251
|
Sivertsson L, Ek M, Darnell M, Edebert I, Ingelman-Sundberg M, Neve EPA. CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells. Drug Metab Dispos 2010; 38:995-1002. [PMID: 20233841 DOI: 10.1124/dmd.110.032367] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Drug-induced hepatotoxicity is an important cause for disapproval, limitations of use, or withdrawal of drugs, and there is a high need for reproducible in vitro systems that can predict such toxicity. In this study, we show that confluent growth of the human hepatoma cell line Huh7 up to 5 weeks results in increased gene expression of several cytochromes P450 (P450s), UDP-glucuronosyltransferases, transporters, transcription factors, and several liver-specific genes, as measured by low-density array. The most striking effect was seen for CYP3A4 expression. Western blot analysis revealed increased amounts of CYP3A4 together with increased levels of NADPH-P450 reductase, cytochrome b(5), and albumin with prolonged time of confluence. By using the CYP3A4-specific substrates luciferin 6' benzyl ether, testosterone, and midazolam, we could confirm that the increased CYP3A4 gene expression also was accompanied by a similar increase in catalytic activity, inhibitable by the CYP3A4-selective inhibitor ketoconazole. The CYP3A4 activity in confluent cells was also inducible by rifampicin. Finally, the cell system could support the CYP3A4-dependent hepatotoxic activation of aflatoxin B(1), which was effectively inhibited by ketoconazole. Our results show that Huh7 cells grown confluent differentiate into a more metabolically competent cell line, especially with regard to CYP3A4.
Collapse
Affiliation(s)
- Louise Sivertsson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
252
|
Laurent V, Fraix A, Montier T, Cammas-Marion S, Ribault C, Benvegnu T, Jaffres PA, Loyer P. Highly efficient gene transfer into hepatocyte-like HepaRG cells: New means for drug metabolism and toxicity studies. Biotechnol J 2010; 5:314-20. [DOI: 10.1002/biot.200900255] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
253
|
Anthérieu S, Chesné C, Li R, Camus S, Lahoz A, Picazo L, Turpeinen M, Tolonen A, Uusitalo J, Guguen-Guillouzo C, Guillouzo A. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos 2010; 38:516-25. [PMID: 20019244 DOI: 10.1124/dmd.109.030197] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HepaRG cells possess the unique property to differentiate in vitro and to express various functions of mature hepatocytes, including the major cytochromes P450 (P450s). In the present study, we carefully analyzed mRNA expression and activity of the major P450s and their responsiveness to three prototypical inducers, phenobarbital, rifampicin, and omeprazole, in differentiated HepaRG cell cultures over a 4-week period after low and high seeding. Only minor differences were observed in P450 activities when measured by two cocktails of probe substrates, probably related to the choice and/or concentration of substrates. Similar results were obtained from the two cell seeding conditions. Expression and activities of several P450s were dimethyl sulfoxide-dependent. However, basal P450 expression and activities as well as their responsiveness to the prototypical inducers were well maintained over the 4-week period, and a good correlation was observed between transcript levels and corresponding activities. Thus, CYP1A2, CYP2B6, and CYP3A4 were found to accurately respond to their respective prototypical inducers, i.e., omeprazole, phenobarbital, and rifampicin. Likewise, basal expression of several phase II enzymes, transporters, and nuclear receptors, and response to inducers were also well preserved. More genes were found to be induced in HepaRG cells than in primary human hepatocytes, and no marked variation was noticed between the different passages. Taken together, these data support the conclusion that HepaRG cells represent a promising surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies.
Collapse
|
254
|
Beckers S, Noor F, Müller-Vieira U, Mayer M, Strigun A, Heinzle E. High throughput, non-invasive and dynamic toxicity screening on adherent cells using respiratory measurements. Toxicol In Vitro 2010; 24:686-94. [DOI: 10.1016/j.tiv.2009.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
255
|
Jennen DGJ, Magkoufopoulou C, Ketelslegers HB, van Herwijnen MHM, Kleinjans JCS, van Delft JHM. Comparison of HepG2 and HepaRG by Whole-Genome Gene Expression Analysis for the Purpose of Chemical Hazard Identification. Toxicol Sci 2010; 115:66-79. [DOI: 10.1093/toxsci/kfq026] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
256
|
Andersson TB. The application of HepRG cells in evaluation of cytochrome P450 induction properties of drug compounds. Methods Mol Biol 2010; 640:375-387. [PMID: 20645063 DOI: 10.1007/978-1-60761-688-7_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The liver is the major organ metabolising drugs. The hepatocyte contains a number of drug-metabolising enzyme systems, which most often generate a complex pattern of drug metabolites. Isolated primary hepatocytes would be an ideal in vitro model for drug metabolism research but erratic availability and poor stability of functions in culture limit their value. Recently a hepatoma cell line HepaRG was developed showing promising functions and stability. In the differentiated stage the cell line showed stable expression of mRNA coding for key proteins in drug metabolism and liver-specific functions for over 6 weeks. The cell line was found to reflect important hepatic functions and has been evaluated as a convenient model for evaluating cytochrome P450 induction properties of drug compounds. HepaRG cells could therefore be an alternative to human hepatocytes in investigating drug metabolism and induction of drug-metabolising enzymes.
