251
|
Frost J, Ciulli A, Rocha S. RNA-seq analysis of PHD and VHL inhibitors reveals differences and similarities to the hypoxia response. Wellcome Open Res 2019; 4:17. [PMID: 30801039 PMCID: PMC6376255 DOI: 10.12688/wellcomeopenres.15044.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Hypoxia-inducible factor (HIF) transcription factors are well known to control the transcriptional response to hypoxia. Given the importance of cellular response to hypoxia, a number of pharmacological agents to interfere with this pathway have been developed and entered pre-clinical or clinical trial phases. However, how similar or divergent the transcriptional response elicited by different points of interference in cells is currently unknown. Methods: We performed RNA-sequencing to analyse the similarities and differences of transcriptional response in HeLa cells treated with hypoxia or chemical agents that stabilise HIF by inhibiting components of the hypoxia signalling pathway - prolyl hydroxylase (PHD) inhibitor or von Hippel-Lindau (VHL) inhibitor. Results: This analysis revealed that hypoxia produces the highest changes in gene transcription, with activation and repression of genes being in large numbers. Treatment with the PHD inhibitor IOX2 or the VHL inhibitor VH032 led mostly to gene activation, majorly via a HIF-dependent manner. These results were also confirmed by qRT-PCR using more specific and/or efficient inhibitors, FG-4592 (PHDs) and VH298 (VHL). Conclusion: PHD inhibition and VHL inhibition mimic gene activation promoted by hypoxia via a HIF-dependent manner. However, gene repression is mostly associated with the hypoxia response and not common to the response elicited by inhibitors of the pathway.
Collapse
Affiliation(s)
- Julianty Frost
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Sonia Rocha
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| |
Collapse
|
252
|
Wheeler MA, Jaronen M, Covacu R, Zandee SEJ, Scalisi G, Rothhammer V, Tjon EC, Chao CC, Kenison JE, Blain M, Rao VTS, Hewson P, Barroso A, Gutiérrez-Vázquez C, Prat A, Antel JP, Hauser R, Quintana FJ. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell 2019; 176:581-596.e18. [PMID: 30661753 PMCID: PMC6440749 DOI: 10.1016/j.cell.2018.12.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/01/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.
Collapse
Affiliation(s)
- Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ruxandra Covacu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Giulia Scalisi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Vijayaraghava T S Rao
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Russ Hauser
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
253
|
Wu Q, Wu WS, Su L, Zheng X, Wu WY, Santambrogio P, Gou YJ, Hao Q, Wang PN, Li YR, Zhao BL, Nie G, Levi S, Chang YZ. Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from Hypoxia-Induced Cell Death in Brain. Antioxid Redox Signal 2019; 30:198-212. [PMID: 29402144 DOI: 10.1089/ars.2017.7063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Mitochondrial ferritin (protein [FtMt]) is preferentially expressed in cell types of high metabolic activity and oxygen consumption, which is consistent with its role of sequestering iron and preventing oxygen-derived redox damage. As of yet, the mechanisms of FtMt regulation and the protection FtMt affords remain largely unknown. Results: Here, we report that hypoxia-inducible factor 1α (HIF-1α) can upregulate FtMt expression. We verify one functional hypoxia-response element (HRE) in the positive regulatory region and two HREs possessing HIF-1α binding activity in the minimal promoter region of the human FTMT gene. We also demonstrate that FtMt can alleviate hypoxia-induced brain cell death by sequestering uncommitted iron, whose levels increase with hypoxia in these cells. Innovation: In the absence of FtMt, this catalytic metal excess catalyzes the production of cytotoxic reactive oxygen species. Conclusion: Thus, the cell ability to increase expression of FtMt during hypoxia may be a skill to avoid tissue damage derived from oxygen limitation.
Collapse
Affiliation(s)
- Qiong Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Wen-Shuang Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Lin Su
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Xin Zheng
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Wen-Yue Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Paolo Santambrogio
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy
| | - Yu-Jing Gou
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Qian Hao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Pei-Na Wang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Ya-Ru Li
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Bao-Lu Zhao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Guangjun Nie
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, China
| | - Sonia Levi
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,6 Vita-Salute San Raffaele University , Milano, Italy
| | - Yan-Zhong Chang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| |
Collapse
|
254
|
Tai Z, Guan P, Wang Z, Li L, Zhang T, Li G, Liu JX. Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics 2019; 11:1452-1464. [DOI: 10.1039/c9mt00125e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study demonstrated the common responses of differentially expressed genes (DEGs) and differentially methylated regions (DMRs) under Cu2+ or AgNPs stresses in zebrafish, and verified the correlation of the gene transcription and the methylation status of some common DMGs.
Collapse
Affiliation(s)
- ZhiPeng Tai
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - PengPeng Guan
- College of Informatics
- Agricultural Bioinformatics Key Laboratory of Hubei Province
- Hubei Engineering Technology Research Center of Agricultural Big Data
- Huazhong Agricultural University
- Wuhan
| | - ZiYang Wang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - LingYa Li
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Ting Zhang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - GuoLiang Li
- College of Informatics
- Agricultural Bioinformatics Key Laboratory of Hubei Province
- Hubei Engineering Technology Research Center of Agricultural Big Data
- Huazhong Agricultural University
- Wuhan
| | - Jing-Xia Liu
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| |
Collapse
|
255
|
Schleifer G, Marutani E, Ferrari M, Sharma R, Skinner O, Goldberger O, Grange RMH, Peneyra K, Malhotra R, Wepler M, Ichinose F, Bloch DB, Mootha VK, Zapol WM. Impaired hypoxic pulmonary vasoconstriction in a mouse model of Leigh syndrome. Am J Physiol Lung Cell Mol Physiol 2018; 316:L391-L399. [PMID: 30520688 PMCID: PMC6397345 DOI: 10.1152/ajplung.00419.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological vasomotor response that maintains systemic oxygenation by matching perfusion to ventilation during alveolar hypoxia. Although mitochondria appear to play an essential role in HPV, the impact of mitochondrial dysfunction on HPV remains incompletely defined. Mice lacking the mitochondrial complex I (CI) subunit Ndufs4 ( Ndufs4-/-) develop a fatal progressive encephalopathy and serve as a model for Leigh syndrome, the most common mitochondrial disease in children. Breathing normobaric 11% O2 prevents neurological disease and improves survival in Ndufs4-/- mice. In this study, we found that either genetic Ndufs4 deficiency or pharmacological inhibition of CI using piericidin A impaired the ability of left mainstem bronchus occlusion (LMBO) to induce HPV. In mice breathing air, the partial pressure of arterial oxygen during LMBO was lower in Ndufs4-/- and in piericidin A-treated Ndufs4+/+ mice than in respective controls. Impairment of HPV in Ndufs4-/- mice was not a result of nonspecific dysfunction of the pulmonary vascular contractile apparatus or pulmonary inflammation. In Ndufs4-deficient mice, 3 wk of breathing 11% O2 restored HPV in response to LMBO. When compared with Ndufs4-/- mice breathing air, chronic hypoxia improved systemic oxygenation during LMBO. The results of this study show that, when breathing air, mice with a congenital Ndufs4 deficiency or chemically inhibited CI function have impaired HPV. Our study raises the possibility that patients with inborn errors of mitochondrial function may also have defects in HPV.
