251
|
Liu X, Gao Y, Ye H, Gerrin S, Ma F, Wu Y, Zhang T, Russo J, Cai C, Yuan X, Liu J, Chen S, Balk SP. Positive feedback loop mediated by protein phosphatase 1α mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer. Nucleic Acids Res 2017; 45:3738-3751. [PMID: 28062857 PMCID: PMC5397168 DOI: 10.1093/nar/gkw1291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/25/2016] [Indexed: 01/05/2023] Open
Abstract
P-TEFb (CDK9/cyclin T) plays a central role in androgen receptor (AR)-mediated transactivation by phosphorylating both RNA polymerase 2 complex proteins and AR at S81. CDK9 dephosphorylation mobilizes P-TEFb from an inhibitory 7SK ribonucleoprotein complex, but mechanisms targeting phosphatases to P-TEFb are unclear. We show that AR recruits protein phosphatase 1α (PP1α), resulting in P-TEFb mobilization and CDK9-mediated AR S81 phosphorylation. This increased pS81 enhances p300 recruitment, histone acetylation, BRD4 binding and subsequent further recruitment of P-TEFb, generating a positive feedback loop that sustains transcription. AR S81 is also phosphorylated by CDK1, and blocking basal CDK1-mediated S81 phosphorylation markedly suppresses AR activity and initiation of this positive feedback loop. Finally, androgen-independent AR activity in castration-resistant prostate cancer (CRPC) cells is driven by increased CDK1-mediated S81 phosphorylation. Collectively these findings reveal a mechanism involving PP1α, CDK9 and CDK1 that is used by AR to initiate and sustain P-TEFb activity, which may be exploited to drive AR in CRPC.
Collapse
Affiliation(s)
- Xiaming Liu
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yanfei Gao
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - HuiHui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sean Gerrin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yiming Wu
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Tengfei Zhang
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Russo
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Changmeng Cai
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
252
|
Wang Y, Pan P, Wang Z, Zhang Y, Xie P, Geng D, Jiang Y, Yu R, Zhou X. β-catenin-mediated YAP signaling promotes human glioma growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:136. [PMID: 28962630 PMCID: PMC5622484 DOI: 10.1186/s13046-017-0606-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
Background Hippo/YAP pathway is known to be important for development, growth and organogenesis, and dysregulation of this pathway leads to tumor progression.We and others find that YAP is up-regulated in human gliomas and associated with worse prognosis of patients. However, the role and mechanism of YAP in glioma progression is largely unknown. Methods The expression of YAP in glioma tissues was detected by quantitative polymerase chain reaction (qPCR) and immunoblotting. The effect of YAP on glioma progression was examined using cell growth assays and intracranial glioma model. The effect of YAP on β-catenin protein level, subcellular location and transcription activity was examined by immunoblotting, immunofluorescence and RT-PCR. Results Firstly, knockdown of YAP inhibited glioma cell proliferation in vitro and tumor growth in vivo. In addition, YAP modulated the protein level, subcellular location and transcription activity of β-catenin via regulating the activity of GSK3β. Lastly, β-catenin partially mediated the effect of YAP on glioma cell proliferation. Conclusion Our findings identify that YAP promotes human glioma growth through enhancing Wnt/β-catenin signaling. In addition, this study provides a new crosstalk mechanism between Hippo/YAP and Wnt/β-catenin pathways, which suggests a new strategy for human glioma treatment. Electronic supplementary material The online version of this article (10.1186/s13046-017-0606-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Pan
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Present address: Department of Neurosurgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Xie
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Decheng Geng
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Jiang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
253
|
Hertig V, Matos-Nieves A, Garg V, Villeneuve L, Mamarbachi M, Caland L, Calderone A. Nestin expression is dynamically regulated in cardiomyocytes during embryogenesis. J Cell Physiol 2017; 233:3218-3229. [PMID: 28834610 DOI: 10.1002/jcp.26165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5+/- and Gata4+/- embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin(+) -cardiomyocytes identified in the heart of Tbx5+/- and Gata4+/- embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5+/- and Gata4+/- mice.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Maya Mamarbachi
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Laurie Caland
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| |
Collapse
|
254
|
Loforese G, Malinka T, Keogh A, Baier F, Simillion C, Montani M, Halazonetis TD, Candinas D, Stroka D. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 2017; 9:46-60. [PMID: 27940445 PMCID: PMC5210079 DOI: 10.15252/emmm.201506089] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The liver has an intrinsic capacity to regenerate in response to injury or surgical resection. Nevertheless, circumstances in which hepatocytes are unresponsive to proliferative signals result in impaired regeneration and hepatic failure. As the Hippo pathway has a canonical role in the maintenance of liver size, we investigated whether it could serve as a therapeutic target to support regeneration. Using a standard two‐thirds partial hepatectomy (PH) model in young and aged mice, we demonstrate that the Hippo pathway is modulated across the phases of liver regeneration. The activity of the core kinases MST1 and LATS1 increased during the early hypertrophic phase and returned to steady state levels in the proliferative phase, coinciding with activation of YAP1 target genes and hepatocyte proliferation. Moreover, following PH in aged mice, we demonstrate that Hippo signaling is anomalous in non‐regenerating livers. We provide pre‐clinical evidence that silencing the Hippo core kinases MST1 and MST2 with siRNA provokes hepatocyte proliferation in quiescent livers and rescues liver regeneration in aged mice following PH. Our data suggest that targeting the Hippo core kinases MST1/2 has therapeutic potential to improve regeneration in non‐regenerative disorders.