Collapse
|
257
|
Marion MJ, Hantz O, Durantel D. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol Biol 2010; 640:261-72. [PMID: 20645056 DOI: 10.1007/978-1-60761-688-7_13] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.
Collapse
Affiliation(s)
- Marie-Jeanne Marion
- INSERM U871, Molecular physiopathology and new treatments of viral hepatitis, Lyon, France
| | | | | |
Collapse
|
258
|
Boobis A, Watelet JB, Whomsley R, Benedetti MS, Demoly P, Tipton K. Drug interactions. Drug Metab Rev 2009; 41:486-527. [PMID: 19601724 DOI: 10.1080/10837450902891550] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drugs for allergy are often taken in combination with other drugs, either to treat allergy or other conditions. In common with many pharmaceuticals, most such drugs are subject to metabolism by P450 enzymes and to transmembrane transport. This gives rise to considerable potential for drug-drug interactions, to which must be added consideration of drug-diet interactions. The potential for metabolism-based drug interactions is increasingly being taken into account during drug development, using a variety of in silico and in vitro approaches. Prediction of transporter-based interactions is not as advanced. The clinical importance of a drug interaction will depend upon a number of factors, and it is important to address concerns quantitatively, taking into account the therapeutic index of the compound.
Collapse
Affiliation(s)
- Alan Boobis
- Department of Experimental Medicine and Toxicology, Division of Medicine, Imperial College London, Hammersmith Campus, London.
| | | | | | | | | | | |
Collapse
|
259
|
Sharma NS, Wallenstein EJ, Novik E, Maguire T, Schloss R, Yarmush ML. Enrichment of hepatocyte-like cells with upregulated metabolic and differentiated function derived from embryonic stem cells using S-NitrosoAcetylPenicillamine. Tissue Eng Part C Methods 2009; 15:297-306. [PMID: 19196121 DOI: 10.1089/ten.tec.2008.0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The generation of a large number of fully functional hepatocytes from a renewable cell source can provide an unlimited resource for bioartificial liver devices and cell replacement therapies. We have established a directed differentiation system using sodium butyrate treatment to generate an enriched population of hepatocyte-like cells from embryonic stem cells. A metabolic analysis of the hepatocyte populations revealed glycolytic and mitochondrial phenotypes similar to mouse hepatoma cells, implying that these cells represent an immature hepatocyte phenotype. To mediate further differentiation, S-NitrosoAcetylPenicillamine (SNAP), a nitric oxide donor, was utilized to induce mitochondrial development in the precursor populations. A comparative analysis of the different treated populations showed that 500microM SNAP treatment resulted in the generation of an enriched population of metabolically mature hepatocyte-like cells with increased differentiated function. Specifically, 500microM SNAP treatment increased glucose consumption, lactate production rates, mitochondrial mass, and potential as compared to untreated populations. In addition, functional analysis revealed that intracellular albumin content, urea secretion rates, and cytochrome P450 7a1 promoter activity were increased in the treated population. The methodology described here to generate an enriched population of metabolically and functionally mature hepatocyte-like cells may have potential implications in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
260
|
Rodrigues AC, Curi R, Genvigir FDV, Hirata MH, Hirata RDC. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and HepG2 cells. Acta Pharmacol Sin 2009; 30:956-64. [PMID: 19543298 DOI: 10.1038/aps.2009.85] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and efflux/ uptake transporters. There is little information on the regulation of these proteins in human cells after statin therapy. In this study, the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1, ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated. METHODS Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins. RESULTS Differences in mRNA basal levels of the transporters were as follows: ABCC2>ABCG2>ABCB1>SLCO1B1>>>SLC22A1>SLC O2B1 for HepG2 cells, and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells. While for HepG2 cells, ABCC2, ABCG2 and SLCO2B1 mRNA levels were significantly up-regulated at 1, 10 and 20 micromol/L after 12 or 24 h treatment, in Caco-2 cells, only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin. Interestingly, whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells, in Caco-2 cells the statin significantly down-regulated ABCB1, ABCC2, SLC22A1, and SLCO2B1 mRNA levels after 12 or 24 h treatment. CONCLUSION These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters, and this effect depends on the cell type. Furthermore, alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.Acta Pharmacologica Sinica (2009) 30: 956-964; doi: 10.1038/aps.2009.85; published online 22 June 2009.
