251
|
Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020; 8:E13. [PMID: 31941057 PMCID: PMC7168063 DOI: 10.3390/biomedicines8010013] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) acts as a barrier to prevent the central nervous system (CNS) from damage by substances that originate from the blood circulation. The BBB limits drug penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases. Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed delivery systems are discussed for the delivery of a drug to the brain. This review particularly focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey;
| | - Rasoul Roghanian
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746, Iran;
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
| |
Collapse
|
252
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S. Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 2020; 126:9-20. [PMID: 31237736 DOI: 10.1111/bcpt.13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
From the beginning of the 21st century, much attention has been made towards the medicinal herbs due to their low side effects and valuable biological activities. Among them, terpenes comprise a large group of naturally occurring chemical compounds that are considered as main components of flavours, antifeedants and pheromones. Monoterpenes have demonstrated a favourable profile as compounds that have antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anti-tumour activities. On the other hand, autophagy is a 'self-digestion' mechanism which plays a remarkable role in a number of pathological conditions such as cancer, ageing, metabolic disorders and infection. Also, autophagy is considered as a stress adaptor that may lead to apoptotic cell death under severe and sustained stress. Autophagy modulation is a promising strategy in cancer treatment, and a variety of drugs have been designed in line with this strategy. In the present MiniReview, we discuss the effects of monoterpenes on autophagy and its relationship with therapeutic impacts of monoterpenes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Kaviyani
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
253
|
Khatami M, Khatami S, Mosazade F, Raisi M, Haghighat M, Sabaghan M, Yaghoubi S, Sarani M, Bamorovat M, Malekian L, Naroi A, S Varma R. Greener synthesis of Rod Shaped Zinc Oxide Nanoparticles using Lilium ledebourii tuber and evaluation of their Leishmanicidal activity. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2196. [PMID: 32884950 PMCID: PMC7461714 DOI: 10.30498/ijb.2020.119481.2196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Nanoparticles (NPs) with unique chemical and physical properties can be used for therapeutic purposes because of their strong antimicrobial activates. Nanoparticles have been used as an antimicrobial agents to inhibit microbial growth. Objectives In view of the strong antimicrobial activity of nanoparticles, the biogenic synthesis and leishmanicidal activity of rod-shaped zinc oxide (R-ZnO) nanoparticles was explored using Lilium ledebourii tuber extract. Materials and Methods The ensuing nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy and their leishmanicidal activity evaluated against the Leishmania major (L. major) by MTT assay. Results The R-ZnO nanoparticles displayed excellent leishmanicidal activity against the L. major as they significantly inhibited the amastigotes. The IC50 values of R-ZnO nanoparticles being ~ 0.001 mg.mL-1. R-ZnO nanoparticles can inhibit L. major growth in a dose-dependent manner under in vitro conditions. Conclusion A simple, low-cost feasible and eco-friendly procedure was developed for biosynthesis of R-ZnO nanoparticles using natural bioresource that can inhibit human parasite cells growth in a dose-dependent manner under in vitro conditions.
Collapse
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farideh Mosazade
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahammadali Raisi
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | | | | | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Leila Malekian
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Afsoon Naroi
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Rajender S Varma
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran.,Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran.,Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran.,Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran.,Regional Centre of Advanced Technologies and Materials Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
254
|
Akhtar MJ, Ahamed M, Alhadlaq H, Alrokayan S. Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Curr Drug Metab 2019; 20:907-917. [DOI: 10.2174/1389200220666191105113754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Background:
Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements,
gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate
form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd3+ ion
or simply G ion).
Objective:
There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs
or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve
as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion.
Methods:
Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage,
and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant
Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red
(LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical
properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction,
and energy dispersive spectrum.
Results:
A time- and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G
ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested
different modes of cell death induced by NPs and ions.