Collapse
Affiliation(s)
- Grigorij Schleifer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Michele Ferrari
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Rohit Sharma
- Howard Hughes Medical Institute and Department of Molecular Biology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Owen Skinner
- Howard Hughes Medical Institute and Department of Molecular Biology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Matthew Henry Grange
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Kathryn Peneyra
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Cardiology Division and Cardiovascular Research Center, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Martin Wepler
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts.,Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung , Ulm , Germany
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts.,Division of Rheumatology, Allergy and Immunology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital , Boston, Massachusetts
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
256
|
Manoli I, Sysol JR, Epping MW, Li L, Wang C, Sloan JL, Pass A, Gagné J, Ktena YP, Li L, Trivedi NS, Ouattara B, Zerfas PM, Hoffmann V, Abu-Asab M, Tsokos MG, Kleiner DE, Garone C, Cusmano-Ozog K, Enns GM, Vernon HJ, Andersson HC, Grunewald S, Elkahloun AG, Girard CL, Schnermann J, DiMauro S, Andres-Mateos E, Vandenberghe LH, Chandler RJ, Venditti CP. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia. JCI Insight 2018; 3:124351. [PMID: 30518688 DOI: 10.1172/jci.insight.124351] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut-/-;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.
Collapse
Affiliation(s)
- Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Justin R Sysol
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Madeline W Epping
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lina Li
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Cindy Wang
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jennifer L Sloan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Alexandra Pass
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jack Gagné
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yiouli P Ktena
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lingli Li
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Niraj S Trivedi
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Bazoumana Ouattara
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada.,Péléforo Gbon Coulibaly University, Korhogo, Ivory Coast
| | | | | | - Mones Abu-Asab
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Gregory M Enns
- Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans C Andersson
- Hayward Genetics Center, Tulane University Medical School, New Orleans, Louisiana, USA
| | - Stephanie Grunewald
- Department of Pediatric Metabolic Medicine, Great Ormond Street Hospital for Children Foundation Trust, Institute of Child Health, UCL, London, United Kingdom
| | - Abdel G Elkahloun
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Christiane L Girard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
257
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
258
|
Saito S, Takahashi Y, Ohki A, Shintani Y, Higuchi T. Early detection of elevated lactate levels in a mitochondrial disease model using chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI. Radiol Phys Technol 2018; 12:46-54. [PMID: 30467683 DOI: 10.1007/s12194-018-0490-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/16/2022]
Abstract
This study aimed to use chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI for early detection of intracerebral lactate in a mitochondrial disease model without brain lesions. We considered Ndufs4-knockout (KO) mice as Leigh syndrome models and wild-type (WT) mice as control mice. Brain MRI and 1H-MRS were performed. T2WI data acquired with the Rapid Acquisition with Refocused Echoes (RARE) sequence were used for evaluation of brain lesions. CEST imaging of mice brains was performed using RARE with a magnetization transfer (MT) pulse. The MT ratio (MTR) asymmetry curves and five MTR asymmetry maps at 0.5, 1.0, 2.0, 3.0, and 3.5 ppm were calculated using these CEST images. Metabolite concentrations were measured by MRS. T2WI MRI revealed no obvious abnormal findings in KO and WT mice brains at 6 weeks of age. The MTR asymmetry maps at 0.5 ppm, 1.0 ppm, and 2.0 ppm of the KO mice were higher than those of the control mice. Brain 1H MRS revealed a significant increase in lactate levels in all KO mice in comparison with those in the control mice. Additionally, creatine levels in the KO mice were slightly higher than those in the control mice. The levels of the other four metabolites-mIns, NAA + NAAG, GPC + PCh, and Glu + Gln-did not change significantly. We propose that CEST imaging can be used as a biomarker of intracerebral elevated lactate levels in mitochondrial disease.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan. .,Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, 565-8565, Japan.
| | - Yusuke Takahashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Akiko Ohki
- Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, 565-8565, Japan
| | - Yasunori Shintani
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Bioscience, Suita, Osaka, 565-0871, Japan
| | - Takahiro Higuchi
- Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, 565-8565, Japan.,Comprehensive Heart Failure Center, University of Wuerzburg, 97078, Wuerzburg, Germany.,Department of Nuclear Medicine, University of Wuerzburg, 97078, Wuerzburg, Germany
| |
Collapse
|
259
|
Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life 2018; 70:1275-1288. [PMID: 30394643 PMCID: PMC6268205 DOI: 10.1002/iub.1954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Lei Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
260
|
Abstract
Inborn errors of metabolism comprise a wide array of diseases and complications in the pediatric patient. The rarity of these disorders limits the ability to conduct and review robust literature regarding the disease states, mechanisms of dysfunction, treatments, and outcomes. Often, treatment plans will be based on the pathophysiology associated with the disorder and theoretical agents that may be involved in the metabolic process. Medication therapies usually consist of natural or herbal products. Established efficacious pediatric doses for these products are difficult to find in tertiary resources, and adverse effects are routinely limited to single case reports. This review article attempts to summarize some of the more common inborn errors of metabolism in a manner that is applicable to pharmacists who will provide care for these patients.