Collapse
Affiliation(s)
- Giulio Loforese
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Felix Baier
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Daniel Candinas
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
255
|
Abstract
Angiogenesis and vascular remodeling are essential for the establishment of vascular networks during organogenesis. Here we show that the Hippo signaling pathway effectors YAP and TAZ are required, in a gene dosage-dependent manner, for the proliferation and migration of vascular endothelial cells (ECs) during retinal angiogenesis. Intriguingly, nuclear translocation of YAP and TAZ induced by Lats1/2-deletion blocked endothelial migration and phenocopied Yap/Taz-deficient mutants. Furthermore, overexpression of a cytoplasmic form of YAP (YAPS127D) partially rescued the migration defects caused by loss of YAP and TAZ function. Finally, we found that cytoplasmic YAP positively regulated the activity of the small GTPase CDC42, deletion of which caused severe defects in endothelial migration. These findings uncover a previously unrecognized role of cytoplasmic YAP/TAZ in promoting cell migration by activating CDC42 and provide insight into how Hippo signaling in ECs regulates angiogenesis.
Collapse
|
256
|
YAP/TAZ and Hedgehog Coordinate Growth and Patterning in Gastrointestinal Mesenchyme. Dev Cell 2017; 43:35-47.e4. [PMID: 28943241 DOI: 10.1016/j.devcel.2017.08.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
YAP/TAZ are the major mediators of mammalian Hippo signaling; however, their precise function in the gastrointestinal tract remains poorly understood. Here we dissect the distinct roles of YAP/TAZ in endodermal epithelium and mesenchyme and find that, although dispensable for gastrointestinal epithelial development and homeostasis, YAP/TAZ function as the critical molecular switch to coordinate growth and patterning in gut mesenchyme. Our genetic analyses reveal that Lats1/2 kinases suppress expansion of the primitive mesenchymal progenitors, where YAP activation also prevents induction of the smooth muscle lineage through transcriptional repression of Myocardin. During later development, zone-restricted downregulation of YAP/TAZ provides the positional cue and allows smooth muscle cell differentiation induced by Hedgehog signaling. Taken together, our studies identify the mesenchymal requirement of YAP/TAZ in the gastrointestinal tract and highlight the functional interplays between Hippo and Hedgehog signaling underlying temporal and spatial control of tissue growth and specification in developing gut.
Collapse
|
257
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
258
|
Wang X, Freire Valls A, Schermann G, Shen Y, Moya IM, Castro L, Urban S, Solecki GM, Winkler F, Riedemann L, Jain RK, Mazzone M, Schmidt T, Fischer T, Halder G, Ruiz de Almodóvar C. YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis. Dev Cell 2017; 42:462-478.e7. [DOI: 10.1016/j.devcel.2017.08.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/28/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
259
|
Hesse M, Welz A, Fleischmann BK. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch 2017; 470:241-248. [PMID: 28849267 PMCID: PMC5780532 DOI: 10.1007/s00424-017-2061-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease and in particular, heart failure are still main causes of death; therefore, novel therapeutic approaches are urgently needed. Loss of contractile substrate in the heart and limited regenerative capacity of cardiomyocytes are mainly responsible for the poor cardiovascular outcome. This is related to the postmitotic state of differentiated cardiomyocytes, which is partly due to their polyploid nature caused by cell cycle variants. As such, the cardiomyocyte cell cycle is a key player, and its manipulation could be a promising strategy for enhancing the plasticity of the heart by inducing cardiomyocyte proliferation. This review focuses on the cardiac cell cycle and its variants during postnatal growth, the different regenerative responses of the heart in dependance of the developmental stage and on manipulations of the cell cycle. Because a therapeutic goal is to induce authentic cell division in cardiomyocytes, recent experimental approaches following this strategy are also discussed.
Collapse
Affiliation(s)
- Michael Hesse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | - Armin Welz
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany. .,Pharma Center Bonn, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| |
Collapse
|
260
|
Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y, Kwon YG, Lim DS, Koh GY. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 2017; 127:3441-3461. [PMID: 28805663 DOI: 10.1172/jci93825] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors are only beginning to be understood. Here, we show that YAP/TAZ, a transcriptional coactivator that acts as an end effector of Hippo signaling, is critical for sprouting angiogenesis and vascular barrier formation and maturation. In mice, endothelial-specific deletion of Yap/Taz led to blunted-end, aneurysm-like tip ECs with fewer and dysmorphic filopodia at the vascular front, a hyper-pruned vascular network, reduced and disarranged distributions of tight and adherens junction proteins, disrupted barrier integrity, subsequent hemorrhage in growing retina and brain vessels, and reduced pathological choroidal neovascularization. Mechanistically, YAP/TAZ activates actin cytoskeleton remodeling, an important component of filopodia formation and junction assembly. Moreover, YAP/TAZ coordinates EC proliferation and metabolic activity by upregulating MYC signaling. Overall, these results show that YAP/TAZ plays multifaceted roles for EC behaviors, proliferation, junction assembly, and metabolism in sprouting angiogenesis and barrier formation and maturation and could be a potential therapeutic target for treating neovascular diseases.