Conclusion:
In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell
death, whereas G ions favored apoptosis-dependent cell death.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alrokayan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
255
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
256
|
Zhang Y, Zhang L, Gao J, Wen L. Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy. Acc Chem Res 2019; 52:3164-3176. [PMID: 31621285 DOI: 10.1021/acs.accounts.9b00397] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy is a critical lysosome-mediated cellular degradation process for the clearance of damaged organelles, obsolete proteins, and invading pathogens and plays important roles in the pathogenesis and treatment of human diseases including cancer. While not a cell death process per se, autophagy is nevertheless intimately linked to a cell's live/die decision. Basal autophagy, operating constitutively at low levels in essentially every mammalian cell, is vital for maintaining cellular homeostasis and promotes cell survival. On the other hand, elevated level of autophagy is frequently observed in cells responding to a physical, chemical, or biological stress. This "induced" autophagy, a hallmark under a variety of pathological and pathophysiological conditions, may be either pro-death or pro-survival, two contrasting paradigms for cell fate determination. Research in our laboratory and other groups around the world over the last 15 years has revealed nanomaterials as a unique class of autophagy inducers, with the capability of elevating the cellular autophagy to extremely high levels. In this Account we focus on the contrasting cell fate decision impacted by nanomaterial-induced autophagy. First, we give a brief introduction to nanomaterial-induced autophagy and summarize our current understanding on how it affects a cell's live/die decision. Autophagy induced by nanomaterials, in most cases, promotes cell death, but a significant number of nanomaterials are also able to elicit pro-survival autophagy. Although not a common feature, some nanomaterials may induce pro-death autophagy in one cell type while eliciting pro-survival autophagy in a different cell type. The ability to control the level of the induced autophagy, and furthermore its pro-death/pro-survival nature, is critically important for nanomedicine. Second, we discuss several possible mechanistic insights on the pro-death/pro-survival decision for nanomaterial-induced autophagy. "Disrupted" autophagic processes, with a "block" or perhaps "diversion" at the various stages, may be a characteristic hallmark for nanomaterial-induced autophagy, rendering it intrinsically pro-death in nature. On the other hand, autophagy-mediated upregulation and activation of pro-survival factors or signaling pathways, overriding the intrinsic pro-death nature, may be a common mechanism for nanomaterial-induced pro-survival autophagy. In addition, cargo degradation and reactive oxygen species may also play important roles in the pro-death/pro-survival decision impacted by nanomaterial-induced autophagy. Finally, we focus on the situation where nanomaterials induce autophagy in cancer cells and summarize the different strategies in exploiting the pro-death or pro-survival nature of nanomaterial-induced autophagy to enhance the various modalities of cancer therapy, including direct cancer cell killing, chemotherapy and radiotherapy, photothermal therapy, and integrated diagnosis and therapy. While the details vary, the basic principle is simple and straightforward. If the induced autophagy is pro-death, maximize it. Otherwise, inhibit it. Effective exploitation of nanomaterial-induced autophagy has the potential to become a new weapon in our ever-increasing arsenal to fight cancer, particularly difficult-to-treat and drug-resistant cancer.
Collapse
Affiliation(s)
- Yunjiao Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longping Wen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
257
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
258
|
Kwon YM, Je JY, Cha SH, Oh Y, Cho WH. Synergistic combination of chemo‑phototherapy based on temozolomide/ICG‑loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep 2019; 42:1709-1724. [PMID: 31436296 PMCID: PMC6775808 DOI: 10.3892/or.2019.7289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Chemo‑photothermal therapy for cancer treatment has received increasing attention due to its selective therapeutic effects. In the present study, the anticancer effects of drug‑loaded Fe3O4 magnetic nanoparticles (MNPs) by chemo‑photothermal therapy on U‑87 MG human glioblastoma cells was investigated. Anticancer drug‑loaded Fe3O4 MNPs were prepared by loading temozolomide (TMZ) and indocyanine green (ICG), and were characterized by X‑ray diffraction, UV‑vis spectroscopy, thermal gravimetric analysis, transmission electron microscope, as well as drug‑loading capacity. Following treatment with near‑infrared (NIR) light irradiation, the administration of Fe3O4‑TMZ‑ICG MNPs resulted in the apoptosis of U‑87 MG glioblastoma cells through the generation of reactive oxygen species. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction revealed that Fe3O4‑TMZ‑ICG MNPs with NIR laser irradiation lead to significantly enhanced anticancer effects on U‑87 MG glioblastoma cells through the modulation of intrinsic and extrinsic apoptosis genes, including Bcl‑2‑associated X protein, Bcl‑2, cytochrome c, caspase‑3, Fas associated via death domain and caspase‑8. These results suggest that Fe3O4‑TMZ‑ICG MNPs may be potential candidates when administered as chemo‑phototherapy for the treatment of brain cancer.