Collapse
|
261
|
Turpeinen M, Tolonen A, Chesne C, Guillouzo A, Uusitalo J, Pelkonen O. Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro 2009; 23:748-53. [PMID: 19328226 DOI: 10.1016/j.tiv.2009.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 11/27/2022]
|
262
|
Choi S, Sainz B, Corcoran P, Uprichard S, Jeong H. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica 2009; 39:205-17. [PMID: 19280519 DOI: 10.1080/00498250802613620] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of this study was to characterize Huh7 cells' baseline capacity to metabolize drugs and to investigate whether the drug metabolism was enhanced upon treatment with dimethyl sulfoxide (DMSO). The messenger RNA (mRNA) levels of major Phase I and Phase II enzymes were determined by quantitative real-time-polymerase chain reaction (RT-PCR), and activities of major drug-metabolizing enzymes were examined using probe drugs by analysing relevant metabolite production rates. The expression levels of drug-metabolizing enzymes in control Huh7 cells were generally very low, but DMSO treatment dramatically increased the mRNA levels of most drug-metabolizing enzymes as well as other liver-specific proteins. Importantly, functionality assays confirmed concomitant increases in drug-metabolizing enzyme activity. Additionally, treatment of the Huh7 cells with 3-methylcholanthrene induced cytochrome P450 (CYP) 1A1 expression. The results indicate that DMSO treatment of Huh7 cells profoundly enhances their differentiation state, thus improving the usefulness of this common cell line as an in vitro hepatocyte model.
Collapse
Affiliation(s)
- S Choi
- Center for Pharmaceutical Biotechnology,University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
263
|
McGinnity DF, Zhang G, Kenny JR, Hamilton GA, Otmani S, Stams KR, Haney S, Brassil P, Stresser DM, Riley RJ. Evaluation of multiple in vitro systems for assessment of CYP3A4 induction in drug discovery: human hepatocytes, pregnane X receptor reporter gene, and Fa2N-4 and HepaRG cells. Drug Metab Dispos 2009; 37:1259-68. [PMID: 19307295 DOI: 10.1124/dmd.109.026526] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Prototypic CYP3A4 inducers were tested in a pregnane X receptor (PXR) reporter gene assay, Fa2N-4 cells, HepaRG cells, and primary human hepatocytes, along with negative controls, using CYP3A4 mRNA and activity endpoints, where appropriate. Over half of the compounds tested (14 of 24) were identified as time-dependent inhibitors of CYP3A4 and high mRNA/activity ratios (>10) were consistent with CYP3A4 time-dependent inhibition for compounds such as troleandomycin, ritonavir, and verapamil. Induction response was compared between two human donors; there was an excellent correlation in the EC(50) estimates (r(2) = 0.89, p < 0.001), and a weak but statistically significant correlation was noted for maximum observed induction at an optimum concentration (E(max)) (r(2) = 0.38, p = 0.001). E(max) and EC(50) estimates determined from the PXR reporter gene assay and Fa2N-4 and HepaRG cells were compared with those from hepatocytes. Overall, EC(50) values generated using hepatocytes agreed with those generated in the PXR reporter gene assay (r(2) = 0.85, p < 0.001) and Fa2N-4 (r(2) = 0.65, p < 0.001) and HepaRG (r(2) = 0.99, p < 0.001) cells. However, E(max) values generated in hepatocytes were only significantly correlated to those determined in Fa2N-4 (r(2) = 0.33, p = 0.005) and HepaRG cells (r(2) = 0.79, p < 0.001). "Gold standard" cytochrome P450 induction data can be generated using primary human hepatocytes, but a restricted, erratic supply and interdonor variability somewhat restrict routine application within a drug discovery setting. HepaRG cells are a valuable recent addition to the armory of in vitro tools for assessing CYP3A4 induction and seem to be an excellent surrogate of primary cells.
Collapse
|
264
|
Kenny JR, Chen L, McGinnity DF, Grime K, Shakesheff KM, Thomson B, Riley R. Efficient assessment of the utility of immortalized Fa2N-4 cells for cytochrome P450 (CYP) induction studies using multiplex quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and substrate cassette methodologies. Xenobiotica 2008; 38:1500-17. [DOI: 10.1080/00498250802495846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|