693-705.e22. [PMID: 29677513 DOI: 10.1016/j.cell.2018.03.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-β2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-β2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-β2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-β2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-β2 may act analogously to control condensates in diverse cellular contexts.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rustam Ali
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Lin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - William B Peeples
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Soniat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
255
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
256
|
Rieloff E, Tully MD, Skepö M. Assessing the Intricate Balance of Intermolecular Interactions upon Self-Association of Intrinsically Disordered Proteins. J Mol Biol 2019; 431:511-523. [DOI: 10.1016/j.jmb.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 12/01/2022]
|
257
|
|
258
|
Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2018; 294:7137-7150. [PMID: 30587571 DOI: 10.1074/jbc.tm118.001189] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid-liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (Arg)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as "friend or foe," they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario Hofweber
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried.,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and
| | - Dorothee Dormann
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, .,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and.,the Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| |
Collapse
|
259
|
Abstract
Studies of 3D chromatin organization have suggested that chromosomes are hierarchically organized into large compartments composed of smaller domains called topologically associating domains (TADs). Recent evidence suggests that compartments are smaller than previously thought and that the transcriptional or chromatin state is responsible for interactions leading to the formation of small compartmental domains in all organisms. In vertebrates, CTCF forms loop domains, probably via an extrusion process involving cohesin. CTCF loops cooperate with compartmental domains to establish the 3D organization of the genome. The continuous extrusion of the chromatin fibre by cohesin may also be responsible for the establishment of enhancer-promoter interactions and stochastic aspects of the transcription process. These observations suggest that the 3D organization of the genome is an emergent property of chromatin and its components, and thus may not be only a determinant but also a consequence of its function.
Collapse
|
260
|
Ditlev JA, Case LB, Rosen MK. Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J Mol Biol 2018; 430:4666-4684. [PMID: 30099028 PMCID: PMC6204295 DOI: 10.1016/j.jmb.2018.08.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
261
|
Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. J Mol Biol 2018; 430:4619-4635. [DOI: 10.1016/j.jmb.2018.06.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
|
262
|
Sawyer IA, Sturgill D, Dundr M. Membraneless nuclear organelles and the search for phases within phases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1514. [DOI: 10.1002/wrna.1514] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
| |
Collapse
|
263
|
The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Trends Biochem Sci 2018; 43:938-950. [PMID: 30337135 DOI: 10.1016/j.tibs.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/23/2022]
Abstract
Great progress has been made toward solving the atomic structure of the ribosome, which is the main biosynthetic machine in cells, but we still do not have a full picture of exactly how cellular ribosomes function. Based on the analysis of crystallographic and electron microscopy data, we propose a basic model of the structural organization of ribosomes into a compartment. This compartment is regularly formed by arrays of ribosomal tetramers made up of two dimers that are actually facing in opposite directions. The compartment functions as the main 'factory' for the production of cellular proteins. The model is consistent with the existing biochemical and genetic data. We also consider the functional connections of such a compartment with cellular transcription and ribosomal biogenesis.
Collapse
|
264
|
Stevers LM, de Vink PJ, Ottmann C, Huskens J, Brunsveld L. A Thermodynamic Model for Multivalency in 14-3-3 Protein-Protein Interactions. J Am Chem Soc 2018; 140:14498-14510. [PMID: 30296824 PMCID: PMC6213025 DOI: 10.1021/jacs.8b09618] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are at the core of molecular control over cellular function. Multivalency in PPI formation, such as via proteins with multiple binding sites and different valencies, requires fundamental understanding to address correlated challenges in pathologies and drug development. Thermodynamic binding models are needed to provide frameworks for describing multivalent PPIs. We established a model based on ditopic host-guest systems featuring the effective molarity, a hallmark property of multivalency, as a prime parameter governing the intramolecular binding in divalent interactions. By way of illustration, we study the interaction of the bivalent 14-3-3 protein scaffold with both the nonavalent CFTR and the hexavalent LRRK2 proteins, determining the underlying thermodynamics and providing insights into the role of individual sites in the context of the multivalent platform. Fitting of binding data reveals enthalpy-entropy correlation in both systems. Simulations of speciations for the entire phosphorylated protein domains reveal that the CFTR protein preferably binds to 14-3-3 by combinations including the strongest binding site pS768, but that other binding sites take over when this site is eliminated, leading to only a minor decrease in total affinity for 14-3-3. For LRRK2, two binding sites dominate the complex formation with 14-3-3, but the distantly located pS1444 site also plays a role in complex formation. Thermodynamic modeling of these multivalent PPIs allowed analyzing and predicting the effects of individual sites regarding their modulation via, for example, (de)phosphorylation or small-molecule targeting. The results specifically bring forward the potential of PPI stabilization, as an entry for drug discovery for multivalent PPIs.
