251
|
Kelly RJ, Morris JC. Transforming growth factor-beta: a target for cancer therapy. J Immunotoxicol 2010; 7:15-26. [PMID: 19916703 DOI: 10.3109/15476910903389920] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that regulates cell growth and differentiation, apoptosis, cell motility, extracellular matrix production, angiogenesis, and cellular immune responses. TGF-beta demonstrates paradoxical action whereby it can function to suppress early tumorigenesis; however, it can also facilitate malignant transformation and stimulate tumor growth by manipulating a more hospitable environment for tumor invasion and the development of metastases. Given the integral role of TGF-beta in transformation and cancer progression, various components of the TGF-beta signaling pathway offer potentially attractive therapeutic targets for cancer treatment. This review focuses on the role of TGF-beta in cancer and discusses both small and large molecule drugs currently in development that target TGF-beta, its receptor and important down stream steps along its signaling pathway.
Collapse
Affiliation(s)
- Ronan J Kelly
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
252
|
Korpal M, Kang Y. Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer 2010; 46:1232-40. [PMID: 20307969 DOI: 10.1016/j.ejca.2010.02.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/23/2010] [Indexed: 01/26/2023]
Abstract
Transforming growth factor (TGF)-beta signalling plays a dichotomous role in tumour progression, acting as a tumour suppressor early and as a pro-metastatic pathway in late-stages. There is accumulating evidence that advanced-stage tumours produce excessive levels of TGF-beta, which acts to promote tumour growth, invasion and colonisation of secondary organs. In light of the pro-metastasis function, many strategies are currently being explored to antagonise the TGF-beta pathway as a treatment for metastatic cancers. Strategies such as using large molecule ligand traps, reducing the translational efficiency of TGF-beta ligands using antisense technology, and antagonising TGF-beta receptor I/II kinase function using small molecule inhibitors are the most prominent methods being explored today. Administration of anti-TGF-beta therapies alone, or in combination with immunosuppressive or cytotoxic therapies, has yielded promising results in the preclinical and clinical settings. Despite these successes, the temporal- and context-dependent roles of TGF-beta signalling in cancer has made it challenging to define patient subgroups that are most likely to respond, and the therapeutic regimens that will be most effective in the clinic. Novel mouse models and diagnostic tools are being developed today to circumvent these issues, which may potentially expedite anti-TGF-beta drug development and clinical application.
Collapse
Affiliation(s)
- Manav Korpal
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
253
|
Nagaraj NS, Datta PK. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 2010; 19:77-91. [PMID: 20001556 DOI: 10.1517/13543780903382609] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-ss (TGF-beta) signaling pathway plays a pivotal role in diverse cellular processes. TGF-beta switches its role from a tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that the Smad-dependent pathway is involved in TGF-beta tumor-suppressive functions, whereas activation of Smad-independent pathways, coupled with the loss of tumor-suppressor functions of TGF-beta, is important for its pro-oncogenic functions. TGF-beta signaling has been considered a useful therapeutic target. The discovery of oncogenic actions of TGF-beta has generated a great deal of enthusiasm for developing TGF-beta signaling inhibitors for the treatment of cancer. The challenge is to identify the group of patients where targeted tumors are not only refractory to TGF-beta-induced tumor suppressor functions but also responsive to the tumor-promoting effects of TGF-beta. TGF-beta pathway inhibitors, including small and large molecules, have now entered clinical trials. Preclinical studies with these inhibitors have shown promise in a variety of different tumor models. Here, we focus on the mechanisms of signaling and specific targets of the TGF-beta pathway that are critical effectors of tumor progression and invasion. This report also examines the therapeutic intervention of TGF-ss signaling in human cancers.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Department of Surgery, Nashville, TN 37232, USA
