251
|
Cuadrado A, Giménez-Llorente D, Kojic A, Rodríguez-Corsino M, Cuartero Y, Martín-Serrano G, Gómez-López G, Marti-Renom MA, Losada A. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cell Rep 2019; 27:3500-3510.e4. [PMID: 31216471 PMCID: PMC7057268 DOI: 10.1016/j.celrep.2019.05.078] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/05/2022] Open
Abstract
Cohesin exists in two variants carrying either STAG/SA1 or SA2. Here we have addressed their specific contributions to the unique spatial organization of the mouse embryonic stem cell genome, which ensures super-enhancer-dependent transcription of pluripotency factors and repression of lineage-specification genes within Polycomb domains. We find that cohesin-SA2 facilitates Polycomb domain compaction through Polycomb repressing complex 1 (PRC1) recruitment and promotes the establishment of long-range interaction networks between distant Polycomb-bound promoters that are important for gene repression. Cohesin-SA1, in contrast, disrupts these networks, while preserving topologically associating domain (TAD) borders. The diverse effects of both complexes on genome topology may reflect two modes of action of cohesin. One, likely involving loop extrusion, establishes overall genome arrangement in TADs together with CTCF and prevents excessive segregation of same-class compartment regions. The other is required for organization of local transcriptional hubs such as Polycomb domains and super-enhancers, which define cell identity.
Collapse
Affiliation(s)
- Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Aleksandar Kojic
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guillermo Martín-Serrano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
252
|
Chan HL, Morey L. Emerging Roles for Polycomb-Group Proteins in Stem Cells and Cancer. Trends Biochem Sci 2019; 44:688-700. [PMID: 31085088 DOI: 10.1016/j.tibs.2019.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
Polycomb-group (PcG) complexes are multiprotein, evolutionarily conserved epigenetic machineries that regulate stem cell fate decisions and development, and are also implicated in cancer and other maladies. The PcG machinery can be divided into two major complexes: Polycomb repressive complex 1 and 2 (PRC1 and PRC2). Traditionally, PcG complexes have been associated with maintenance of gene repression mainly via histone-modifying activities. However, during the last years, increasing evidence indicates that the PcG complexes can also positively regulate gene transcription and modify non-histone substrates in multiple biological processes, cellular stages, and cancers. In this review, we will illustrate recent findings in PcG-mediated gene regulation, with special focus on the recently described non-classical functions of PcG complexes in stem cells and cancer.
Collapse
Affiliation(s)
- Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
253
|
Illingworth RS. Chromatin folding and nuclear architecture: PRC1 function in 3D. Curr Opin Genet Dev 2019; 55:82-90. [PMID: 31323466 PMCID: PMC6859790 DOI: 10.1016/j.gde.2019.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Embryonic development requires the intricate balance between the expansion and specialisation of defined cell types in time and space. The gene expression programmes that underpin this balance are regulated, in part, by modulating the chemical and structural state of chromatin. Polycomb repressive complexes (PRCs), a family of essential developmental regulators, operate at this level to stabilise or perpetuate a repressed but transcriptionally poised chromatin configuration. This dynamic state is required to control the timely initiation of productive gene transcription during embryonic development. The two major PRCs cooperate to target the genome, but it is PRC1 that appears to be the primary effector that controls gene expression. In this review I will discuss recent findings relating to how PRC1 alters chromatin accessibility, folding and global 3D nuclear organisation to control gene transcription.
Collapse
Affiliation(s)
- Robert S Illingworth
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom.
| |
Collapse
|