Collapse
Affiliation(s)
- Loes M Stevers
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , P.O. Box 513, Eindhoven 5600 MB , The Netherlands
| | - Pim J de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , P.O. Box 513, Eindhoven 5600 MB , The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , P.O. Box 513, Eindhoven 5600 MB , The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology , University of Twente , P.O. Box 217, Enschede 7500 AE , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , P.O. Box 513, Eindhoven 5600 MB , The Netherlands
| |
Collapse
|
265
|
Zagrovic B, Bartonek L, Polyansky AA. RNA-protein interactions in an unstructured context. FEBS Lett 2018; 592:2901-2916. [PMID: 29851074 PMCID: PMC6175095 DOI: 10.1002/1873-3468.13116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 02/02/2023]
Abstract
Despite their importance, our understanding of noncovalent RNA-protein interactions is incomplete. This especially concerns the binding between RNA and unstructured protein regions, a widespread class of such interactions. Here, we review the recent experimental and computational work on RNA-protein interactions in an unstructured context with a particular focus on how such interactions may be shaped by the intrinsic interaction affinities between individual nucleobases and protein side chains. Specifically, we articulate the claim that the universal genetic code reflects the binding specificity between nucleobases and protein side chains and that, in turn, the code may be seen as the Rosetta stone for understanding RNA-protein interactions in general.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria
| | - Lukas Bartonek
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria
| | - Anton A. Polyansky
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria,MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| |
Collapse
|
266
|
Guharoy M, Lazar T, Tompa P. Disordered Substrates of the 20S Proteasome Link Degradation with Phase Separation. Proteomics 2018; 18:e1800276. [PMID: 30070766 DOI: 10.1002/pmic.201800276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 07/22/2018] [Indexed: 12/16/2022]
Abstract
The 20S proteasome is known to degrade intrinsically disordered proteins (IDPs) via an ubiquitin-independent, disorder-driven mechanism. Unless protected within protein complexes or macromolecular assemblies, certain IDPs can undergo degradation mediated directly by the 20S core particle. In this issue of Proteomics, Myers et al. utilize a proteomics approach to identify ∼500 IDP substrates of the 20S proteasome. Bioinformatics analyses of these substrates demonstrate a large fraction of highly disordered RNA-binding proteins, enriched in low-complexity, prion-like domains. A number of these proteins are also known to form phase-separated membraneless organelles in amyotrophic lateral sclerosis (ALS) and other protein neuropathies. The Myers et al. study highlights potentially interesting connections between IDP degradation and the regulatory dynamics of phase-separated intracellular assemblies. Their work should stimulate further research into the mechanistic details of how the 20S proteasome controls cellular abundances of RNA-binding proteins and thereby regulates RNA-related biological functions within both physiological and pathological phase-separated assemblies.