| | | |
Collapse
|
254
|
Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, Datta PK. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 2010; 138:969-80.e1-3. [PMID: 19909744 PMCID: PMC2831103 DOI: 10.1053/j.gastro.2009.11.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 10/29/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Transforming growth factor (TGF)-beta signaling occurs through Smads 2/3/4, which translocate to the nucleus to regulate transcription; TGF-beta has tumor-suppressive effects in some tumor models and pro-metastatic effects in others. In patients with colorectal cancer (CRC), mutations or reduced levels of Smad4 have been correlated with reduced survival. However, the function of Smad signaling and the effects of TGF-beta-receptor kinase inhibitors have not been analyzed during CRC metastasis. We investigated the role of TGF-beta/Smad signaling in CRC progression. METHODS We evaluated the role of TGF-beta/Smad signaling on cell proliferation, migration, invasion, tumorigenicity, and metastasis in Smad4-null colon carcinoma cell lines (MC38 and SW620) and in those that transgenically express Smad4. We also determined the effects of a TGF-beta-receptor kinase inhibitor (LY2109761) in CRC tumor progression and metastasis in mice. RESULTS TGF-beta induced migration/invasion, tumorigenicity, and metastasis of Smad4-null MC38 and SW620 cells; incubation with LY2109761 reversed these effects. In mice, LY2109761 blocked metastasis of CRC cells to liver, inducing cancer cell expression of E-cadherin and reducing the expression of the tumorigenic proteins matrix metalloproteinase-9, nm23, urokinase plasminogen activator, and cyclooxygenase-2. Transgenic expression of Smad4 significantly reduced the oncogenic potential of MC38 and SW620 cells; in these transgenic cells, TGF-beta had tumor suppressor, rather than tumorigenic, effects. CONCLUSIONS TGF-beta/Smad signaling suppresses progression and metastasis of CRC cells and tumors in mice. Loss of Smad4 might underlie the functional shift of TGF-beta from a tumor suppressor to a tumor promoter; inhibitors of TGF-beta signaling might be developed as CRC therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pran K. Datta
- Corresponding author (P.K.D.), Department of Surgery and Cancer Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, A-3310C, MCN, Nashville, TN 37232, Phone: (615)-343-1280, Fax: (615)-343-1355,
| |
Collapse
|
255
|
Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 2010; 51:523-34. [PMID: 19821534 DOI: 10.1002/hep.23285] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. CONCLUSION Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Department of Internal Medicine, Section of Internal Medicine, Policlinico, Bari, Italy
| | | | | | | | | | | |
Collapse
|
256
|
Epithelial–mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta Rev Cancer 2009; 1796:75-90. [DOI: 10.1016/j.bbcan.2009.03.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 12/26/2022]
|
257
|
Translational advances and novel therapies for pancreatic ductal adenocarcinoma: hope or hype? Expert Rev Mol Med 2009; 11:e34. [PMID: 19919723 DOI: 10.1017/s1462399409001240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological complexity, inaccessible anatomical location, nonspecific symptoms, lack of a screening biomarker, advanced disease at presentation and drug resistance epitomise pancreatic ductal adenocarcinoma (PDA) as a poor-prognosis, lethal disease. Twenty-five years of research (basic, translational and clinical) have barely made strides to improve survival, mainly because of a fundamental lack of knowledge of the biological processes initiating and propagating PDA. However, isolation of pancreas cancer stem cells or progenitors, whole-genome sequencing for driver mutations, advances in functional imaging, mechanistic dissection of the desmoplastic reaction and novel targeted therapies are likely to shed light on how best to treat PDA. Here we summarise current knowledge and areas where the field is advancing, and give our opinion on the research direction the field should be focusing on to better deliver promising therapies for our patients.