Collapse
Affiliation(s)
- Jongshin Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea
| | - Yoo Hyung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Do Young Park
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Da-Hye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Kyun Hoo Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seung Pil Jang
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yoshiaki Kubota
- Department of Vascular Biology, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
261
|
Wang J, Martin JF. Hippo Pathway: An Emerging Regulator of Craniofacial and Dental Development. J Dent Res 2017; 96:1229-1237. [PMID: 28700256 DOI: 10.1177/0022034517719886] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- J Wang
- 1 Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - J F Martin
- 1 Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,2 Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
262
|
Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, Tremblay AM, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit PS. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells 2017; 35:1958-1972. [PMID: 28589555 PMCID: PMC5575518 DOI: 10.1002/stem.2652] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral‐mediated expression of wild‐type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre‐ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E‐MTAB‐5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt‐cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells2017;35:1958–1972
Collapse
Affiliation(s)
- Congshan Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Abdalla Mohamed
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | - Abdullah Al Bloshi
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Annie M Tremblay
- Stem Cell Program, Children's Hospital, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | | | - Elaina Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | - Henning Wackerhage
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.,Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
263
|
Garreta E, Prado P, Izpisua Belmonte JC, Montserrat N. Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Noncoding RNA Res 2017; 2:93-99. [PMID: 30159426 PMCID: PMC6096419 DOI: 10.1016/j.ncrna.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, different studies have revealed that adult mammalian cardiomyocytes have the capacity to self-renew under homeostatic conditions and after myocardial injury. Interestingly, data from animal models capable of regeneration, such as the adult zebrafish and neonatal mice, have identified different non-coding RNAs (ncRNAs) as functional RNA molecules driving cardiac regeneration and repair. In this review, we summarize the current knowledge of the roles that a specific subset of ncRNAs, namely microRNAs (miRNA), plays in these animal models. We also emphasize the importance of characterizing and manipulating miRNAs as a novel approach to awaken the dormant regenerative potential of the adult mammalian heart by the administration of miRNA mimics or inhibitors. Overall, the use of these strategies alone or in combination with current cardiac therapies may represent new avenues to pursue for cardiac regeneration.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Patricia Prado
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | | | - Nuria Montserrat
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| |
Collapse
|
264
|
Abu-Halima M, Poryo M, Ludwig N, Mark J, Marsollek I, Giebels C, Petersen J, Schäfers HJ, Grundmann U, Pickardt T, Keller A, Meese E, Abdul-Khaliq H. Differential expression of microRNAs following cardiopulmonary bypass in children with congenital heart diseases. J Transl Med 2017; 15:117. [PMID: 28558735 PMCID: PMC5450060 DOI: 10.1186/s12967-017-1213-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Children with congenital heart defects (CHDs) are at high risk for myocardial failure after operative procedures with cardiopulmonary bypass (CPB). Recent studies suggest that microRNAs (miRNA) are involved in the development of CHDs and myocardial failure. Therefore, the aim of this study was to determine alterations in the miRNA profile in heart tissue after cardiac surgery using CPB. Methods In total, 14 tissue samples from right atrium were collected from patients before and after connection of the CPB. SurePrint™ 8 × 60K Human v21 miRNA array and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were employed to determine the miRNA expression profile from three patients before and after connection of the CPB. Enrichment analyses of altered miRNA expression were predicted using bioinformatic tools. Results According to miRNA array, a total of 90 miRNAs were significantly altered including 29 miRNAs with increased and 61 miRNAs with decreased expression after de-connection of CPB (n = 3) compared to before CPB (n = 3). Seven miRNAs had been validated using RT-qPCR in an independent cohort of 11 patients. Enrichment analyses applying the KEGG database displayed the highest correlation for signaling pathways, cellular community, cardiovascular disease and circulatory system. Conclusion Our result identified the overall changes of the miRNome in right atrium tissue of patients with CHDs after CPB. The differentially altered miRNAs lay a good foundation for further understanding of the molecular function of changed miRNAs in regulating CHDs and after CPB in particular. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1213-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany. .,Department of Human Genetics, Saarland University Medical Center, 66421, Homburg/Saar, Germany.
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | - Janine Mark
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Ina Marsollek
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Christian Giebels
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Johannes Petersen
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Ulrich Grundmann
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Thomas Pickardt
- Competence Network for Congenital Heart Defects, National Register for Congenital Heart Defects, DZHK, 13347, Berlin, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Saarland University, 66041, Saarbruecken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.,Competence Network for Congenital Heart Defects, National Register for Congenital Heart Defects, DZHK, 13347, Berlin, Germany
| |
Collapse
|
265
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
266
|
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8:349-359. [PMID: 28130761 PMCID: PMC5413598 DOI: 10.1007/s13238-017-0371-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Collapse
Affiliation(s)
- Yu Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aijuan Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
267
|
Hu JKH, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD. An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell 2017; 21:91-106.e6. [PMID: 28457749 DOI: 10.1016/j.stem.2017.03.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/07/2017] [Accepted: 03/26/2017] [Indexed: 02/05/2023]
Abstract
Tissue homeostasis requires the production of newly differentiated cells from resident adult stem cells. Central to this process is the expansion of undifferentiated intermediates known as transit-amplifying (TA) cells, but how stem cells are triggered to enter this proliferative TA state remains an important open question. Using the continuously growing mouse incisor as a model of stem cell-based tissue renewal, we found that the transcriptional cofactors YAP and TAZ are required both to maintain TA cell proliferation and to inhibit differentiation. Specifically, we identified a pathway involving activation of integrin α3 in TA cells that signals through an LATS-independent FAK/CDC42/PP1A cascade to control YAP-S397 phosphorylation and nuclear localization. This leads to Rheb expression and potentiates mTOR signaling to drive the proliferation of TA cells. These findings thus reveal a YAP/TAZ signaling mechanism that coordinates stem cell expansion and differentiation during organ renewal.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wei Du
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Samuel J Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
268
|
A reciprocal regulatory loop between TAZ/YAP and G-protein Gαs regulates Schwann cell proliferation and myelination. Nat Commun 2017; 8:15161. [PMID: 28443644 PMCID: PMC5414202 DOI: 10.1038/ncomms15161] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Schwann cell (SC) myelination in the peripheral nervous system is essential for motor function, and uncontrolled SC proliferation occurs in cancer. Here, we show that a dual role for Hippo effectors TAZ and YAP in SC proliferation and myelination through modulating G-protein expression and interacting with SOX10, respectively. Developmentally regulated mutagenesis indicates that TAZ/YAP are critical for SC proliferation and differentiation in a stage-dependent manner. Genome-wide occupancy mapping and transcriptome profiling reveal that nuclear TAZ/YAP promote SC proliferation by activating cell cycle regulators, while targeting critical differentiation regulators in cooperation with SOX10 for myelination. We further identify that TAZ targets and represses Gnas, encoding Gαs-protein, which opposes TAZ/YAP activities to decelerate proliferation. Gnas deletion expands SC precursor pools and blocks peripheral myelination. Thus, the Hippo/TAZ/YAP and Gαs-protein feedback circuit functions as a fulcrum balancing SC proliferation and differentiation, providing insights into molecular programming of SC lineage progression and homeostasis. The Hippo pathway has recently been implicated in Schwann cell (SC) development and myelination. Here the authors reveal mechanistic insights into how TAZ and YAP regulate and interact with target genes; they further identify a negative feedback loop between TAZ/YAP and G protein Gαs that balances SC proliferation and differentiation.