Collapse
Affiliation(s)
- Mainak Guharoy
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
267
|
Mittag T, Parker R. Multiple Modes of Protein-Protein Interactions Promote RNP Granule Assembly. J Mol Biol 2018; 430:4636-4649. [PMID: 30099026 DOI: 10.1016/j.jmb.2018.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Eukaryotic cells are known to contain a wide variety of RNA-protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA-RNA, protein-RNA, and protein-protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein-protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid-liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Roy Parker
- Department of Chemistry and Biochemistry & Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, United States.
| |
Collapse
|
268
|
Cermakova K, Hodges HC. Next-Generation Drugs and Probes for Chromatin Biology: From Targeted Protein Degradation to Phase Separation. Molecules 2018; 23:molecules23081958. [PMID: 30082609 PMCID: PMC6102721 DOI: 10.3390/molecules23081958] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Chromatin regulation is a critical aspect of nuclear function. Recent advances have provided detailed information about dynamic three-dimensional organization of chromatin and its regulatory factors. Mechanisms crucial for normal nuclear function and epigenetic control include compartmentalization of biochemical reactions by liquid-phase separated condensates and signal-dependent regulation of protein stability. Synthetic control of these phenomena by small molecules provides deep insight into essential activities such as histone modification, BAF (SWI/SNF) and PBAF remodeling, Polycomb repression, enhancer looping by cohesin and CTCF, as well as many other processes that contribute to transcription. As a result, a complete understanding of the spatiotemporal mechanisms that underlie chromatin regulation increasingly requires the use of fast-acting drugs and chemical probes. Here, we provide a comprehensive review of next-generation chemical biology tools to interrogate the chromatin regulatory landscape, including selective PROTAC E3 ubiquitin ligase degraders, degrons, fluorescent ligands, dimerizers, inhibitors, and other drugs. These small molecules provide important insights into the mechanisms that govern gene regulation, DNA repair, development, and diseases like cancer.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - H Courtney Hodges
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
269
|
Mittal A, Holehouse AS, Cohan MC, Pappu RV. Sequence-to-Conformation Relationships of Disordered Regions Tethered to Folded Domains of Proteins. J Mol Biol 2018; 430:2403-2421. [DOI: 10.1016/j.jmb.2018.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
|
270
|
Abstract
Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.
Collapse
Affiliation(s)
- Edward Gomes
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James Shorter
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
271
|
Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018; 174:688-699.e16. [PMID: 29961577 DOI: 10.1016/j.cell.2018.06.006] [Citation(s) in RCA: 1316] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.
Collapse
Affiliation(s)
- Jie Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jeong-Mo Choi
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hyun O Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Xiaojie Zhang
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Régis Lemaitre
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Drechsel
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
272
|
Franzmann TM, Alberti S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J Biol Chem 2018; 294:7128-7136. [PMID: 29921587 DOI: 10.1074/jbc.tm118.001190] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many proteins, such as RNA-binding proteins, have complex folding landscapes. How cells maintain the solubility and folding state of such proteins, particularly under stress conditions, is largely unknown. Here, we argue that prion-like low-complexity regions (LCRs) are key regulators of protein solubility and folding. We discuss emerging evidence that prion-like LCRs are not, as commonly thought, autonomous aggregation modules that adopt amyloid-like conformations, but protein-specific sequences with chaperone-like functions. On the basis of recent findings, we propose that prion-like LCRs have evolved to regulate protein phase behavior and to protect proteins against proteotoxic damage.
Collapse
Affiliation(s)
- Titus M Franzmann
- From the Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- From the Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
273
|
Rhoads SN, Monahan ZT, Yee DS, Leung AY, Newcombe CG, O'Meally RN, Cole RN, Shewmaker FP. The prionlike domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization. Mol Biol Cell 2018; 29:1786-1797. [PMID: 29897835 PMCID: PMC6085830 DOI: 10.1091/mbc.e17-12-0735] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FUS (fused in sarcoma) is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS’s prionlike domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS’s prionlike domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS’s prionlike domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser-26 and Ser-30). Both sites were usually phosphorylated in a subpopulation of cellular FUS following a variety of DNA-damaging stresses but not necessarily equally or simultaneously. Importantly, we found DNA-PK–dependent multiphosphorylation of FUS’s prionlike domain does not cause cytoplasmic localization.