Collapse
|
258
|
Melisi D, Ossovskaya V, Zhu C, Rosa R, Ling J, Dougherty PM, Sherman BM, Abbruzzese JL, Chiao PJ. Oral poly(ADP-ribose) polymerase-1 inhibitor BSI-401 has antitumor activity and synergizes with oxaliplatin against pancreatic cancer, preventing acute neurotoxicity. Clin Cancer Res 2009; 15:6367-77. [PMID: 19808866 PMCID: PMC2989607 DOI: 10.1158/1078-0432.ccr-09-0910] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Development of novel agents and drug combinations are urgently needed for treatment of pancreatic cancer. Oxaliplatin belongs to an important class of DNA-damaging organoplatinum agents, useful in pancreatic cancer therapy. However, increased ability of cancer cells to recognize and repair DNA damage enables resistance to these agents. Poly (ADP ribose) polymerase-1 is a sensor of DNA damage with key roles in DNA repair. Here, we report the therapeutic activity of the poly (ADP ribose) polymerase-1 inhibitor BSI-401, as a single agent and in combination with oxaliplatin in orthotopic nude mouse models of pancreatic cancer, and its effect on oxaliplatin-induced acute neurotoxicity. EXPERIMENTAL DESIGN We determined in vitro the effect of BSI-401 and its synergism with oxaliplatin on the growth of pancreatic cancer cells. Activity of different dosages of parenteral and oral BSI-401, alone and in combination with oxaliplatin, was evaluated in orthotopic nude mouse models with luciferase-expressing pancreatic cancer cells. The effect of BSI-401 in preventing oxaliplatin-induced acute cold allodynia was measured in rats using a temperature-controlled plate. RESULTS BSI-401 alone and in synergism with oxaliplatin significantly inhibited the growth of pancreatic cancer cells in vitro. In nude mice, i.p. [200 mg/kg once a week (QW) x 4] and oral [400 mg/kg days 1-5 of each week (QD5 + R2) x 4] administration of BSI-401 significantly reduced tumor burden and prolonged survival (46 versus 144 days, P = 0.0018; 73 versus 194 days, P = 0.0017) compared with no treatment. BSI-401 combined with oxaliplatin had potent synergistic antitumor activity (46 versus 132 days, P = 0.0063), and significantly (P = 0.0148) prevented acute oxaliplatin-induced neurotoxicity. CONCLUSIONS BSI-401, alone or in combination with oxaliplatin, is a promising new therapeutic agent that warrants further evaluation for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Davide Melisi
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | - Cihui Zhu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Roberta Rosa
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jianhua Ling
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Patrick M. Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | - James L. Abbruzzese
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Paul J. Chiao
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
259
|
Li Z, Chang Z, Chiao LJ, Kang Y, Xia Q, Zhu C, Fleming JB, Evans DB, Chiao PJ. TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation. Cancer Res 2009; 69:7851-9. [PMID: 19773448 DOI: 10.1158/0008-5472.can-08-4002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many genetic and molecular alterations, such as K-ras mutation and NF-kappaB activation, have been identified in pancreatic cancer. However, the mechanisms by which pancreatic cancer metastasizes still remain to be determined. Although we previously showed that the tropomyosin-related kinase B (TrkB) was significantly correlated with the development of liver metastasis, its function in pancreatic cancer metastasis remained unresolved. In the present study, we showed that overexpressed TrkB is an alternatively spliced transcript variant of TrkB (TrkBT1) with a unique COOH-terminal 12-amino acid sequence and is mainly localized in the cytoplasm. Our results showed that overexpression of Flag-tagged TrkBT1 but not a Flag-tagged TrkBT1 COOH-terminal deletion mutant (Flag-TrkBT1DeltaC) in nonmetastatic pancreatic cancer cells enhanced cell proliferation, promoted formation of colonies in soft agar, stimulated tumor cell invasion, and induced liver metastasis in an orthotopic xenograft mouse model of pancreatic cancer. TrkBT1 interacted with Rho GDP dissociation inhibitor (GDI) in vivo, but Flag-TrkBT1DeltaC did not. Furthermore, overexpression of Flag-TrkBT1 and knockdown of RhoGDI expression by RhoGDI short hairpin RNAs promoted RhoA activation, but Flag-TrkBT1DeltaC overexpression did not. Therefore, our results showed that TrkBT1 overexpression induces liver metastasis of pancreatic cancer and uncovered a unique signaling mechanism by which TrkBT1 sequesters GDI and activates RhoA signaling.
Collapse
Affiliation(s)
- Zhongkui Li
- Departments of Surgical Oncology and Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B, Ling C, Zhou X, Chen T, Chiao PJ, Feng X, Seewaldt VL, Muller WJ, Sahin A, Hung MC, Yu D. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009; 16:195-207. [PMID: 19732720 PMCID: PMC2754239 DOI: 10.1016/j.ccr.2009.08.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/20/2009] [Accepted: 08/11/2009] [Indexed: 12/16/2022]
Abstract
ErbB2, a metastasis-promoting oncoprotein, is overexpressed in approximately 25% of invasive/metastatic breast cancers, but in 50%-60% of noninvasive ductal carcinomas in situ (DCIS). It has been puzzling how a subset of ErbB2-overexpressing DCIS develops into invasive breast cancer (IBC). We found that co-overexpression of 14-3-3zeta in ErbB2-overexpressing DCIS conferred a higher risk of progression to IBC. ErbB2 and 14-3-3zeta overexpression, respectively, increased cell migration and decreased cell adhesion, two prerequisites of tumor cell invasion. 14-3-3zeta overexpression reduced cell adhesion by activating the TGF-beta/Smads pathway that led to ZFHX1B/SIP-1 upregulation, E-cadherin loss, and epithelial-mesenchymal transition. Importantly, patients whose breast tumors overexpressed both ErbB2 and 14-3-3zeta had higher rates of metastatic recurrence and death than those whose tumors overexpressed only one.
