251
|
Boundy-Mills KL, Glantschnig E, Roberts IN, Yurkov A, Casaregola S, Daniel HM, Groenewald M, Turchetti B. Yeast culture collections in the twenty-first century: new opportunities and challenges. Yeast 2016; 33:243-60. [PMID: 27144478 DOI: 10.1002/yea.3171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 11/06/2022] Open
Abstract
The twenty-first century has brought new opportunities and challenges to yeast culture collections, whether they are long-standing or recently established. Basic functions such as archiving, characterizing and distributing yeasts continue, but with expanded responsibilities and emerging opportunities. In addition to a number of well-known, large public repositories, there are dozens of smaller public collections that differ in the range of species and strains preserved, field of emphasis and services offered. Several collections have converted their catalogues to comprehensive databases and synchronize them continuously through public services, making it easier for users worldwide to locate a suitable source for specific yeast strains and the data associated with these yeasts. In-house research such as yeast taxonomy continues to be important at culture collections. Because yeast culture collections preserve a broad diversity of species and strains within a species, they are able to make discoveries in many other areas as well, such as biotechnology, functional, comparative and evolution genomics, bioprocesses and novel products. Due to the implementation of the Convention of Biological Diversity (CBD) and the Nagoya Protocol (NP), there are new requirements for both depositors and users to ensure that yeasts were collected following proper procedures and to guarantee that the country of origin will be considered if benefits arise from a yeast's utilization. Intellectual property rights (IPRs) are extremely relevant to the current access and benefit-sharing (ABS) mechanisms; most research and development involving genetic resources and associated traditional knowledge will be subject to this topic. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kyria L Boundy-Mills
- Phaff Yeast Culture Collection. Food Science and Technology, University of California, Davis, Davis, CA, USA
| | | | - Ian N Roberts
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Andrey Yurkov
- Leibniz Institute DSMZ - German Collection of Micro-organisms and Cell Cultures, Braunschweig, Germany
| | - Serge Casaregola
- Micalis Institute INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, Thiverval-Grignon, France
| | - Heide-Marie Daniel
- Mycothéque de l'Université Catholique de Louvain (BCCM/MUCL), Earth and Life Institute, Applied Microbiology, Laboratory of Mycology, Louvain-la-Neuve, Belgium
| | | | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| |
Collapse
|
252
|
Martin V, Giorello F, Fariña L, Minteguiaga M, Salzman V, Boido E, Aguilar PS, Gaggero C, Dellacassa E, Mas A, Carrau F. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4574-4583. [PMID: 27193819 DOI: 10.1021/acs.jafc.5b05442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.
Collapse
Affiliation(s)
- Valentina Martin
- Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| | - Facundo Giorello
- Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| | - Laura Fariña
- Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
- Departamento de Biología, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable , 11600 Montevideo, Uruguay
| | - Manuel Minteguiaga
- Catedra de Farmacognosia y Productos Naturales, Departamento de Quimica Orgánica, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| | - Valentina Salzman
- Laboratorio de Biología Celular de Membranas, Institut Pasteur de Montevideo , 11400 Montevideo, Uruguay
- Laboratorio de Biología Celular de Membranas, IIB-INTECH, CONICET, Universidad Nacional de San Martin , San Martin, Argentina
| | - Eduardo Boido
- Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| | - Pablo S Aguilar
- Laboratorio de Biología Celular de Membranas, Institut Pasteur de Montevideo , 11400 Montevideo, Uruguay
- Laboratorio de Biología Celular de Membranas, IIB-INTECH, CONICET, Universidad Nacional de San Martin , San Martin, Argentina
| | - Carina Gaggero
- Departamento de Biología, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable , 11600 Montevideo, Uruguay
| | - Eduardo Dellacassa
- Catedra de Farmacognosia y Productos Naturales, Departamento de Quimica Orgánica, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| | - Albert Mas
- Deptamento de Bioquímica y Biotecnología, Faculty of Oneology, University Rovira i Virgili , 43007 Tarragona, Spain
| | - Francisco Carrau
- Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Quimica, Universidad de la Republica , 11800 Montevideo, Uruguay
| |
Collapse
|
253
|
Martin V, Boido E, Giorello F, Mas A, Dellacassa E, Carrau F. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds byHanseniaspora vineaestrains. Yeast 2016; 33:323-8. [DOI: 10.1002/yea.3159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/11/2023] Open
Affiliation(s)
- Valentina Martin
- Sección Enología, Departamento de Ciencia y Tecnologá de los Alimentos, Facultad de Quimica; Universidad de la República; Montevideo Uruguay
| | - Eduardo Boido
- Sección Enología, Departamento de Ciencia y Tecnologá de los Alimentos, Facultad de Quimica; Universidad de la República; Montevideo Uruguay
| | - Facundo Giorello
- Sección Enología, Departamento de Ciencia y Tecnologá de los Alimentos, Facultad de Quimica; Universidad de la República; Montevideo Uruguay
| | - Albert Mas
- Departamento de Bioquímica y Biotecnología; Universitat Rovira I Virgili; Tarragona Spain
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Quimica; Universidad de la República; Montevideo Uruguay
| | - Francisco Carrau
- Sección Enología, Departamento de Ciencia y Tecnologá de los Alimentos, Facultad de Quimica; Universidad de la República; Montevideo Uruguay
| |
Collapse
|
254
|
Fischer S, Engstler C, Procopio S, Becker T. EGFP-based evaluation of temperature inducible native promoters of industrial ale yeast by using a high throughput system. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
255
|
Cubillos FA. Exploiting budding yeast natural variation for industrial processes. Curr Genet 2016; 62:745-751. [PMID: 27085523 DOI: 10.1007/s00294-016-0602-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023]
Abstract
For the last two decades, the natural variation of the yeast Saccharomyces cerevisiae has been massively exploited with the aim of understanding ecological and evolutionary processes. As a result, many new genetic variants have been uncovered, providing a large catalogue of alleles underlying complex traits. These alleles represent a rich genetic resource with the potential to provide new strains that can cope with the growing demands of industrial fermentation processes. When surveyed in detail, several of these variants have proven useful in wine and beer industries by improving nitrogen utilisation, fermentation kinetics, ethanol production, sulphite resistance and aroma production. Here, I illustrate how allele-specific expression and polymorphisms within the coding region of GDB1 underlie fermentation kinetic differences in synthetic wine must. Nevertheless, the genetic basis of how GDB1 variants and other natural alleles interact in foreign genetic backgrounds remains unclear. Further studies in large sets of strains, recombinant hybrids and multiple parental pairs will broaden our knowledge of the molecular and genetic basis of trait adaptation for utilisation in applied and industrial processes.
Collapse
Affiliation(s)
- Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile. .,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile. .,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
256
|
Bizzarri M, Giudici P, Cassanelli S, Solieri L. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast. PLoS One 2016; 11:e0152558. [PMID: 27065237 PMCID: PMC4827841 DOI: 10.1371/journal.pone.0152558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and to activate meiosis in response to stress. We argue that sequence divergence within the chimeric a1-α2 heterodimer could be involved in the generation of negative epistasis, contributing to the allodiploid sterility and the dysregulation of cell identity.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
257
|
Nidelet T, Brial P, Camarasa C, Dequin S. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 2016; 15:58. [PMID: 27044358 PMCID: PMC4820951 DOI: 10.1186/s12934-016-0456-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. Results To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Conclusions Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0456-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibault Nidelet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France.
| | - Pascale Brial
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
258
|
Abt TD, Souffriau B, Foulquié-Moreno MR, Duitama J, Thevelein JM. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait. MICROBIAL CELL 2016; 3:159-175. [PMID: 28357348 PMCID: PMC5349090 DOI: 10.15698/mic2016.04.491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to identify causative alleles underlying many non-selectable, polygenic traits in small collections of haploid strains with multiple induced mutations.