Collapse
Affiliation(s)
- Shannon N Rhoads
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| | - Zachary T Monahan
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| | - Debra S Yee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| | - Andrew Y Leung
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| | - Cameron G Newcombe
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| | - Robert N O'Meally
- Department of Biological Chemistry, Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, MD 21205
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, MD 21205
| | - Frank P Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814
| |
Collapse
|
274
|
Abstract
Intracellular environments are heterogeneous milieus comprised of macromolecules, osmolytes, and a range of assemblies that include membrane-bound organelles and membraneless biomolecular condensates. The latter are nonstoichiometric assemblies of protein and RNA molecules. They represent distinct phases and form via intracellular phase transitions. Here, we present insights from recent studies and provide a perspective on how phase transitions that lead to biomolecular condensates might contribute to cellular functions.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
275
|
St George-Hyslop P, Lin JQ, Miyashita A, Phillips EC, Qamar S, Randle SJ, Wang G. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Res 2018; 1693:11-23. [PMID: 29723523 PMCID: PMC6018615 DOI: 10.1016/j.brainres.2018.04.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
Some intrinsically disordered proteins undergo reversible phase separation/gelation. Reversible phase separation/gelation underpins function of membraneless organelles. fALS-FUS mutations increase propensity of FUS to form highly stable condensates. Changes in arginine methylation and FUS chaperones in FTLD-FUS have similar effects. Stable fibrillar condensates sequester cargo and impair RNP granule function.
Many RNA binding proteins, including FUS, contain moderately repetitive, low complexity, intrinsically disordered domains. These sequence motifs have recently been found to underpin reversible liquid: liquid phase separation and gelation of these proteins, permitting them to reversibly transition from a monodispersed state to liquid droplet- or hydrogel-like states. This function allows the proteins to serve as scaffolds for the formation of reversible membraneless intracellular organelles such as nucleoli, stress granules and neuronal transport granules. Using FUS as an example, this review examines the biophysics of this physiological process, and reports on how mutations and changes in post-translational state alter phase behaviour, and lead to neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada.
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Emma C Phillips
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Suzanne J Randle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
276
|
Dzuricky M, Roberts S, Chilkoti A. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry 2018; 57:2405-2414. [PMID: 29683665 DOI: 10.1021/acs.biochem.8b00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Stefan Roberts
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
277
|
Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, Dormann D. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018; 173:706-719.e13. [DOI: 10.1016/j.cell.2018.03.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
|
278
|
Rhoads SN, Monahan ZT, Yee DS, Shewmaker FP. The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. Int J Mol Sci 2018; 19:ijms19030886. [PMID: 29547565 PMCID: PMC5877747 DOI: 10.3390/ijms19030886] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Subcellular mislocalization and aggregation of the human FUS protein occurs in neurons of patients with subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. FUS is one of several RNA-binding proteins that can functionally self-associate into distinct liquid-phase droplet structures. It is postulated that aberrant interactions within the dense phase-separated state can potentiate FUS's transition into solid prion-like aggregates that cause disease. FUS is post-translationally modified at numerous positions, which affect both its localization and aggregation propensity. These modifications may influence FUS-linked pathology and serve as therapeutic targets.
Collapse
Affiliation(s)
- Shannon N Rhoads
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Zachary T Monahan
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Debra S Yee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Frank P Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
279
|
Abstract
Liquid-liquid phase separation seems to play critical roles in the compartmentalization of cells through the formation of biomolecular condensates. Many proteins with low-complexity regions are found in these condensates, and they can undergo phase separation in vitro in response to changes in temperature, pH, and ion concentration. Low-complexity regions are thus likely important players in mediating compartmentalization in response to stress. However, how the phase behavior is encoded in their amino acid composition and patterning is only poorly understood. We discuss here that polymer physics provides a powerful framework for our understanding of the thermodynamics of mixing and demixing and for how the phase behavior is encoded in the primary sequence. We propose to classify low-complexity regions further into subcategories based on their sequence properties and phase behavior. Ongoing research promises to improve our ability to link the primary sequence of low-complexity regions to their phase behavior as well as the emerging miscibility and material properties of the resulting biomolecular condensates, providing mechanistic insight into this fundamental biological process across length scales.