Collapse
Affiliation(s)
- Jing Lu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua Guo
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Warapen Treekitkarnmongkol
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Zhang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Shi
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chen Ling
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, H3A 1A1, Canada
| | - Xiaoyan Zhou
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tongzhen Chen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul J. Chiao
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinhua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - William J. Muller
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, H3A 1A1, Canada
| | - Aysegul Sahin
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
- China Medical University & Hospital, Taichung, 404, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
- To whom correspondence should be addressed. , TEL: 713-792-3636, FAX: 713-792-4454
| |
Collapse
|
261
|
Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 2009; 15:960-6. [PMID: 19597504 DOI: 10.1038/nm.1943] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 02/10/2009] [Indexed: 11/08/2022]
Abstract
Although the transforming growth factor-beta (TGF-beta) pathway has been implicated in breast cancer metastasis, its in vivo dynamics and temporal-spatial involvement in organ-specific metastasis have not been investigated. Here we engineered a xenograft model system with a conditional control of the TGF-beta-SMAD signaling pathway and a dual-luciferase reporter system for tracing both metastatic burden and TGF-beta signaling activity in vivo. Strong TGF-beta signaling in osteolytic bone lesions is suppressed directly by genetic and pharmacological disruption of the TGF-beta-SMAD pathway and indirectly by inhibition of osteoclast function with bisphosphonates. Notably, disruption of TGF-beta signaling early in metastasis can substantially reduce metastasis burden but becomes less effective when bone lesions are well established. Our in vivo system for real-time manipulation and detection of TGF-beta signaling provides a proof of principle for using similar strategies to analyze the in vivo dynamics of other metastasis-associated signaling pathways and will expedite the development and characterization of therapeutic agents.
Collapse
|
262
|
Abstract
Patients with pancreatic cancer normally present with advanced disease that is lethal and notoriously difficult to treat. Survival has not improved dramatically despite routine use of chemotherapy and radiotherapy; this situation signifies an urgent need for novel therapeutic approaches. Over the past decade, a large number of studies have been published that aimed to target the molecular abnormalities implicated in pancreatic tumor growth, invasion, metastasis, angiogenesis and resistance to apoptosis. This research is of particular importance, as data suggest that a large number of genetic alterations affect only a few major signaling pathways and processes involved in pancreatic tumorigenesis. Although laboratory results of targeted therapies have been impressive, until now only erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated modest survival benefit in combination with gemcitabine in a phase III clinical trial. Whilst the failures of targeted therapies in the clinical setting are discouraging, lessons have been learnt and new therapeutic targets that hold promise for the future management of the disease are continuously emerging. This Review describes some of the important developments and targeted agents for pancreatic cancer that have been tested in clinical trials.