Collapse
|
269
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
270
|
Francou A, De Bono C, Kelly RG. Epithelial tension in the second heart field promotes mouse heart tube elongation. Nat Commun 2017; 8:14770. [PMID: 28357999 PMCID: PMC5379109 DOI: 10.1038/ncomms14770] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/27/2017] [Indexed: 12/29/2022] Open
Abstract
Extension of the vertebrate heart tube is driven by progressive addition of second heart field (SHF) progenitor cells to the poles of the heart. Defects in this process cause a spectrum of congenital anomalies. SHF cells form an epithelial layer in splanchnic mesoderm in the dorsal wall of the pericardial cavity. Here we report oriented cell elongation, polarized actomyosin distribution and nuclear YAP/TAZ in a proliferative centre in the posterior dorsal pericardial wall during heart tube extension. These parameters are indicative of mechanical stress, further supported by analysis of cell shape changes in wound assays. Time course and mutant analysis identifies SHF deployment as a source of epithelial tension. Moreover, cell division and oriented growth in the dorsal pericardial wall align with the axis of cell elongation, suggesting that epithelial tension in turn contributes to heart tube extension. Our results implicate tissue-level forces in the regulation of heart tube extension. Epithelial progenitor cell growth in the second heart field contributes to heart morphogenesis but how this is regulated at the tissue level is unclear. Here, the authors show that cell elongation, polarized actomyosin and nuclear YAP/TAZ drive epithelial growth and correlate with mechanical tension.
Collapse
Affiliation(s)
- Alexandre Francou
- Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus De Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Christopher De Bono
- Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus De Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Robert G Kelly
- Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus De Luminy Case 907, 13288 Marseille Cedex 9, France
| |
Collapse
|
271
|
Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson-Peer K, Chuang PT. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 2017; 6:e21130. [PMID: 28323616 PMCID: PMC5360446 DOI: 10.7554/elife.21130] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stacey Croll
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Katherine Thompson-Peer
- Department of Physiology, Howard Hughes Medical institute, University of California, San Francisco, San Francisco, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
272
|
Zhang Y, Del Re DP. A growing role for the Hippo signaling pathway in the heart. J Mol Med (Berl) 2017; 95:465-472. [PMID: 28280861 DOI: 10.1007/s00109-017-1525-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/18/2023]
Abstract
Heart disease is a major cause of clinical morbidity and mortality, and a significant health and economic burden worldwide. The loss of functional cardiomyocytes, often a result of myocardial infarction, leads to impaired cardiac output and ultimately heart failure. Therefore, efforts to improve cardiomyocyte viability and stimulate cardiomyocyte proliferation remain attractive therapeutic goals. Originally identified in Drosophila, the Hippo signaling pathway is highly conserved from flies to humans and regulates organ size through modulation of both cell survival and proliferation. This is particularly relevant to the heart, an organ with limited regenerative ability. Recent work has demonstrated a critical role for this signaling cascade in determining heart development, homeostasis, injury and the potential for regeneration. Here we review the function of canonical and non-canonical Hippo signaling in cardiomyocytes, with a particular focus on proliferation and survival, and how this impacts the stressed adult heart.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103-2714, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103-2714, USA.
| |
Collapse
|
273
|
Ragni CV, Diguet N, Le Garrec JF, Novotova M, Resende TP, Pop S, Charon N, Guillemot L, Kitasato L, Badouel C, Dufour A, Olivo-Marin JC, Trouvé A, McNeill H, Meilhac SM. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun 2017; 8:14582. [PMID: 28239148 PMCID: PMC5333361 DOI: 10.1038/ncomms14582] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/12/2017] [Indexed: 01/15/2023] Open
Abstract
Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.
Collapse
Affiliation(s)
- Chiara V Ragni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75005 Paris, France
| | - Nicolas Diguet
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Jean-François Le Garrec
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Marta Novotova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovak Republic
| | - Tatiana P Resende
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sorin Pop
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | - Nicolas Charon
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Laurent Guillemot
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Lisa Kitasato
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Alexandre Dufour
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | | | - Alain Trouvé
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sigolène M Meilhac
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| |
Collapse
|
274
|
Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest 2017; 127:899-911. [PMID: 28165342 DOI: 10.1172/jci88759] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.
Collapse
|
275
|
Nishio M, Maehama T, Goto H, Nakatani K, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway. Genes Cells 2017; 22:6-31. [PMID: 28078823 DOI: 10.1111/gtc.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Nakatani
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirofumi Omori
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
276
|
Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 2017; 127:427-436. [PMID: 28145902 DOI: 10.1172/jci89786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a major source of morbidity and mortality. Replacing lost myocardium with new tissue is a major goal of regenerative medicine. Unlike adult mammals, zebrafish and neonatal mice are capable of heart regeneration following cardiac injury. In both contexts, the regenerative program echoes molecular and cellular events that occur during cardiac development and morphogenesis, notably muscle creation through division of cardiomyocytes. Based on studies over the past decade, it is now accepted that the adult mammalian heart undergoes a low grade of cardiomyocyte turnover. Recent data suggest that this cardiomyocyte turnover can be augmented in the adult mammalian heart by redeployment of developmental factors. These findings and others suggest that stimulating endogenous regenerative responses can emerge as a therapeutic strategy for human cardiovascular disease.