Collapse
Affiliation(s)
- Young Min Kwon
- Department of Neurosurgery, Dong-A University College of Medicine and Dong-A Medical Center, Busan 49201, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea
| | - Seung Heon Cha
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Yunok Oh
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea
| | - Won Ho Cho
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| |
Collapse
|
259
|
Sasabe E, Tomomura A, Kitamura N, Yamamoto T. Metal nanoparticles-induced activation of NLRP3 inflammasome in human oral keratinocytes is a possible mechanism of oral lichenoid lesions. Toxicol In Vitro 2019; 62:104663. [PMID: 31669392 DOI: 10.1016/j.tiv.2019.104663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/22/2019] [Indexed: 01/08/2023]
Abstract
The NLRP3 inflammasome has been implicated in the pathogenesis of various inflammatory diseases and is activated by particulate stimulants. Oral epithelial keratinocytes are frequently exposed to metal nanoparticles. In this study, we examined the effects of gold, silver, and palladium nanoparticles, which are frequently used for dental metal alloys on cell proliferation, cytotoxicity, autophagy, lysosomal functions, and NLRP3 inflammasome activation using the immortalized human oral keratinocyte cell line RT-7. The metal nanoparticles were agglomerated in the membrane vesicles in RT-7 cells and suppressed cell proliferation and increased lactate dehydrogenase activity as well as the proportion of apoptotic cells. Silver and palladium nanoparticles induced autophagy and lysosomal dysfunctions and all metal nanoparticles tested triggered the secretion of IL-1β through caspase-1 activation. Furthermore, the epithelium obtained from patients with oral lichenoid lesions (OLLs) had robust NLRP3, ASC, caspase-1, and IL-1β-positive keratinocytes and cDNA microarray showed significant elevation in the mRNA levels of NLRP3. These results suggest that internalized metal nanoparticles in oral mucosal epithelial cells activate the NLRP3 inflammasome through the induction of lysosomal damage and autophagy dysfunction. This process may be involved in the pathogenesis of OLL and suggest its potential as an alternative target for OLL therapy.
Collapse
Affiliation(s)
- Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan.
| | - Ayumi Tomomura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| |
Collapse
|
260
|
Xin X, Du X, Xiao Q, Azevedo HS, He W, Yin L. Drug Nanorod-Mediated Intracellular Delivery of microRNA-101 for Self-sensitization via Autophagy Inhibition. NANO-MICRO LETTERS 2019; 11:82. [PMID: 34138035 PMCID: PMC7770860 DOI: 10.1007/s40820-019-0310-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/30/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is closely related to the drug resistance and metastasis in cancer therapy. Nanoparticle-mediated co-delivery of combinatorial therapy with small-molecular drugs and nucleic acids is promising to address drug resistance. Here, a drug-delivering-drug (DDD) platform consisting of anti-tumor-drug nanorods as a vehicle for cytosol delivery of nucleic acid (miR-101) with potent autophagic-inhibition activity is reported for combinatorial therapy. The developed 180-nm nanoplatform, with total drug loading of up to 66%, delivers miR-101 to cancer cells, with threefold increase in intracellular level compared to conventional gene carriers and inhibits the autophagy significantly, along with above twofold reduction in LC3II mRNA and approximately fivefold increase in p62 mRNA over the control demonstrated in the results in vivo. And in turn, the delivery of miR-101 potentiates the drug's ability to kill cancer cells, with a threefold increase in apoptosis over that of chemotherapy alone. The anti-tumor study in vivo indicates the combined therapy that enables a reduction of 80% in tumor volume and > twofold increase in apoptosis than of the single-drug strategy. In summary, via the carrier-free strategy of DDD, this work provides a delivery platform that can be easily customized to overcome drug resistance and facilitates the delivery of combined therapy of small-molecular drugs and nucleic acids.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaoqing Du
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, E1 4NS, UK
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
261
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
262
|
Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2019; 14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.