Collapse
|
261
|
Khoury N, Xu J, Stegelmann SD, Jackson CW, Koronowski KB, Dave KR, Young JI, Perez-Pinzon MA. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Mol Neurobiol 2018; 56:4549-4565. [PMID: 30343466 DOI: 10.1007/s12035-018-1380-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023]
Abstract
Neuroprotective agents administered post-cerebral ischemia have failed so far in the clinic to promote significant recovery. Thus, numerous efforts were redirected toward prophylactic approaches such as preconditioning as an alternative therapeutic strategy. Our laboratory has revealed a novel long-term window of cerebral ischemic tolerance mediated by resveratrol preconditioning (RPC) that lasts for 2 weeks in mice. To identify its mediators, we conducted an RNA-seq experiment on the cortex of mice 2 weeks post-RPC, which revealed 136 differentially expressed genes. The majority of genes (116/136) were downregulated upon RPC and clustered into biological processes involved in transcription, synaptic signaling, and neurotransmission. The downregulation in these processes was reminiscent of metabolic depression, an adaptation used by hibernating animals to survive severe ischemic states by downregulating energy-consuming pathways. Thus, to assess metabolism, we used a neuronal-astrocytic co-culture model and measured the cellular respiration rate at the long-term window post-RPC. Remarkably, we observed an increase in glycolysis and mitochondrial respiration efficiency upon RPC. We also observed an increase in the expression of genes involved in pyruvate uptake, TCA cycle, and oxidative phosphorylation, all of which indicated an increased reliance on energy-producing pathways. We then revealed that these nuclear and mitochondrial adaptations, which reduce the reliance on energy-consuming pathways and increase the reliance on energy-producing pathways, are epigenetically coupled through acetyl-CoA metabolism and ultimately increase baseline ATP levels. This increase in ATP would then allow the brain, a highly metabolic organ, to endure prolonged durations of energy deprivation encountered during cerebral ischemia.
Collapse
Affiliation(s)
- Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Jing Xu
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA
| | - Charles W Jackson
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kevin B Koronowski
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan I Young
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,John P. Hussman Institute for Human Genomics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA. .,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
262
|
Towards a therapy for mitochondrial disease: an update. Biochem Soc Trans 2018; 46:1247-1261. [PMID: 30301846 PMCID: PMC6195631 DOI: 10.1042/bst20180134] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Preclinical work aimed at developing new therapies for mitochondrial diseases has recently given new hopes and opened unexpected perspectives for the patients affected by these pathologies. In contrast, only minor progresses have been achieved so far in the translation into the clinics. Many challenges are still ahead, including the need for a better characterization of the pharmacological effects of the different approaches and the design of appropriate clinical trials with robust outcome measures for this extremely heterogeneous, rare, and complex group of disorders. In this review, we will discuss the most important achievements and the major challenges in this very dynamic research field.
Collapse
|
263
|
Hand SC, Moore DS, Patil Y. Challenges during diapause and anhydrobiosis: Mitochondrial bioenergetics and desiccation tolerance. IUBMB Life 2018; 70:1251-1259. [PMID: 30369011 DOI: 10.1002/iub.1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
In preparation for the onset of environmental challenges like overwintering, food limitation, anoxia, or water stress, many invertebrates and certain killifish enter diapause. Diapause is a developmentally-programed dormancy characterized by suppression of development and metabolism. For embryos of Artemia franciscana (brine shrimp), the metabolic arrest is profound. These gastrula-stage embryos depress oxidative metabolism by ~99% during diapause and survive years of severe desiccation in a state termed anhydrobiosis. Trehalose is the sole fuel source for this developmental stage. Mitochondrial function during diapause is downregulated primarily by restricting substrate supply, as a result of inhibiting key enzymes of carbohydrate metabolism. Because proton conductance across the inner membrane is not decreased during diapause, the inference is that membrane potential must be compromised. In the absence of any intervention, the possibility exists that the F1 Fo ATP synthase and the adenine nucleotide translocator may reverse, leading to wholesale hydrolysis of cellular ATP. Studies with anhydrobiotes like A. franciscana are revealing multiple traits useful for improving desiccation tolerance that include the expression and accumulation late embryogenesis abundant (LEA) proteins and trehalose. LEA proteins are intrinsically disordered in aqueous solution but gain secondary structure (predominantly α-helix) as water is removed. These protective agents stabilize biological structures including lipid bilayers and mitochondria during severe water stress. © 2018 IUBMB Life, 70(12):1251-1259, 2018.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Daniel S Moore
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Yuvraj Patil
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| |
Collapse
|
264
|
Zhang H, Gong G, Wang P, Zhang Z, Kolwicz SC, Rabinovitch PS, Tian R, Wang W. Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol 2018; 123:38-45. [PMID: 30165037 PMCID: PMC6192835 DOI: 10.1016/j.yjmcc.2018.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Ischemic heart disease (IHD) is a leading cause of mortality. The most effective intervention for IHD is reperfusion, which ironically causes ischemia reperfusion (I/R) injury mainly due to oxidative stress-induced cardiomyocyte death. The exact mechanism and site of reactive oxygen species (ROS) generation during I/R injury remain elusive. OBJECTIVE We aim to test the hypothesis that Complex I-mediated forward and reverse electron flows are the major source of ROS in I/R injury of the heart. METHODS AND RESULTS We used a genetic model of mitochondrial Complex I deficiency, in which a Complex I assembling subunit, Ndufs4 was knocked out in the heart (Ndufs4H-/-). The Langendorff perfused Ndufs4H-/- hearts exhibited significantly reduced infarct size (45.3 ± 5.5% in wild type vs 20.9 ± 8.1% in Ndufs4H-/-), recovered contractile function, and maintained mitochondrial membrane potential after no flow ischemia and subsequent reperfusion. In cultured adult cardiomyocytes from Ndufs4H-/- mice, I/R mimetic treatments caused minimal cell death. Reintroducing Ndufs4 in Ndufs4H-/- cardiomyocytes abolished the protection. Mitochondrial NADH declined much slower in Ndufs4H-/- cardiomyocytes during reperfusion suggesting decreased forward electron flow. Mitochondrial flashes, a marker for mitochondrial respiration, were inhibited in Ndufs4H-/- cardiomyocytes at baseline and during I/R, which was accompanied by preserved aconitase activity suggesting lack of oxidative damage. Finally, pharmacological blockade of forward and reverse electron flow at Complex I inhibited I/R-induced cell death. CONCLUSIONS These results provide the first genetic evidence supporting the central role of mitochondrial Complex I in I/R injury of mouse heart. The study also suggests that both forward and reverse electron flows underlie oxidative cardiomyocyte death during reperfusion.