Collapse
|
277
|
Hirai M, Arita Y, McGlade CJ, Lee KF, Chen J, Evans SM. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 2017; 127:569-582. [PMID: 28067668 PMCID: PMC5272190 DOI: 10.1172/jci91081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine.
Collapse
Affiliation(s)
- Maretoshi Hirai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Yoh Arita
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - C. Jane McGlade
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA
| | | | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
- Department of Medicine and
- Department of Pharmacology, UCSD, La Jolla, California, USA
| |
Collapse
|
278
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
279
|
Kim HB, Kim M, Park YS, Park I, Kim T, Yang SY, Cho CJ, Hwang D, Jung JH, Markowitz SD, Hwang SW, Yang SK, Lim DS, Myung SJ. Prostaglandin E 2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology 2017; 152:616-630. [PMID: 27864128 PMCID: PMC5285392 DOI: 10.1053/j.gastro.2016.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Prostaglandin E2 (PGE2) is mediator of inflammation that regulates tissue regeneration, but its continual activation has been associated with carcinogenesis. Little is known about factors in the PGE2 signaling pathway that contribute to tumor formation. We investigated whether yes-associated protein 1 (YAP1), a transcriptional co-activator in the Hippo signaling pathway, mediates PGE2 function. METHODS DLD-1 and SW480 colon cancer cell lines were transfected with vectors expressing transgenes or small hairpin RNAs and incubated with recombinant PGE2, with or without pharmacologic inhibitors of signaling proteins, and analyzed by immunoblot, immunofluorescence, quantitative reverse-transcription polymerase chain reaction, transcriptional reporter, and proliferation assays. Dextran sodium sulfate (DSS) was given to induce colitis in C57/BL6 (control) mice, as well as in mice with disruption of the hydroxyprostaglandin dehydrogenase 15 gene (15-PGDH-knockout mice), Yap1 gene (YAP-knockout mice), and double-knockout mice. Some mice also were given indomethacin to block PGE2 synthesis. 15-PGDH knockout mice were crossed with mice with intestine-specific disruption of the salvador family WW domain containing 1 gene (Sav1), which encodes an activator of Hippo signaling. We performed immunohistochemical analyses of colon biopsy samples from 26 patients with colitis-associated cancer and 51 age-and sex-matched patients with colorectal cancer (without colitis). RESULTS Incubation of colon cancer cell lines with PGE2 led to phosphorylation of cyclic adenosine monophosphate-responsive element binding protein 1 and increased levels of YAP1 messenger RNA, protein, and YAP1 transcriptional activity. This led to increased transcription of the prostaglandin-endoperoxide synthase 2 gene (PTGS2 or cyclooxygenase 2) and prostaglandin E-receptor 4 gene (PTGER4 or EP4). Incubation with PGE2 promoted proliferation of colon cancer cell lines, but not cells with knockdown of YAP1. Control mice developed colitis after administration of DSS, but injection of PGE2 led to colon regeneration in these mice. However, YAP-knockout mice did not regenerate colon tissues and died soon after administration of DSS. 15-PGDH-knockout mice regenerated colon tissues more rapidly than control mice after withdrawal of DSS, and had faster recovery of body weight, colon length, and colitis histology scores. These effects were reversed by injection of indomethacin. SAV1-knockout or 15-PGDH-knockout mice did not develop spontaneous tumors after colitis induction, but SAV1/15-PGDH double-knockout mice developed polyps that eventually progressed to carcinoma in situ. Administration of indomethacin to these mice prevented spontaneous tumor formation. Levels of PGE2 correlated with those of YAP levels in human sporadic colorectal tumors and colitis-associated tumors. CONCLUSIONS PGE2 signaling increases the expression and transcriptional activities of YAP1, leading to increased expression of cyclooxygenase 2 and EP4 to activate a positive signaling loop. This pathway promotes proliferation of colon cancer cell lines and colon tissue regeneration in mice with colitis. Constitutive activation of this pathway led to formation of polyps and colon tumors in mice.