Collapse
Affiliation(s)
- Tom Den Abt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Ben Souffriau
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Jorge Duitama
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
259
|
Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, Allegaert L, Vrancken G, Verstrepen KJ. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production. Appl Environ Microbiol 2016; 82:732-46. [PMID: 26590272 PMCID: PMC4711123 DOI: 10.1128/aem.02556-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor.
Collapse
Affiliation(s)
- Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Nore Struyf
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Tinneke Paulus
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| | | | | | | | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium Laboratory for Systems Biology, VIB, Leuven, Belgium
| |
Collapse
|
260
|
Masneuf-Pomarede I, Bely M, Marullo P, Albertin W. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Front Microbiol 2016; 6:1563. [PMID: 26793188 PMCID: PMC4707289 DOI: 10.3389/fmicb.2015.01563] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.
Collapse
Affiliation(s)
- Isabelle Masneuf-Pomarede
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- Bordeaux Sciences AgroGradignan, France
| | - Marina Bely
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
| | - Philippe Marullo
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- BiolaffortBordeaux, France
| | - Warren Albertin
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- ENSCBP, Bordeaux INPPessac, France
| |
Collapse
|
261
|
Bertrand E, Vandenberghe LPS, Soccol CR, Sigoillot JC, Faulds C. First Generation Bioethanol. GREEN FUELS TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-30205-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
262
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
263
|
Martani F, Marano F, Bertacchi S, Porro D, Branduardi P. The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci Rep 2015; 5:18318. [PMID: 26658950 PMCID: PMC4677312 DOI: 10.1038/srep18318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element.
Collapse
Affiliation(s)
- Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Francesca Marano
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy.,SYSBIO - Centre of Systems Biology, Milano and Roma, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| |
Collapse
|
264
|
Capozzi V, Garofalo C, Chiriatti MA, Grieco F, Spano G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol Res 2015; 181:75-83. [DOI: 10.1016/j.micres.2015.10.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
|
265
|
Improved wine yeasts by direct mating and selection under stressful fermentative conditions. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2596-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
266
|
Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, De Maeyer D, Arslan A, Van Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways. PLoS Genet 2015; 11:e1005635. [PMID: 26545090 PMCID: PMC4636377 DOI: 10.1371/journal.pgen.1005635] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. Organisms can evolve resistance to specific stress factors, which allows them to thrive in environments where non-adapted organisms fail to grow. However, the molecular mechanisms that underlie adaptation to complex stress factors that interfere with basic cellular processes are poorly understood. In this study, we reveal how yeast populations adapt to high ethanol concentrations, an ecologically and industrially relevant stress that is still poorly understood. We exposed six independent populations of genetically identical yeast cells to gradually increasing ethanol levels, and we monitored the changes in their DNA sequence over a two-year period. Together with novel computational analyses, we could identify the mutational dynamics and molecular mechanisms underlying increased ethanol resistance. Our results show how adaptation to high ethanol is complex and can be reached through different mutational pathways. Together, our study offers a detailed picture of how populations adapt to a complex continuous stress and identifies several mutations that increase ethanol resistance, which opens new routes to obtain superior biofuel yeast strains.
Collapse
Affiliation(s)
- Karin Voordeckers
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Jacek Kominek
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Anupam Das
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Adriana Espinosa-Cantú
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Dries De Maeyer
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
| | - Ahmed Arslan
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Michiel Van Pee
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Elisa van der Zande
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Wim Meert
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Yudi Yang
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bo Zhu
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, University of Ghent, Ghent, Belgium
| | - Alexander DeLuna
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Vera Van Noort
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
267
|
Rezaei MN, Verstrepen KJ, Courtin CM. Metabolite Analysis Allows Insight into the Differences in Functionality of 25Saccharomyces cerevisiaeStrains in Bread Dough Fermentation. Cereal Chem 2015. [DOI: 10.1094/cchem-04-15-0061-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mohammad N. Rezaei
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, and CMPG Laboratory for Genetics and Genomics, KU Leuven, Bio-Incubator, Gaston Geenslaan 1, B-3001 Heverlee, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
268
|
Tilloy V, Cadière A, Ehsani M, Dequin S. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol 2015. [DOI: 10.1016/j.ijfoodmicro.2015.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
269
|
Jullesson D, David F, Pfleger B, Nielsen J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 2015; 33:1395-402. [DOI: 10.1016/j.biotechadv.2015.02.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
270
|
A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl Environ Microbiol 2015; 81:8202-14. [PMID: 26407881 DOI: 10.1128/aem.02464-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/29/2023] Open
Abstract
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.