Collapse
Affiliation(s)
- Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Zhen Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
265
|
Multiwavelength UV-metric and pH-metric determination of the dissociation constants of the hypoxia-inducible factor prolyl hydroxylase inhibitor Roxadustat. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
266
|
Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang F, Wang H, Lu C, Lu H. HIF-1α/Beclin1-Mediated Autophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning. J Mol Neurosci 2018; 66:238-250. [PMID: 30203298 PMCID: PMC6182618 DOI: 10.1007/s12031-018-1162-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Hypoxic preconditioning (HPC) exerts a protective effect against hypoxic/ischemic brain injury, and one mechanism explaining this effect may involve the upregulation of hypoxia-inducible factor-1 (HIF-1). Autophagy, an endogenous protective mechanism against hypoxic/ischemic injury, is correlated with the activation of the HIF-1α/Beclin1 signaling pathway. Based on previous studies, we hypothesize that the protective role of HPC may involve autophagy occurring via activation of the HIF-1α/Beclin1 signaling pathway. To test this hypothesis, we evaluated the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells. HPC significantly attenuated OGD/R-induced apoptosis, and this effect was suppressed by the autophagy inhibitor 3-methyladenine and mimicked by the autophagy agonist rapamycin. In control SH-SY5Y cells, HPC upregulated the expression of HIF-1α and downstream molecules such as BNIP3 and Beclin1. Additionally, HPC increased the LC3-II/LC3-I ratio and decreased p62 levels. The increase in the LC3-II/LC3-I ratio was inhibited by the HIF-1α inhibitor YC-1 or by Beclin1-short hairpin RNA (shRNA). In OGD/R-treated SH-SY5Y cells, HPC also upregulated the expression levels of HIF-1α, BNIP3, and Beclin1, as well as the LC3-II/LC3-I ratio. Furthermore, YC-1 or Beclin1-shRNA attenuated the HPC-mediated cell viability in OGD/R-treated cells. Taken together, our results demonstrate that HPC protects SH-SY5Y cells against OGD/R via HIF-1α/Beclin1-regulated autophagy.
Collapse
Affiliation(s)
- Na Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Xingxing Li
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ruolan Tan
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhenlu Cai
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaoxuan Hu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Feidi Wang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Haoruo Wang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chengbiao Lu
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Haixia Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
267
|
Mootha VK, Chinnery PF. Oxygen in mitochondrial disease: can there be too much of a good thing? J Inherit Metab Dis 2018; 41:761-763. [PMID: 29948481 DOI: 10.1007/s10545-018-0210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit & Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
268
|
Peters MJ, Jones GA, Eaton S, Wiley D, Ray S. Risks and benefits of oxygen therapy. J Inherit Metab Dis 2018; 41:757-759. [PMID: 29869161 DOI: 10.1007/s10545-018-0208-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mark J Peters
- Respiratory Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, London, UK.
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK.
- Critical Care Group - UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - Gareth A Jones
- Respiratory Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, London, UK
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| | - Simon Eaton
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daisy Wiley
- Clinical Trials Unit, Intensive Care National Audit & Research Centre (ICNARC), Napier House, High Holborn, London, UK
| | - Samiran Ray
- Respiratory Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, London, UK
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK
| |
Collapse
|
269
|
Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber's hereditary optic neuropathy. Mitochondrion 2018; 46:270-277. [PMID: 30081212 DOI: 10.1016/j.mito.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by acute bilateral vision loss. The pathophysiology involves reactive oxygen species (ROS), which can be affected by medications. This article reviews the evidence for medications with demonstrated and theoretical effects on mitochondrial function, specifically in relation to increased ROS production. The data reviewed provides guidance when selecting medications for individuals with LHON mutations (carriers) and are susceptible to conversion to affected. However, as with all medications, the proven benefits of these therapies must be weighed against, in some cases, purely theoretical risks for this unique patient population.
Collapse
Affiliation(s)
- Kaitlin Kogachi
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Anna Ter-Zakarian
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Samuel Asanad
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Alfredo Sadun
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Rustum Karanjia
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA; The Ottawa Eye Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8M2, Canada; Ottawa Hospital Research Institute, 1053 Carling Avenue, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
270
|
Mendelsohn BA, Bennett NK, Darch MA, Yu K, Nguyen MK, Pucciarelli D, Nelson M, Horlbeck MA, Gilbert LA, Hyun W, Kampmann M, Nakamura JL, Nakamura K. A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biol 2018; 16:e2004624. [PMID: 30148842 PMCID: PMC6110572 DOI: 10.1371/journal.pbio.2004624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Insufficient or dysregulated energy metabolism may underlie diverse inherited and degenerative diseases, cancer, and even aging itself. ATP is the central energy carrier in cells, but critical pathways for regulating ATP levels are not systematically understood. We combined a pooled clustered regularly interspaced short palindromic repeats interference (CRISPRi) library enriched for mitochondrial genes, a fluorescent biosensor, and fluorescence-activated cell sorting (FACS) in a high-throughput genetic screen to assay ATP concentrations in live human cells. We identified genes not known to be involved in energy metabolism. Most mitochondrial ribosomal proteins are essential in maintaining ATP levels under respiratory conditions, and impaired respiration predicts poor growth. We also identified genes for which coenzyme Q10 (CoQ10) supplementation rescued ATP deficits caused by knockdown. These included CoQ10 biosynthetic genes associated with human disease and a subset of genes not linked to CoQ10 biosynthesis, indicating that increasing CoQ10 can preserve ATP in specific genetic contexts. This screening paradigm reveals mechanisms of metabolic control and genetic defects responsive to energy-based therapies.
Collapse
Affiliation(s)
- Bryce A. Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Neal K. Bennett
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Maxwell A. Darch
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Katharine Yu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Mai K. Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Daniela Pucciarelli
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Maxine Nelson
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - William Hyun
- Department of Laboratory Medicine, University of California, San Francisco, California, United States of America
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Jean L. Nakamura
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
- Graduate Program in Neuroscience, University of California, San Francisco, California, United States of America
| |
Collapse
|
271
|
Chaudhari SN, Kipreos ET. The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity. Bioessays 2018; 40:e1800005. [PMID: 29901833 PMCID: PMC6314662 DOI: 10.1002/bies.201800005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long-lived C. elegans vhl-1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans by increasing energy metabolism. In diverse animals, ATP levels broadly decreases with age. Substantial evidence supports the theory that increasing or maintaining energy metabolism promotes the survival of older animals. Increased ATP levels in older animals allow energy-intensive repair and homeostatic mechanisms such as proteostasis that act to prevent cellular aging. These observations support the emerging paradigm that maintaining energy metabolism promotes the survival of older animals.