Collapse
Affiliation(s)
- Han-Byul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea,Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea,Biomedical Research Center, Asan Institute for Life Sciences, Seoul 138-736, South Korea
| | - Minchul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Young-Soo Park
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 138-736, South Korea,Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Intae Park
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea,Biomedical Research Center, Asan Institute for Life Sciences, Seoul 138-736, South Korea
| | - Tackhoon Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Sung-Yeun Yang
- Department of Gastroenterology, Haeundae Paik Hospital, Inje University, Busan 612896, South Korea
| | - Charles J. Cho
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - DaeHee Hwang
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Jin-Hak Jung
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 138-736, South Korea
| | - Sanford D. Markowitz
- Department of Medicine and Comprehensive Cancer Center, University Hospitals Case Medical Center and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| | - Seung-Jae Myung
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, South Korea; Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
280
|
Moya IM, Halder G. The Hippo pathway in cellular reprogramming and regeneration of different organs. Curr Opin Cell Biol 2016; 43:62-68. [DOI: 10.1016/j.ceb.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
281
|
Mia MM, Chelakkot-Govindalayathil AL, Singh MK. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:545. [PMID: 28149906 DOI: 10.21037/atm.2016.11.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
| | | | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore; ; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| |
Collapse
|
282
|
Wang J, Geng Z, Weng J, Shen L, Li M, Cai X, Sun C, Chu M. Microarray analysis reveals a potential role of LncRNAs expression in cardiac cell proliferation. BMC DEVELOPMENTAL BIOLOGY 2016; 16:41. [PMID: 27863467 PMCID: PMC5116129 DOI: 10.1186/s12861-016-0139-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/15/2022]
Abstract
Background Long non-coding RNAs (LncRNAs) have been identified to play important roles in epigenetic processes that underpin organogenesis. However, the role of LncRNAs in the regulation of transition from fetal to adult life of human heart has not been evaluated. Methods Immunofiuorescent staining was used to determine the extent of cardiac cell proliferation. Human LncRNA microarrays were applied to define gene expression signatures of the fetal (13–17 weeks of gestation, n = 4) and adult hearts (30–40 years old, n = 4). Pathway analysis was performed to predict the function of differentially expressed mRNAs (DEM). DEM related to cell proliferation were selected to construct a lncRNA-mRNA co-expression network. Eight lncRNAs were confirmed by quantificational real-time polymerase chain reaction (n = 6). Results Cardiac cell proliferation was significant in the fetal heart. Two thousand six hundred six lncRNAs and 3079 mRNAs were found to be differentially expressed. Cell cycle was the most enriched pathway in down-regulated genes in the adult heart. Eight lncRNAs (RP11-119 F7.5, AX747860, HBBP1, LINC00304, TPTE2P6, AC034193.5, XLOC_006934 and AL833346) were predicted to play a central role in cardiac cell proliferation. Conclusions We discovered a profile of lncRNAs differentially expressed between the human fetal and adult heart. Several meaningful lncRNAs involved in cardiac cell proliferation were disclosed. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0139-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zhimin Geng
- Children's Heart Center, the Second Affiliated Hospital & Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, No. 109, Xueyuan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.,Tianjin Childrens' Hospital, Tianjin, People's Republic of China
| | - Jiakan Weng
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Longjie Shen
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ming Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xueli Cai
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chengchao Sun
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Maoping Chu
- Children's Heart Center, the Second Affiliated Hospital & Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, No. 109, Xueyuan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
283
|
Shimizu T, Osanai Y, Tanaka KF, Abe M, Natsume R, Sakimura K, Ikenaka K. YAP functions as a mechanotransducer in oligodendrocyte morphogenesis and maturation. Glia 2016; 65:360-374. [PMID: 27807898 DOI: 10.1002/glia.23096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/17/2016] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (OLs) are myelinating cells of the central nervous system. Recent studies have shown that mechanical factors influence various cell properties. Mechanical stimuli can be transduced into intracellular biochemical signals through mechanosensors and intracellular mechanotransducers, such as YAP. However, the molecular mechanisms underlying mechanical regulation of OLs by YAP remain unknown. We found that OL morphology and interactions between OLs and neuronal axons were affected by knocking down YAP. Mechanical stretching of OL precursor cells induced nuclear YAP accumulation and assembly of focal adhesion, key platforms for mechanotransduction. Shear stress decreased the number of OL processes, whereas a dominant-negative form of YAP suppressed these effects. To investigate the roles of YAP in postnatal OLs in vivo, we constructed a novel YAP knock-in mouse and found that in vivo overexpression of YAP widely affected OL maturation. These results indicate that YAP regulates OL morphology and maturation in response to mechanical factors. GLIA 2017;65:360-374.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI, (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Yasuyuki Osanai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI, (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI, (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
284
|
Yi J, Lu L, Yanger K, Wang W, Sohn BH, Stanger BZ, Zhang M, Martin JF, Ajani JA, Chen J, Lee JS, Song S, Johnson RL. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology 2016; 64:1757-1772. [PMID: 27531557 PMCID: PMC5863546 DOI: 10.1002/hep.28768] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED In the adult liver, the Hippo pathway mammalian STE20-like protein kinases 1 and 2 and large tumor suppressor homologs 1 and 2 (LATS1/2) control activation of the transcriptional coactivators Yes-associated protein (YAP) and WW domain containing transcription regulator 1 (TAZ) in hepatocytes and biliary epithelial cells, thereby regulating liver cell proliferation, differentiation, and malignant transformation. Less is known about the contribution of Hippo signaling to liver development. We used conditional mutagenesis to show that the Hippo signaling pathway kinases LATS1 and LATS2 are redundantly required during mouse liver development to repress YAP and TAZ in both the biliary epithelial and hepatocyte lineages. In the absence of LATS1/2, biliary epithelial cells exhibit excess proliferation while hepatoblasts fail to mature into hepatocytes, defects that result in perinatal lethality. Using an in vitro hepatocyte differentiation assay, we demonstrate that YAP activity decreases and Hippo pathway kinase activities increase upon differentiation. In addition, we show that YAP activation in vitro, resulting from either depletion of its negative regulators LATS1/2 or expression of a mutant form of YAP that is less efficiently phosphorylated by LATS1/2, results in transcriptional suppression of genes that normally accompany hepatocyte maturation. Moreover, we provide evidence that YAP activity is repressed by Hippo pathway activation upon hepatocytic maturation in vitro. Finally, we examine the localization of YAP during fetal liver development and show that higher levels of YAP are found in biliary epithelial cells, while in hepatocytes YAP levels decrease with hepatocyte maturation. CONCLUSION Hippo signaling, mediated by the LATS1 and LATS2 kinases, is required to restrict YAP and TAZ activation during both biliary and hepatocyte differentiation. These findings suggest that dynamic regulation of the Hippo signaling pathway plays an important role in differentiation and functional maturation of the liver. (Hepatology 2016;64:1757-1772).