Collapse
|
271
|
Zuchowska M, Jaenicke E, König H, Claus H. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids. Yeast 2015. [PMID: 26202678 DOI: 10.1002/yea.3087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast.
Collapse
Affiliation(s)
- Magdalena Zuchowska
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Germany
| | - Elmar Jaenicke
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Germany.,Institute for Molecular Biophysics, Johannes Gutenberg University Mainz, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Germany
| | - Harald Claus
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
272
|
|
273
|
Petruzzi L, Rosaria Corbo M, Sinigaglia M, Bevilacqua A. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
274
|
López-Malo M, García-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamón JM. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 2015; 16:537. [PMID: 26194190 PMCID: PMC4509780 DOI: 10.1186/s12864-015-1755-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. RESULTS We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. CONCLUSIONS In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.
Collapse
Affiliation(s)
- María López-Malo
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Estéfani García-Rios
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Bruno Melgar
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain.
| |
Collapse
|
275
|
Voordeckers K, Verstrepen KJ. Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation. Curr Opin Microbiol 2015. [PMID: 26202939 DOI: 10.1016/j.mib.2015.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding how changes in DNA drive the emergence of new phenotypes and fuel evolution remains a major challenge. One major hurdle is the lack of a fossil record of DNA that allows linking mutations to phenotypic changes. However, the emergence of high-throughput sequencing technologies now allows sequencing genomes of natural and experimentally evolved microbial populations to study how mutations arise and spread through a population, how new phenotypes arise and how this ultimately leads to adaptation. Here, we highlight key studies that have increased our mechanistic understanding of evolution. We specifically focus on the model eukaryote Saccharomyces cerevisiae because its relatively short replication time, much-studied biology and available molecular toolbox have made it a prime model for molecular evolution studies.
Collapse
Affiliation(s)
- Karin Voordeckers
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; VIB Laboratory for Systems Biology, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; VIB Laboratory for Systems Biology, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
| |
Collapse
|
276
|
Petrovič U. Next-generation biofuels: a new challenge for yeast. Yeast 2015; 32:583-93. [DOI: 10.1002/yea.3082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uroš Petrovič
- Jožef Stefan Institute; Department of Molecular and Biomedical Sciences; Ljubljana Slovenia
| |
Collapse
|
277
|
Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances. Molecules 2015; 20:10377-98. [PMID: 26053491 PMCID: PMC6272320 DOI: 10.3390/molecules200610377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.
Collapse
Affiliation(s)
- Luca Forti
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Simone Di Mauro
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Maria Rita Cramarossa
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Sara Filippucci
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Benedetta Turchetti
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Pietro Buzzini
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| |
Collapse
|
278
|
Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P. Fast method for identifying inter- and intra-species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol 2015; 119:149-61. [PMID: 25892524 DOI: 10.1111/jam.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/05/2023]
Abstract