Collapse
Affiliation(s)
- Snehal N. Chaudhari
- Department of Cellular Biology University of Georgia Athens, GA 30602
- Present address: Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115
| | - Edward T. Kipreos
- Department of Cellular Biology University of Georgia Athens, GA 30602
| |
Collapse
|
272
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
273
|
Arena G, Riscal R, Linares LK, Le Cam L. MDM2 controls gene expression independently of p53 in both normal and cancer cells. Cell Death Differ 2018; 25:1533-1535. [PMID: 30038384 DOI: 10.1038/s41418-018-0156-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Giuseppe Arena
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, F-34298, France.,Equipe Labélisée Ligue contre le Cancer, Paris, France
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, Montpellier, F-34298, France. .,Equipe Labélisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
274
|
Emerging therapies for mitochondrial diseases. Essays Biochem 2018; 62:467-481. [PMID: 29980632 DOI: 10.1042/ebc20170114] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
For the vast majority of patients with mitochondrial diseases, only supportive and symptomatic therapies are available. However, in the last decade, due to extraordinary advances in defining the causes and pathomechanisms of these diverse disorders, new therapies are being developed in the laboratory and are entering human clinical trials. In this review, we highlight the current use of dietary supplement and exercise therapies as well as emerging therapies that may be broadly applicable across multiple mitochondrial diseases or tailored for specific disorders. Examples of non-tailored therapeutic targets include: activation of mitochondrial biogenesis, regulation of mitophagy and mitochondrial dynamics, bypass of biochemical defects, mitochondrial replacement therapy, and hypoxia. In contrast, tailored therapies are: scavenging of toxic compounds, deoxynucleoside and deoxynucleotide treatments, cell replacement therapies, gene therapy, shifting mitochondrial DNA mutation heteroplasmy, and stabilization of mutant mitochondrial transfer RNAs.
Collapse
|
275
|
Intracellular organelles in health and kidney disease. Nephrol Ther 2018; 15:9-21. [PMID: 29887266 DOI: 10.1016/j.nephro.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
Abstract
Subcellular organelles consist of smaller substructures called supramolecular assemblies and these in turn consist of macromolecules. Various subcellular organelles have critical functions that consist of genetic disorders of organelle biogenesis and several metabolic disturbances that occur during non-genetic diseases e.g. infection, intoxication and drug treatments. Mitochondrial damage can cause renal dysfunction as ischemic acute renal injury, chronic kidney disease progression. Moreover, mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury and cardiovascular disease due to oxidative stress in chronic kidney disease. Elevated production of reactive oxygen species could be able to activate NLRP3 inflammasome representing new deregulated biological machinery and a novel therapeutic target in hemodialysis patients. Peroxisomes are actively involved in apoptosis and inflammation, innate immunity, aging and in the pathogenesis of age related diseases, such as diabetes mellitus and cancer. Peroxisomal catalase causes alterations of mitochondrial membrane proteins and stimulates generation of mitochondrial reactive oxygen species. High concentrations of hydrogen peroxide exacerbate organelles and cellular aging. The importance of proper peroxisomal function for the biosynthesis of bile acids has been firmly established. Endoplasmic reticulum stress-induced pathological diseases in kidney cause glomerular injury and tubulointerstitial injury. Furthermore, there is a link between oxidative stress and inflammations in pathological states are associated with endoplasmic reticulum stress. Proteinuria and hyperglycemia in diabetic nephropathy may induce endoplasmic reticulum stress in tubular cells of the kidney. Due to the accumulation in the proximal tubule lysosomes, impaired function of these organelles may be an important mechanism leading to proximal tubular toxicity.
Collapse
|
276
|
Bailey PSJ, Nathan JA. Metabolic Regulation of Hypoxia-Inducible Transcription Factors: The Role of Small Molecule Metabolites and Iron. Biomedicines 2018; 6:biomedicines6020060. [PMID: 29772792 PMCID: PMC6027492 DOI: 10.3390/biomedicines6020060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023] Open
Abstract
Hypoxia-inducible transcription factors (HIFs) facilitate cellular adaptations to low-oxygen environments. However, it is increasingly recognised that HIFs may be activated in response to metabolic stimuli, even when oxygen is present. Understanding the mechanisms for the crosstalk that exists between HIF signalling and metabolic pathways is therefore important. This review focuses on the metabolic regulation of HIFs by small molecule metabolites and iron, highlighting the latest studies that explore how tricarboxylic acid (TCA) cycle intermediates, 2-hydroxyglutarate (2-HG) and intracellular iron levels influence the HIF response through modulating the activity of prolyl hydroxylases (PHDs). We also discuss the relevance of these metabolic pathways in physiological and disease contexts. Lastly, as PHDs are members of a large family of 2-oxoglutarate (2-OG) dependent dioxygenases that can all respond to metabolic stimuli, we explore the broader role of TCA cycle metabolites and 2-HG in the regulation of 2-OG dependent dioxygenases, focusing on the enzymes involved in chromatin remodelling.
Collapse
Affiliation(s)
- Peter S J Bailey
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| | - James A Nathan
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
277
|
Guo X, Chitale P, Sanjana NE. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1016:123-145. [PMID: 29130157 DOI: 10.1007/978-3-319-63904-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, programmable RNA-guided nucleases such as the CRISPR/Cas9 system have ushered in a new era of precision genome editing in diverse model systems and in human cells. Functional screens using large libraries of RNA guides can interrogate a large hypothesis space to pinpoint particular genes and genetic elements involved in fundamental biological processes and disease-relevant phenotypes. Here, we review recent high-throughput CRISPR screens (e.g. loss-of-function, gain-of-function, and targeting noncoding elements) and highlight their potential for uncovering novel therapeutic targets, such as those involved in cancer resistance to small molecular drugs and immunotherapies, tumor evolution, infectious disease, inborn genetic disorders, and other therapeutic challenges.
Collapse
Affiliation(s)
- Xinyi Guo
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Poonam Chitale
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Neville E Sanjana
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA.
- Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
278
|
Wang K, Xu Y, Sun Q, Long J, Liu J, Ding J. Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms. Free Radic Res 2018; 52:1256-1265. [PMID: 29544373 DOI: 10.1080/10715762.2018.1453137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multipurpose organelle mitochondria play an essential role(s) in controlling cardiac muscle contraction. Mitochondria, not only function as the powerhouses and the energy source of myocytes but also modulate intracellular Ca2+ homeostasis, the production of intermediary metabolites/reactive oxygen species (ROS), and other cellular processes. Those molecular events can substantially influence myocardial contraction. Mitochondrial dysfunction is usually associated with cardiac remodelling, and is the causal factor of heart contraction defects in many cases. The manipulation of mitochondria or mitochondria-relevant pathways appears to be a promising therapeutic approach to treat the diseases.