Collapse
Affiliation(s)
- Erik W Martin
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105-3678 , United States
| | - Tanja Mittag
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105-3678 , United States
| |
Collapse
|
280
|
Lin YH, Forman-Kay JD, Chan HS. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry 2018; 57:2499-2508. [PMID: 29509422 DOI: 10.1021/acs.biochem.8b00058] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liquid-liquid phase separation and related condensation processes of intrinsically disordered proteins (IDPs), proteins with intrinsically disordered regions, and nucleic acids underpin various condensed-liquid droplets or gel-like assemblies in the cellular environment. Collectively referred to as condensates, these bodies provide spatial/temporal compartmentalization, often serving as hubs for regulated biomolecular interactions. Examples include certain extracellular materials, transcription complexes, and membraneless organelles such as germ and stress granules and the nucleolus. They are critically important to cellular function; thus misregulation of their assembly is implicated in many diseases. Biomolecular condensates are complex entities. Our understanding of their inner workings is only in its infancy. Nonetheless, insights into basic biophysical principles of their assembly can be gained by applying analytical theories to elucidate how IDP phase behaviors are governed by the properties of the multivalent, solvent-mediated interactions entailed by the proteins' amino acid sequences. Here we briefly review the background of the pertinent polymer theories and outline the approximations that enable a tractable theoretical account of the dependence of IDP phase behaviors on the charge pattern of the IDP sequence. Of relevance to the homeostatic assembly of compositionally and functionally distinct condensates in the cellular context, theory indicates that the propensity for populations of different IDP sequences to mix or demix upon phase separation is affected by the similarity or dissimilarity of the sequence charge patterns. We also explore prospects of extending analytical theories to account for dynamic aspects of biomolecular condensates and to incorporate effects of cation-π, π-π, and temperature-dependent hydrophobic interactions on IDP phase properties.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Julie D Forman-Kay
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | | |
Collapse
|
281
|
Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 2018; 293:6090-6098. [PMID: 29511089 DOI: 10.1074/jbc.ac117.001037] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/05/2018] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells contain distinct organelles, but not all of these compartments are enclosed by membranes. Some intrinsically disordered proteins mediate membraneless organelle formation through liquid-liquid phase separation (LLPS). LLPS facilitates many biological functions such as regulating RNA stability and ribonucleoprotein assembly, and disruption of LLPS pathways has been implicated in several diseases. Proteins exhibiting LLPS typically have low sequence complexity and specific repeat motifs. These motifs promote multivalent connections with other molecules and the formation of higher-order oligomers, and their removal usually prevents LLPS. The intrinsically disordered C-terminal domain of TAR DNA-binding protein 43 (TDP-43), a protein involved in motor neuron disease and dementia lacks a dominant LLPS motif, however, and how this domain forms condensates is unclear. Using extensive mutagenesis of TDP-43, we demonstrate here that three tryptophan residues and, to a lesser extent, four other aromatic residues are most important for TDP-43 to undergo LLPS. Our results also suggested that only a few residues may be required for TDP-43 LLPS because the α-helical segment (spanning ∼20 residues) in the middle part of the C-terminal domain tends to self-assemble, reducing the number of motifs required for forming a multivalent connection. Our results indicating that a self-associating α-helical element with a few key residues regulates condensate formation highlight a different type of LLPS involving intrinsically disordered regions. The C-terminal domain of TDP-43 contains ∼50 disease-related mutations, with no clear physicochemical link between them. We propose that they may disrupt LLPS indirectly by interfering with the key residues identified here.
Collapse
Affiliation(s)
- Hao-Ru Li
- From the Institute of Biochemistry and Molecular Biology and
| | - Wan-Chin Chiang
- From the Institute of Biochemistry and Molecular Biology and
| | - Po-Chun Chou
- From the Institute of Biochemistry and Molecular Biology and
| | - Won-Jing Wang
- From the Institute of Biochemistry and Molecular Biology and
| | - Jie-Rong Huang
- From the Institute of Biochemistry and Molecular Biology and .,the Institute of Biomedical Informatics, National Yang-Ming University, No. 155 Section 2, Li-nong Street, Taipei 11221, Taiwan
| |
Collapse
|
282
|
Majumdar A, Mukhopadhyay S. Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:347-381. [DOI: 10.1016/bs.mie.2018.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|