Collapse
Affiliation(s)
- Nashwa M Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Y Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
263
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
264
|
Xiao Y, Xu D, Song H, Shu F, Wei P, Yang X, Zhong C, Wang X, Müller WEG, Zheng Y, Xiao S, Xia Z. Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int J Nanomedicine 2019; 14:5989-6000. [PMID: 31534333 PMCID: PMC6680085 DOI: 10.2147/ijn.s196794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Less apoptosis and excessive growth of fibroblasts contribute to the progression of hypertrophic scar formation. Cuprous oxide nanoparticles (CONPs) could have not only inhibited tumor by inducing apoptosis and inhibiting proliferation of tumor cells, but also promoted wound healing. The objective of this study was to further explore the therapeutic effects of CONPs on hypertrophic scar formation in vivo and in vitro. METHODS In vivo, a rabbit ear scar model was established on New Zealand albino rabbits. Six full-thickness and circular wounds (10 mm diameter) were made to each ear. Following complete re-epithelization observed on postoperative day 14, an intralesional injection of CONPs or 5% glucose solution was conducted to the wounds. The photo and ultrasonography of each wound were taken every week and scars were harvested on day 35 for further histomorphometric analysis. In vitro, the role of CONPs in human hypertrophic scar fibroblasts (HSFs) apoptosis and proliferation were evaluated by Tunnel assay, Annexin V/PI staining, cell cycle analysis, and EdU proliferation assay. The endocytosis of CONPs by fibroblasts were detected through transmission electron microscopy (TEM) and the mitochondrial membrane potential and ROS production were also detected. RESULTS In vivo, intralesional injections of CONPs could significantly improve the scar appearance and collagen arrangement, and decreased scar elevation index (SEI). In vitro, CONPs could prominently inhibit proliferation and induce apoptosis in HSFs in a concentration-dependent manner. In addition, CONPs could be endocytosed into mitochondria,damage the mitochondrial membrane potential and increase ROS production. CONCLUSION CONPs possessed the therapeutic potential in the treatment of hypertrophic scar by inhibiting HSFs proliferation and inducing HSFs apoptosis.