Collapse
Affiliation(s)
- Kexin Wang
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Yang Xu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Qiong Sun
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiangang Long
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiankang Liu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jian Ding
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
279
|
Bargiela D, Burr SP, Chinnery PF. Mitochondria and Hypoxia: Metabolic Crosstalk in Cell-Fate Decisions. Trends Endocrinol Metab 2018; 29:249-259. [PMID: 29501229 DOI: 10.1016/j.tem.2018.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/07/2023]
Abstract
Alterations in mitochondrial metabolism influence cell differentiation and growth. This process is regulated by the activity of 2-oxoglutarate (2OG)-dependent dioxygenases (2OGDDs) - a diverse superfamily of oxygen-consuming enzymes - through modulation of the epigenetic landscape and transcriptional responses. Recent reports have described the role of mitochondrial metabolites in directing 2OGDD-driven cell-fate switches in stem cells (SCs), immune cells, and cancer cells. An understanding of the metabolic mechanisms underlying 2OGDD autoregulation is required for therapeutic targeting of this system. We propose a model dependent on oxygen and metabolite availability and discuss how this integrates 2OGDD metabolic signalling, the hypoxic transcriptional response, and fate-determining epigenetic changes.
Collapse
Affiliation(s)
- David Bargiela
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen P Burr
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
280
|
Leak RK. Conditioning Against the Pathology of Parkinson's disease. CONDITIONING MEDICINE 2018; 1:143-162. [PMID: 30370426 PMCID: PMC6200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease is delayed in clinical onset, asymmetric in initial appearance, and slow in progression. One explanation for these characteristics may be a boost in natural defenses after early exposure to mild cellular stress. As the patient ages and resilience recedes, however, stress levels may become sufficiently high that toxic cellular responses can no longer be curbed, culminating in inverted U-shaped stress-response curves as a function of disease duration. If dopaminergic systems are indeed capable of responding to mild stress with effective natural defenses, experimental models of Parkinson's disease should adhere to the principles of preconditioning, whereby stress exposure fortifies cells and tempers the toxic sequelae of subsequent stressors. Here, I review evidence favoring the efficacy of preconditioning in dopaminergic systems. Recent animal work also raises the possibility that cross-hemispheric preconditioning may arrest the spread of asymmetric Parkinson's pathology to the other side of the brain. Indeed, compensatory homeostatic systems have long been hypothesized to maintain neurological function until a threshold of cell loss is exceeded and are often displayed as inverted U-shaped curves. However, some stress responses assume an exponential or sigmoidal profile as a function of disease severity, suggesting end-stage deceleration of disease processes. Thus, surviving dopaminergic neurons may become progressively harder to kill, with the dorsal nigral tier dying slower due to superior baseline defenses, inducible conditioning capacity, or delayed dorsomedial nigral spread of disease. In addition, compensatory processes may be useful as biomarkers to distinguish "responder patients" from "nonresponders" before clinical trials. However, another possibility is that defenses are already maximally conditioned in most patients and no further boost is possible. A third alternative is that genuinely diseased human cells cannot be conditioned, in contrast to preclinical models, none of which faithfully recapitulate age-related human conditions. Disease-related "conditioning deficiencies" would then explain how Parkinson's pathology takes root, progressively shrinks defenses, and eventually kills the patient.
Collapse
Affiliation(s)
- Rehana K. Leak
- For correspondence please address: Rehana K. Leak,
Ph.D., Graduate School of Pharmaceutical Sciences, Duquesne University, 600
Forbes Ave, Pittsburgh, PA 15282, ,
412.396.4734
| |
Collapse
|
281
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
282
|
Chen L, Cui Y, Jiang D, Ma C, Tse HF, Hwu WL, Lian Q. Management of Leigh syndrome: Current status and new insights. Clin Genet 2018; 93:1131-1140. [DOI: 10.1111/cge.13139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- L. Chen
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - Y. Cui
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - D. Jiang
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - C.Y. Ma
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - H.-F. Tse
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - W.-L. Hwu
- Department of Pediatrics and Medical Genetics; National Taiwan University Hospital; Taipei City Taiwan
| | - Q. Lian
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
- School of Biomedical Sciences; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
283
|
Piekutowska-Abramczuk D, Rutyna R, Czyżyk E, Jurkiewicz E, Iwanicka-Pronicka K, Rokicki D, Stachowicz S, Strzemecka J, Guz W, Gawroński M, Kosierb A, Ligas J, Puchala M, Drelich-Zbroja A, Bednarska-Makaruk M, Dąbrowski W, Ciara E, Książyk JB, Pronicka E. Leigh syndrome in individuals bearing m.9185T>C MTATP6 variant. Is hyperventilation a factor which starts its development? Metab Brain Dis 2018; 33:191-199. [PMID: 29116603 PMCID: PMC5769826 DOI: 10.1007/s11011-017-0122-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/04/2017] [Indexed: 02/02/2023]
Abstract
Leigh syndrome (LS), subacute necrotizing encephalomyelopathy is caused by various genetic defects, including m.9185T>C MTATP6 variant. Mechanism of LS development remains unknown. We report on the acid-base status of three patients with m.9185T>C related LS. At the onset, it showed respiratory alkalosis, reflecting excessive respiration effort (hyperventilation with low pCO2). In patient 1, the deterioration occurred in temporal relation to passive oxygen therapy. To the contrary, on the recovery, she demonstrated a relatively low respiratory drive, suggesting that a "hypoventilation" might be beneficial for m.9185T>C carriers. As long as circumstances of the development of LS have not been fully explained, we recommend to counteract hyperventilation and carefully dose oxygen in patients with m.9185T>C related LS.