AIMS The present work proposes a two-step molecular strategy to select inter- and intra-species Saccharomyces hybrids obtained by spore-to-spore mating, one of the most used methods for generating improved hybrids from homothallic wine yeasts. METHODS AND RESULTS As low spore viability and haplo-selfing are the main causes of failed mating, at first, we used colony screening PCR (csPCR) of discriminative gene markers to select hybrids directly on dissection plate and discard homozygous diploid colonies arisen from one auto-diploidized progenitor. Then, pre-selected candidates were submitted to recursive streaking and conventional PCR in order to discriminate between the hybrids with stable genomic background and the false-positive admixtures of progenitor cells both undergone haplo-selfing. csPCRs of internal transcribed spacer (ITS) 1 or 2, and the subsequent digestion with diagnostic endonucleases HaeIII and RsaI, respectively, were efficient to select six new Saccharomyces cerevisiae × Saccharomyces uvarum hybrids from 64 crosses. Intragenic minisatellite regions in PIR3, HSP150, and DAN4 genes showed high inter-strain size variation detectable by cost-effective agarose gel electrophoresis and were successful to validate six new intra-species S. cerevisiae hybrids from 34 crosses. CONCLUSIONS Both protocols reduce significantly the number of massive DNA extractions, prevent misinterpretations caused by one or both progenitors undergone haplo-selfing, and can be easily implemented in yeast labs without any specific instrumentation. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a method for the marker-assisted selection of several inter- and intra-species yeast hybrids in a cost-effective, rapid and reproducible manner.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - A Verspohl
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - T Bonciani
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - C Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - P Giudici
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| |
Collapse
|
279
|
Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ. Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 2015; 206:24-38. [PMID: 25916511 DOI: 10.1016/j.ijfoodmicro.2015.04.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 12/13/2022]
Abstract
Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Luk Daenen
- AB-InBev SA/NV, Brouwerijplein 1, B-3000 Leuven, Belgium
| | | | - Guy Derdelinckx
- Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M(2)S), LFoRCe, KU Leuven, Kasteelpark Arenberg 33, 3001 Leuven, Belgium
| | - Hubert Verachtert
- Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M(2)S), LFoRCe, KU Leuven, Kasteelpark Arenberg 33, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
280
|
Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing. Sci Rep 2015; 5:9201. [PMID: 25776564 PMCID: PMC4361855 DOI: 10.1038/srep09201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/24/2015] [Indexed: 01/01/2023] Open
Abstract
The biosynthesis of the antibiotic epsilon-poly-lysine (ε-PL) in Streptomyces albulus is performed by polylysine synthase (pls); however, the regulatory mechanism of this process is still unknown. Here, we first obtained the complete genome sequence of S. albulus ZPM, which consists of 9,784,577 bp and has a GC content of 72.2%. The genome houses 44 gene clusters for secondary metabolite biosynthesis, in which 20 gene clusters are involved in the biosynthesis of polyketides and nonribosomally synthesized peptides. High-throughput sequencing was further performed, and genetic variants were identified from pooled libraries consisting of the 30 highest-yield mutants or 30 lowest-yield mutants. More than 350 genetic variants associated with ε-PL yield have been identified. One hundred sixty-two affected proteins, from important metabolic enzymes to novel transcriptional regulators, were identified as being related to ε-PL synthesis. HrdD, one of the affected genes, is a sigma factor that shows the most sensitive response to pH change and contains a non-synonymous mutation (A132V) in mutant strains with lower ε-PL yields. Electrophoretic mobility shift assays showed that the pls gene is likely regulated by transcriptional activator HrdD. The data obtained in this study will facilitate future studies on ε-PL yield improvement and industrial bioprocess optimization.