Collapse
Affiliation(s)
- Jing Yi
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Li Lu
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Kilangsungla Yanger
- Department of Medicine, Gastroenterology Division, University of Pennsylvania School of Medicine, Pennsylvania, PA 19104,Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Pennsylvania, PA 19104
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Bo Hwa Sohn
- Department of Systems Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Ben Z. Stanger
- Department of Medicine, Gastroenterology Division, University of Pennsylvania School of Medicine, Pennsylvania, PA 19104,Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Pennsylvania, PA 19104,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Pennsylvania, PA 19104
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Jaffer A. Ajani
- Department of GI Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Junjie Chen
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Ju-Seog Lee
- Department of Systems Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Shumei Song
- Department of GI Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Randy L. Johnson
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030,Genes & Development Program, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX 77030,Developmental Biology Program, Baylor College Of Medicine, Houston, TX 77030,To whom correspondence may be addressed: Tel: 713-834-6287; Fax: 713-834-6266;
| |
Collapse
|
285
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|
286
|
Lin Z, Guo H, Cao Y, Zohrabian S, Zhou P, Ma Q, VanDusen N, Guo Y, Zhang J, Stevens SM, Liang F, Quan Q, van Gorp PR, Li A, Dos Remedios C, He A, Bezzerides VJ, Pu WT. Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. Dev Cell 2016; 39:466-479. [PMID: 27720608 DOI: 10.1016/j.devcel.2016.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/12/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
Binding of the transcriptional co-activator YAP with the transcription factor TEAD stimulates growth of the heart and other organs. YAP overexpression potently stimulates fetal cardiomyocyte (CM) proliferation, but YAP's mitogenic potency declines postnatally. While investigating factors that limit YAP's postnatal mitogenic activity, we found that the CM-enriched TEAD1 binding protein VGLL4 inhibits CM proliferation by inhibiting TEAD1-YAP interaction and by targeting TEAD1 for degradation. Importantly, VGLL4 acetylation at lysine 225 negatively regulated its binding to TEAD1. This developmentally regulated acetylation event critically governs postnatal heart growth, since overexpression of an acetylation-refractory VGLL4 mutant enhanced TEAD1 degradation, limited neonatal CM proliferation, and caused CM necrosis. Our study defines an acetylation-mediated, VGLL4-dependent switch that regulates TEAD stability and YAP-TEAD activity. These insights may improve targeted modulation of TEAD-YAP activity in applications from cardiac regeneration to cancer.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Haidong Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Cao
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Peking University, Fifth School of Clinical Medicine, Beijing 100730, China
| | - Sylvia Zohrabian
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Nathan VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jin Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Feng Liang
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA
| | - Qimin Quan
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA
| | - Pim R van Gorp
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Amy Li
- Department of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Cristobal Dos Remedios
- Department of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Aibin He
- Institute of Molecular Medicine, Peking University, PKU-Tsinghua U Joint Center for Life Sciences, Beijing 100871, China
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
287
|
Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Biol 2016; 419:336-347. [PMID: 27616714 DOI: 10.1016/j.ydbio.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.
Collapse
|
288
|
Santos R, Kawauchi S, Jacobs RE, Lopez-Burks ME, Choi H, Wikenheiser J, Hallgrimsson B, Jamniczky HA, Fraser SE, Lander AD, Calof AL. Conditional Creation and Rescue of Nipbl-Deficiency in Mice Reveals Multiple Determinants of Risk for Congenital Heart Defects. PLoS Biol 2016; 14:e2000197. [PMID: 27606604 PMCID: PMC5016002 DOI: 10.1371/journal.pbio.2000197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form.
Collapse
Affiliation(s)
- Rosaysela Santos
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Shimako Kawauchi
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Russell E Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Martha E Lopez-Burks
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Hojae Choi
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Jamie Wikenheiser
- Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Scott E Fraser
- Departments of Biology and Bioengineering, University of Southern California, Los Angeles, California, United States of America
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| |
Collapse
|
289
|
Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development 2016; 143:729-40. [PMID: 26932668 DOI: 10.1242/dev.132910] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.
Collapse
Affiliation(s)
- Matthew J Foglia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
290
|
Xiang MSW, Kikuchi K. Endogenous Mechanisms of Cardiac Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:67-131. [PMID: 27572127 DOI: 10.1016/bs.ircmb.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration.
Collapse
Affiliation(s)
- M S W Xiang
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia
| | - K Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington NSW, Australia.
| |
Collapse
|
291
|
Li CY, Hu J, Lu H, Lan J, Du W, Galicia N, Klein OD. αE-catenin inhibits YAP/TAZ activity to regulate signalling centre formation during tooth development. Nat Commun 2016; 7:12133. [PMID: 27405641 PMCID: PMC4947177 DOI: 10.1038/ncomms12133] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/03/2016] [Indexed: 01/01/2023] Open
Abstract
Embryonic signalling centres are specialized clusters of non-proliferating cells that direct the development of many organs. However, the mechanisms that establish these essential structures in mammals are not well understood. Here we report, using the murine incisor as a model, that αE-catenin is essential for inhibiting nuclear YAP localization and cell proliferation. This function of αE-catenin is required for formation of the tooth signalling centre, the enamel knot (EK), which maintains dental mesenchymal condensation and epithelial invagination. EK formation depends primarily on the signalling function of αE-catenin through YAP and its homologue TAZ, as opposed to its adhesive function, and combined deletion of Yap and Taz rescues the EK defects caused by loss of αE-catenin. These findings point to a developmental mechanism by which αE-catenin restricts YAP/TAZ activity to establish a group of non-dividing and specialized cells that constitute a signalling centre. It is unclear which signals regulate the establishment of the tooth signalling centre, the enamel knot (EK). Here, the authors show that EK formation depends on αE-catenin, which acts to restrict the Hippo pathway transcription factors Yes-associated protein (YAP) and TAZ.