Collapse
Affiliation(s)
- Dorota Piekutowska-Abramczuk
- Department of Medical Genetics, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Rafał Rutyna
- Chair and Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Czyżyk
- Clinical Department of Child Neurology, Clinical Central Hospital No 2 in Rzeszow, Rzeszow, Poland
| | - Elżbieta Jurkiewicz
- Department of Radiology, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Sylwia Stachowicz
- Department of Neurology, Public Independent Clinic Hospital No 4 in Lublin, Lublin, Poland
| | - Joanna Strzemecka
- Department of Orthopaedics and Rehabilitation, Public Independent Clinic Hospital No 4 in Lublin, Lublin, Poland
- Institute of Health Sciences, Pope John Paul II State School of Higher Education, Biała Podlaska, Poland
| | - Wiesław Guz
- Department of Electroradiology, Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszów, Poland
- Clinical Department of Radiology, Clinical Central Hospital No 2, Rzeszow, Poland
| | - Michał Gawroński
- Student Academic Club at The Chair and Department of Anaesthesiology and Intensive Therapy, II Faculty of Medicine with English Language Division, Medical University of Lublin, Lublin, Poland
| | - Aneta Kosierb
- Student Academic Club at The Chair and Department of Anaesthesiology and Intensive Therapy, II Faculty of Medicine with English Language Division, Medical University of Lublin, Lublin, Poland
| | - Joanna Ligas
- Student Academic Club at The Chair and Department of Anaesthesiology and Intensive Therapy, II Faculty of Medicine with English Language Division, Medical University of Lublin, Lublin, Poland
| | - Mateusz Puchala
- Student Academic Club at The Chair and Department of Anaesthesiology and Intensive Therapy, II Faculty of Medicine with English Language Division, Medical University of Lublin, Lublin, Poland
| | - Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology Medical University of Lublin, Lublin, Poland
| | | | - Wojciech Dąbrowski
- Chair and Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Janusz B. Książyk
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Ewa Pronicka
- Department of Medical Genetics, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
284
|
Li Z, Peng Y, Hufnagel RB, Hu YC, Zhao C, Queme LF, Khuchua Z, Driver AM, Dong F, Lu QR, Lindquist DM, Jankowski MP, Stottmann RW, Kao WWY, Huang T. Loss of SLC25A46 causes neurodegeneration by affecting mitochondrial dynamics and energy production in mice. Hum Mol Genet 2018; 26:3776-3791. [PMID: 28934388 DOI: 10.1093/hmg/ddx262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, we identified biallelic mutations of SLC25A46 in patients with multiple neuropathies. Functional studies revealed that SLC25A46 may play an important role in mitochondrial dynamics by mediating mitochondrial fission. However, the cellular basis and pathogenic mechanism of the SLC25A46-related neuropathies are not fully understood. Thus, we generated a Slc25a46 knock-out mouse model. Mice lacking SLC25A46 displayed severe ataxia, mainly caused by degeneration of Purkinje cells. Increased numbers of small, unmyelinated and degenerated optic nerves as well as loss of retinal ganglion cells indicated optic atrophy. Compound muscle action potentials in peripheral nerves showed peripheral neuropathy associated with degeneration and demyelination in axons. Mutant cerebellar neurons have large mitochondria, which exhibit abnormal distribution and transport. Biochemically mutant mice showed impaired electron transport chain activity and accumulated autophagy markers. Our results suggest that loss of SLC25A46 causes degeneration in neurons by affecting mitochondrial dynamics and energy production.
Collapse
Affiliation(s)
- Zhuo Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cancer and Blood Diseases Institute
| | | | - Zaza Khuchua
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Driver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cancer and Blood Diseases Institute
| | - Diana M Lindquist
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
285
|
Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2018; 115:457-465. [PMID: 29298915 PMCID: PMC5777003 DOI: 10.1073/pnas.1719063115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut microbes positively affect the physiology of many animals, but the molecular mechanisms underlying these benefits remain poorly understood. We recently reported that bacteria-induced gut hypoxia functions as a signal for growth and molting of the mosquito Aedes aegypti In this study, we tested the hypothesis that transduction of a gut hypoxia signal requires hypoxia-induced transcription factors (HIFs). Expression studies showed that HIF-α was stabilized in larvae containing bacteria that induce gut hypoxia but was destabilized in larvae that exhibit normoxia. However, we could rescue growth of larvae exhibiting gut normoxia by treating them with a prolyl hydroxylase inhibitor, FG-4592, that stabilized HIF-α, and inhibit growth of larvae exhibiting gut hypoxia by treating them with an inhibitor, PX-478, that destabilized HIF-α. Using these tools, we determined that HIF signaling activated the insulin/insulin growth factor pathway plus select mitogen-activated kinases and inhibited the adenosine monophosphate-activated protein kinase pathway. HIF signaling was also required for growth of the larval midgut and storage of neutral lipids by the fat body. Altogether, our results indicate that gut hypoxia and HIF signaling activate multiple processes in A. aegypti larvae, with conserved functions in growth and metabolism.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kerri L Coon
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kevin J Vogel
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Mark R Brown
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Michael R Strand
- Department of Entomology, The University of Georgia, Athens, GA 30602
| |
Collapse
|
286
|
Lehmann D, McFarland R. Overview of Approaches to Mitochondrial Disease Therapy. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409817752960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Diana Lehmann
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurology, University of Halle-Wittenberg, Halle/Saale, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
287
|
Pickel C, Taylor CT, Scholz CC. Genetic Knockdown and Pharmacologic Inhibition of Hypoxia-Inducible Factor (HIF) Hydroxylases. Methods Mol Biol 2018; 1742:1-14. [PMID: 29330785 DOI: 10.1007/978-1-4939-7665-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reduced oxygen supply that does not satisfy tissue and cellular demand (hypoxia) regularly occurs both in health and disease. Hence, the capacity for cellular oxygen sensing is of vital importance for each cell to be able to alter its energy metabolism and promote adaptation to hypoxia. The hypoxia-inducible factor (HIF) prolyl hydroxylases 1-3 (PHD1-3) and the asparagine hydroxylase factor-inhibiting HIF (FIH) are the primary cellular oxygen sensors, which confer cellular oxygen-dependent sensitivity upon HIF as well as other hypoxia-sensitive pathways, such as nuclear factor κB (NF-κB). Studying these enzymes allows us to understand the oxygen-dependent regulation of cellular processes and has led to the development of several putative novel therapeutics, which are currently in clinical trials for the treatment of anemia associated with kidney disease. Pharmacologic inhibition and genetic knockdown are commonly established techniques in protein biochemistry and are used to investigate the activity and function of proteins. Here, we describe specific protocols for the knockdown and inhibition of the HIF prolyl hydroxylases 1-3 (PHD1-3) and the asparagine hydroxylase factor-inhibiting HIF (FIH) using RNA interference (RNAi) and hydroxylase inhibitors, respectively. These techniques are essential tools for the analysis of the function of the HIF hydroxylases, allowing the investigation and discovery of novel functions and substrates of these enzymes.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, Charles Institute and Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
288
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
289
|
Gomez-Niño A, Docio I, Prieto-Lloret J, Simarro M, de la Fuente MA, Rocher A. Mitochondrial Complex I Dysfunction and Peripheral Chemoreflex Sensitivity in a FASTK-Deficient Mice Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:51-59. [DOI: 10.1007/978-3-319-91137-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
290
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
291
|
Abstract
Exciting new technologies are often self-limiting in their rollout, as access to state-of-the-art instrumentation or the need for years of hands-on experience, for better or worse, ensures slow adoption by the community. CRISPR technology, however, presents the opposite dilemma, where the simplicity of the system enabled the parallel development of many applications, improvements and derivatives, and new users are now presented with an almost paralyzing abundance of choices. This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.