Collapse
Affiliation(s)
- Yongqiang Xiao
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dayuan Xu
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Hongyuan Song
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Futing Shu
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Pei Wei
- Department of Burns Surgery, Union Hospital, Fujian Medical University, Fuzhou350001, People’s Republic of China
| | - Xiaolan Yang
- Department of Burns Surgery, Union Hospital, Fujian Medical University, Fuzhou350001, People’s Republic of China
| | - Chenjian Zhong
- Department of Burns Surgery, Union Hospital, Fujian Medical University, Fuzhou350001, People’s Republic of China
| | - Xiaohong Wang
- Erc Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz55128, Germany
| | - Werner EG Müller
- Erc Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz55128, Germany
| | - YongJun Zheng
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
265
|
Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 2019; 40:16-36. [PMID: 31294482 DOI: 10.1002/jat.3817] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Owing to the increasing application of engineered nanoparticles (NPs), besides the workplace, human beings are also exposed to NPs from nanoproducts through the skin, respiratory tract, digestive tract and vein injection. This review states pathways of cellular uptake, subcellular distribution and excretion of NPs. The uptake pathways commonly include phagocytosis, micropinocytosis, clathrin- and caveolae-mediated endocytosis, scavenger receptor-related pathway, clathrin- or caveolae-independent pathway, and direct penetration or insertion. Then the ability of NPs to decrease cell viability and metabolic activity, change cell morphology, and destroy cell membrane, cytoskeleton and cell function was presented. In addition, the lowest dose decreasing cell metabolic viability compared with the control or IC50 of silver, titanium dioxide, zinc oxide, carbon black, carbon nanotubes, silica, silicon NPs and cadmium telluride quantum dots to some cell lines was gathered. Next, this review attempts to increase our understanding of NP-caused adverse effects on organelles, which have implications in mitochondrial dysfunction, endoplasmic reticulum stress and lysosomal rupture. In particular, the disturbance of mitochondrial biogenesis and mitochondrial dynamic fusion-fission, mitophagy and cytochrome c-dependent apoptosis are involved. In addition, prolonged endoplasmic reticulum stress will result in apoptosis. Rupture of the lysosomal membrane was associated with inflammation, and both induction of autophagy and blockade of autophagic flow can result in cytotoxicity. Finally, the network mechanism of the combined action of multiple organelle dysfunction, apoptosis, autophagy and oxidative stress was discussed.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
266
|
Ahmadi Z, Mohammadinejad R, Ashrafizadeh M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
267
|
Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer's disease. J Colloid Interface Sci 2019; 552:388-400. [PMID: 31151017 DOI: 10.1016/j.jcis.2019.05.066] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023]
Abstract
At present, autophagic dysfunction has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). Thus, the activation of autophagy provides a potential means of eliminating the intracellular amyloid-β (Aβ) and slows down the neurotoxicity induced by Aβ. Here, we synthesize a Quercetin (Qu) modified polysorbate 80 (P-80)-coated AuPd core-shell structure. Our results indicate that Concave cubic Qu@P-80@AuPd can activate autophagy of SH-SY5Y cells, promote the fusion of autophagosomes and lysosomes, accelerate the clearance of Aβ, and protect SH-SY5Y cells from Aβ-induced cytotoxicity damage. Furthermore, Concave cubic Qu@P-80@AuPd also has good biocompatibility and high blood-brain barrier (BBB) permeability. Therefore, we anticipate that Concave cubic Qu@P-80@AuPd will be used as a potential autophagy inducer to treat AD.
Collapse
|
268
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Roomiani S, Katebi M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J Cell Physiol 2019; 234:19471-19479. [PMID: 31032940 DOI: 10.1002/jcp.28740] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Melanoma as the most major skin malignancy has attracted much attention, so far. Although a successful therapeutic strategy requires an accurate understanding of the precise mechanisms for the initiation and progression of the melanoma. Several types of cell death mechanisms have recently been identified along with conventional cell death mechanisms such as apoptosis and necrosis. Among those mechanisms, necroptosis, anoikis, ferroptosis, and autophagy may be considered to have remarkable modulatory impacts on melanoma. In the present review, we explain the mechanisms of cell death signaling pathways related to autophagy, ferroptosis, anoikis, necroptosis, and reticulum endoplasmic stress in cells and describe how those mechanisms transduce signals in melanoma cells. Meanwhile, we describe how we can modulate those mechanisms to eliminate melanoma.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
269
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
270
|
Seca C, Ferraresi A, Phadngam S, Vidoni C, Isidoro C. Autophagy-dependent toxicity of amino-functionalized nanoparticles in ovarian cancer cells. J Mater Chem B 2019; 7:5376-5391. [DOI: 10.1039/c9tb00935c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polystyrene NH2-NPs induce toxicity through a differential impact on autophagy machinery in ovarian cancer cells with a different genetic background.
Collapse
Affiliation(s)
- Christian Seca
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging
- Department of Health Sciences
- University of Piemonte Orientale
- 28100 Novara
- Italy
| |
Collapse
|