Collapse
|
281
|
Liu J, Martin-Yken H, Bigey F, Dequin S, François JM, Capp JP. Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions. Genome Biol Evol 2015; 7:969-84. [PMID: 25762217 PMCID: PMC4419794 DOI: 10.1093/gbe/evv047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The increase in phenotypic variability through gene expression noise is proposed to be an evolutionary strategy in selective environments. Differences in promoter-mediated noise between Saccharomyces cerevisiae strains could have been selected for thanks to the benefit conferred by gene expression heterogeneity in the stressful conditions, for instance, those experienced by industrial strains. Here, we used a genome-wide approach to identify promoters conferring high noise levels in the industrial wine strain EC1118. Many promoters of genes related to environmental factors were identified, some of them containing genetic variations compared with their counterpart in the laboratory strain S288c. Each variant of eight promoters has been fused to yeast-Enhanced Green Fluorescent Protein and integrated in the genome of both strains. Some industrial variants conferred higher expression associated, as expected, with lower noise, but other variants either increased or decreased expression without modifying variability, so that they might exhibit different levels of transcriptional-mediated noise at equal mean. At different induction conditions giving similar expression for both variants of the CUP1 promoter, we indeed observed higher noise with the industrial variant. Nevertheless, this difference was only observed in the industrial strain, revealing epistasis in the generation of promoter-mediated noise. Moreover, the increased expression variability conferred by this natural yeast promoter variant provided a clear benefit in the face of an environmental stress. Thus, modulation of gene expression noise by a combination of promoter modifications and trans-influences might be a possible adaptation mechanism in yeast.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Hélène Martin-Yken
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Frédéric Bigey
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Sylvie Dequin
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| |
Collapse
|
282
|
Carrau F, Gaggero C, Aguilar PS. Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol 2015; 33:148-54. [DOI: 10.1016/j.tibtech.2014.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/29/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023]
|
283
|
Snoek T, Picca Nicolino M, Van den Bremt S, Mertens S, Saels V, Verplaetse A, Steensels J, Verstrepen KJ. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:32. [PMID: 25759747 PMCID: PMC4354739 DOI: 10.1186/s13068-015-0216-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND During the final phases of bioethanol fermentation, yeast cells face high ethanol concentrations. This stress results in slower or arrested fermentations and limits ethanol production. Novel Saccharomyces cerevisiae strains with superior ethanol tolerance may therefore allow increased yield and efficiency. Genome shuffling has emerged as a powerful approach to rapidly enhance complex traits including ethanol tolerance, yet previous efforts have mostly relied on a mutagenized pool of a single strain, which can potentially limit the effectiveness. Here, we explore novel robot-assisted strategies that allow to shuffle the genomes of multiple parental yeasts on an unprecedented scale. RESULTS Screening of 318 different yeasts for ethanol accumulation, sporulation efficiency, and genetic relatedness yielded eight heterothallic strains that served as parents for genome shuffling. In a first approach, the parental strains were subjected to multiple consecutive rounds of random genome shuffling with different selection methods, yielding several hybrids that showed increased ethanol tolerance. Interestingly, on average, hybrids from the first generation (F1) showed higher ethanol production than hybrids from the third generation (F3). In a second approach, we applied several successive rounds of robot-assisted targeted genome shuffling, yielding more than 3,000 targeted crosses. Hybrids selected for ethanol tolerance showed increased ethanol tolerance and production as compared to unselected hybrids, and F1 hybrids were on average superior to F3 hybrids. In total, 135 individual F1 and F3 hybrids were tested in small-scale very high gravity fermentations. Eight hybrids demonstrated superior fermentation performance over the commercial biofuel strain Ethanol Red, showing a 2 to 7% increase in maximal ethanol accumulation. In an 8-l pilot-scale test, the best-performing hybrid fermented medium containing 32% (w/v) glucose to dryness, yielding 18.7% (v/v) ethanol with a productivity of 0.90 g ethanol/l/h and a yield of 0.45 g ethanol/g glucose. CONCLUSIONS We report the use of several different large-scale genome shuffling strategies to obtain novel hybrids with increased ethanol tolerance and fermentation capacity. Several of the novel hybrids show best-parent heterosis and outperform the commonly used bioethanol strain Ethanol Red, making them interesting candidate strains for industrial production.
Collapse
Affiliation(s)
- Tim Snoek
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Martina Picca Nicolino
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Stefanie Van den Bremt
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Stijn Mertens
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Veerle Saels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Alex Verplaetse
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Jan Steensels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
284
|
Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 2014; 98:9483-98. [PMID: 25267160 DOI: 10.1007/s00253-014-6090-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), Campus De Nayer, KU Leuven, Fortsesteenweg 30A, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Steensels J, Verstrepen KJ. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu Rev Microbiol 2014; 68:61-80. [DOI: 10.1146/annurev-micro-091213-113025] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; ,
- Laboratory for Systems Biology, VIB, Bio-Incubator, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; ,
- Laboratory for Systems Biology, VIB, Bio-Incubator, 3001 Leuven, Belgium
| |
Collapse
|
286
|
Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Appl Environ Microbiol 2014; 80:6965-75. [PMID: 25192996 DOI: 10.1128/aem.02235-14] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use.
Collapse
|