Collapse
Affiliation(s)
- Chun-Ying Li
- The Research Center and Department of Pathology, Zhongshan Hospital of Dalian University, Dalian 116001, China.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Jimmy Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Hongbing Lu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Jing Lan
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Wei Du
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Nicole Galicia
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, California 94143, USA
| |
Collapse
|
292
|
Furtado MB, Costa MW, Rosenthal NA. The cardiac fibroblast: Origin, identity and role in homeostasis and disease. Differentiation 2016; 92:93-101. [PMID: 27421610 DOI: 10.1016/j.diff.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | - Mauro W Costa
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
293
|
Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016; 143:387-97. [PMID: 26839342 DOI: 10.1242/dev.120576] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the adult, tissue repair after injury is generally compromised by fibrosis, which maintains tissue integrity with scar formation but does not restore normal architecture and function. The process of regeneration is necessary to replace the scar and rebuild normal functioning tissue. Here, we address this problem in the context of heart disease, and discuss the origins and characteristics of cardiac fibroblasts, as well as the crucial role that they play in cardiac development and disease. We discuss the dual nature of cardiac fibroblasts, which can lead to scarring, pathological remodelling and functional deficit, but can also promote heart function in some contexts. Finally, we review current and proposed approaches whereby regeneration could be fostered by interventions that limit scar formation.
Collapse
Affiliation(s)
- Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
294
|
LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun 2016; 7:11961. [PMID: 27358050 PMCID: PMC4931324 DOI: 10.1038/ncomms11961] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFβ signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner. The Hippo pathway regulates the differentiation of stem and progenitor cells, but it is unclear how it acts in liver development. Here, the authors knockout Hippo pathway components Lats1 and 2 in the liver, causing suppression of hepatocyte differentiation but promoting biliary cell differentiation.
Collapse
|
295
|
Merchant SS, Kosaka Y, Yost HJ, Hsu EW, Brunelli L. Micro-Computed Tomography for the Quantitative 3-Dimensional Assessment of the Compact Myocardium in the Mouse Embryo. Circ J 2016; 80:1795-803. [PMID: 27301409 DOI: 10.1253/circj.cj-16-0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ventricular non-compaction is characterized by a thin layer of compact ventricular myocardium and it is an important abnormality in the mouse heart. It is reminiscent of left ventricular non-compaction, a fairly common human congenital cardiomyopathy. Non-compaction in transgenic mice has been classically evaluated by measuring the thickness of the compact myocardium through histological techniques involving image analysis of 2-dimensional (D) sections. Given the 3D nature of the heart, the aim of this study was to determine whether a technique for the non-destructive, 3D assessment of the mouse embryonic compact myocardium could be developed. METHODS AND RESULTS Micro-computed tomography (micro-CT), in combination with iodine staining, enabled the differentiation of the trabecular from the compact myocardium in wild-type mice. The 3D and digital nature of the micro-CT data allowed computation anatomical techniques to be readily applied, which were demonstrated via construction of group atlases and atlas-based descriptive statistics. Finally, micro-CT was used to identify the presence of non-compaction in mice with a deletion of the cell cycle inhibitor protein, p27(Kip1). CONCLUSIONS Iodine staining-enhanced micro-CT with computational anatomical analysis represents a valid addition to classical histology for the delineation of compact myocardial wall thickness in the mouse embryo. Given the quantitative 3D resolution of micro-CT, these approaches might provide helpful information for the analysis of non-compaction. (Circ J 2016; 80: 1795-1803).
Collapse
Affiliation(s)
- Samer S Merchant
- Small Animal Imaging Facility, Department of Bioengineering, University of Utah
| | | | | | | | | |
Collapse
|
296
|
IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A 2016; 113:6949-54. [PMID: 27274047 DOI: 10.1073/pnas.1603127113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease.
Collapse
|
297
|
Tao SC, Gao YS, Zhu HY, Yin JH, Chen YX, Zhang YL, Guo SC, Zhang CQ. Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein. Sci Rep 2016; 6:26835. [PMID: 27256071 PMCID: PMC4891712 DOI: 10.1038/srep26835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022] Open
Abstract
The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hong-Yi Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jun-Hui Yin
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yue-Lei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
298
|
Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, Li L, Sun Z, Olson EN, Amendt BA, Martin JF. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 2016; 534:119-23. [PMID: 27251288 PMCID: PMC4999251 DOI: 10.1038/nature17959] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.
Collapse
Affiliation(s)
- Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter C. Kahr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Lele Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
299
|
Pei T, Li Y, Wang J, Wang H, Liang Y, Shi H, Sun B, Yin D, Sun J, Song R, Pan S, Sun Y, Jiang H, Zheng T, Liu L. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 2016; 6:17206-20. [PMID: 26015398 PMCID: PMC4627302 DOI: 10.18632/oncotarget.4043] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Yes-associated protein (YAP), a transcriptional co-activator, has important regulatory roles in cell signaling and is dysregulated in a number of cancers. However, the role of YAP in cholangiocarcinoma (CCA) progression remains unclear. Here, we demonstrated that YAP was overexpressed in CCA cells and human specimens. High levels of nuclear YAP (nYAP) correlated with histological differentiation, TNM stage, metastasis and poor prognosis in CCA. Silencing YAP increased tumor sensitivity to chemotherapy and inhibited CCA tumorigenesis and metastasis both in vivo and in vitro. YAP overexpression in vivo and in vitro promoted CCA tumorigenesis and metastasis. Additionally, we found that YAP induced epithelial-mesenchymal transition (EMT) and formed a regulatory circuit with miR-29c, IGF1, AKT and gankyrin to promote the progression of CCA. Results of CCA tissue microarray showed positive correlations between nYAP and gankyrin or p-AKT expression. Combination of nYAP and gankyrin or p-AKT exhibited improved prognostic accuracy for CCA patients. In conclusion, YAP promotes carcinogenesis and metastasis by up-regulating gankyrin through activation of the AKT pathway.
Collapse
Affiliation(s)
- Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuejin Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanlai Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of General Surgery, Qiqihaer City Hospital of Traditional Chinese Medicine, Qiqihaer, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huawen Shi
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshi Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dalong Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
300
|
|