Collapse
Affiliation(s)
- John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
292
|
Lorenz C, Prigione A. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Curr Opin Cell Biol 2017; 49:71-76. [DOI: 10.1016/j.ceb.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
|
293
|
Siegmund SE, Yang H, Sharma R, Javors M, Skinner O, Mootha V, Hirano M, Schon EA. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum Mol Genet 2017; 26:4588-4605. [PMID: 28973153 PMCID: PMC5886265 DOI: 10.1093/hmg/ddx341] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential 'rapamycin metabolic signature.' These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases.
Collapse
Affiliation(s)
| | | | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas, San Antonio, TX 78229, USA
| | - Owen Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Eric A Schon
- Department of Neurology
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
294
|
Mitochondrial DNA density homeostasis accounts for a threshold effect in a cybrid model of a human mitochondrial disease. Biochem J 2017; 474:4019-4034. [PMID: 29079678 PMCID: PMC5705840 DOI: 10.1042/bcj20170651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is involved in a wide array of devastating diseases, but the heterogeneity and complexity of the symptoms of these diseases challenges theoretical understanding of their causation. With the explosion of omics data, we have the unprecedented opportunity to gain deep understanding of the biochemical mechanisms of mitochondrial dysfunction. This goal raises the outstanding need to make these complex datasets interpretable. Quantitative modelling allows us to translate such datasets into intuition and suggest rational biomedical treatments. Taking an interdisciplinary approach, we use a recently published large-scale dataset and develop a descriptive and predictive mathematical model of progressive increase in mutant load of the MELAS 3243A>G mtDNA mutation. The experimentally observed behaviour is surprisingly rich, but we find that our simple, biophysically motivated model intuitively accounts for this heterogeneity and yields a wealth of biological predictions. Our findings suggest that cells attempt to maintain wild-type mtDNA density through cell volume reduction, and thus power demand reduction, until a minimum cell volume is reached. Thereafter, cells toggle from demand reduction to supply increase, up-regulating energy production pathways. Our analysis provides further evidence for the physiological significance of mtDNA density and emphasizes the need for performing single-cell volume measurements jointly with mtDNA quantification. We propose novel experiments to verify the hypotheses made here to further develop our understanding of the threshold effect and connect with rational choices for mtDNA disease therapies.
Collapse
|
295
|
Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. J Hum Genet 2017; 63:179-186. [DOI: 10.1038/s10038-017-0376-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022]
|
296
|
Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett 2017; 592:663-678. [PMID: 29086414 DOI: 10.1002/1873-3468.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Rachel J Hunt
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| |
Collapse
|
297
|
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Mo W, Xu L, Guo C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 2017; 117:1518-1528. [PMID: 28926527 PMCID: PMC5680469 DOI: 10.1038/bjc.2017.323] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/23/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-inducible factor 1 α (HIF-1α) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer progression, and resistance to therapy. However, the effect of genistein on HIF-1α and glycolysis in hepatocellular carcinoma (HCC) is still unclear. METHODS Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1α were used to test the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its combination with sorafenib. RESULTS Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1α reversed the effect of genistein, genistein no longer has effects on HIF-1α siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice. CONCLUSIONS Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1α, therefore inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis may help identify effective treatments for HCC patients at advanced stages.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu 215300, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
298
|
Dhillon RS, Denu JM. Using comparative biology to understand how aging affects mitochondrial metabolism. Mol Cell Endocrinol 2017; 455:54-61. [PMID: 28025033 DOI: 10.1016/j.mce.2016.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Lifespan varies considerably among even closely related species, as exemplified by rodents and primates. Despite these disparities in lifespan, most studies have focused on intra-specific aging pathologies, primarily within a select few systems. While mice have provided much insight into aging biology, it is unclear if such a short-lived species lack defences against senescence that may have evolved in related longevous species. Many age-related diseases have been linked to mitochondrial dysfunction that are measured by decreased energy generation, structural damage to cellular components, and even cell death. Post translational modifications (PTMs) orchestrate many of the pathways associated with cellular metabolism, and are thought to be a key regulator in biological senescence. We propose hyperacylation as one such modification that may be implicated in numerous mitochondrial impairments affecting energy metabolism.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA.
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA
| |
Collapse
|
299
|
Heber-Katz E. Oxygen, Metabolism, and Regeneration: Lessons from Mice. Trends Mol Med 2017; 23:1024-1036. [PMID: 28988849 DOI: 10.1016/j.molmed.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/05/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
The discovery that the Murphy Roths Large (MRL) mouse strain is a fully competent, epimorphic tissue regenerator, proved that the machinery of regeneration was preserved through evolution from hydra, to salamanders, to mammals. Such concepts have allowed translation of the biology of amphibians, and their ability to regenerate, to a mammalian context. We identified the ancient hypoxia-inducible factor (HIF)-1α pathway, operating through prolyl hydroxylase domain proteins (PHDs), as a central player in mouse regeneration. Thus, the possibility of targeting PHDs or other HIF-1α modifiers to effectively recreate the amphibian regenerative state has emerged. We posit that these regenerative pathways are critical in mammals. Moreover, the current approved use of PHD inhibitors in the clinic should allow fast-track translation from mouse studies to drug-based regenerative therapy in humans.
Collapse
Affiliation(s)
- Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| |
Collapse
|
300
|
Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF. Mitophagy in neurodegeneration and aging. Neurochem Int 2017; 109:202-209. [PMID: 28235551 PMCID: PMC5565781 DOI: 10.1016/j.neuint.2017.02.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction contributes to normal aging and a wide spectrum of age-related diseases, including neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. It is important to maintain a healthy mitochondrial population which is tightly regulated by proteolysis and mitophagy. Mitophagy is a specialized form of autophagy that regulates the turnover of damaged and dysfunctional mitochondria, organelles that function in producing energy for the cell in the form of ATP and regulating energy homeostasis. Mechanistic studies on mitophagy across species highlight a sophisticated and integrated cellular network that regulates the degradation of mitochondria. Strategies directed at maintaining a healthy mitophagy level in aged individuals might have beneficial effects. In this review, we provide an updated mechanistic overview of mitophagy pathways and discuss the role of reduced mitophagy in neurodegeneration. We also highlight potential translational applications of mitophagy-inducing compounds, such as NAD+ precursors and urolithins.
Collapse
Affiliation(s)
- Elayne M Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sofie Lautrup
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Nuo Sun
- Center for Molecular Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tinna Stevnsner
- Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|