Collapse
Affiliation(s)
- Han H Wong
- Centre for Molecular Oncology and Imaging, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
263
|
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. SCIENCE (NEW YORK, N.Y.) 2009. [PMID: 19460966 DOI: 10.1126/science.1171362.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Kenneth P Olive
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 ORE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324:1457-61. [PMID: 19460966 DOI: 10.1126/science.1171362] [Citation(s) in RCA: 2513] [Impact Index Per Article: 157.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Kenneth P Olive
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 ORE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. SCIENCE (NEW YORK, N.Y.) 2009. [PMID: 19460966 DOI: 10.1126/science.1171362.inhibition] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Kenneth P Olive
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 ORE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Melisi D, Niu J, Chang Z, Xia Q, Peng B, Ishiyama S, Evans DB, Chiao PJ. Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB. Mol Cancer Res 2009; 7:624-33. [PMID: 19435817 DOI: 10.1158/1541-7786.mcr-08-0201] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factor nuclear factor-kappaB (NF-kappaB) is constitutively activated in most pancreatic cancer tissues and cell lines but not in normal pancreas nor in immortalized/nontumorigenic human pancreatic ductal epithelial cells. Inhibition of constitutive NF-kappaB activation in pancreatic cancer cell lines suppresses tumorigenesis and tumor metastasis. Recently, we identified autocrine secretion of proinflammatory cytokine interleukin (IL)-1alpha as the mechanism of constitutive NF-kappaB activation in metastatic pancreatic cancer cell lines. However, the role of IL-1alpha in determining the metastatic potential of pancreatic tumor remains to be further investigated. In the current study, we stably expressed IL-1alpha in the nonmetastatic, IL-1alpha-negative MiaPaCa-2 cell lines. Our results showed that the secretion of IL-1alpha in MiaPaCa-2 cells constitutively activated NF-kappaB and increased the expression of NF-kappaB downstream genes involved in the different steps of the metastatic cascade, such as urokinase-type plasminogen activator, vascular endothelial growth factor, and IL-8. MiaPaCa-2/IL-1alpha cells showed an enhanced cell invasion in vitro compared with parental MiaPaCa-2 cells and induced liver metastasis in an orthotopic mouse model. The metastatic phenotype induced by IL-1alpha was inhibited by the expression of phosphorylation-defective IkappaB (IkappaB S32, 36A), which blocked NF-kappaB activation. Consistently, silencing the expression of IL-1alpha by short hairpin RNA in the highly metastatic L3.6pl pancreatic cancer cells completely suppressed their metastatic spread. In summary, these findings showed that IL-1alpha plays key roles in pancreatic cancer metastatic behavior through the constitutive activation of NF-kappaB. Our findings further support the possible link between inflammation and cancer and suggest that IL-1alpha may be a potential therapeutic target for treating pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Davide Melisi
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Morse MA, Hall JR, Plate JMD. Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer. Expert Opin Biol Ther 2009; 9:331-9. [PMID: 19216622 DOI: 10.1517/14712590802715756] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Vaccines for pancreatic cancer have been challenged by a number of factors, especially the immunosuppressive microenvironment within the tumor that allows for escape from immune surveillance. OBJECTIVE/METHODS We sought to identify results that define mechanisms of pancreatic-cancer-associated immunosuppression and strategies that might be useful to overcome them thereby resulting in effective immune responses to cancer vaccines capable of deleting pancreatic cancer cells. RESULTS/CONCLUSION Immunosuppressive tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg) reside in tumors, and their products along with tumor derived products (such as VEGF, TGFbeta and IL-10), create a microenvironment that counters immune activation and attack. Immunotherapy with cancer vaccines must include strategies to modulate these immunosuppressive cell types and tumor byproducts. Clinical trials are beginning to test these strategies.
Collapse
|
268
|
Zhang B, Halder SK, Zhang S, Datta PK. Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett 2009; 277:114-20. [PMID: 19147275 DOI: 10.1016/j.canlet.2008.11.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/19/2008] [Accepted: 11/27/2008] [Indexed: 12/26/2022]
Abstract
Despite a primary tumor suppressor role, there is compelling evidence suggesting that TGF-beta can promote tumor growth, invasion and metastasis in advanced stages of colorectal cancer. Blocking these tumor-promoting effects of TGF-beta provides a potentially important therapeutic strategy for the treatment of colorectal cancer. However, little is known about how the inhibitors of TGF-beta receptor kinases affect colorectal carcinogenesis in vivo. Here, we have observed that a novel dual kinase inhibitor of TGF-beta type I and type II receptors, LY2109761, inhibits TGF-beta-mediated activation of Smad and non-Smad pathways in CT26 colon adenocarcinoma cells having K-Ras mutation. The inhibitor attenuates the oncogenic effects of TGF-beta on cell migration, invasion and tumorigenicity of CT26 cells. Furthermore, LY2109761 decreases liver metastases and prolongs survival in an experimental metastasis model. These findings suggest that the dual kinase inhibitor LY2109761 has potential therapeutic value for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Bixiang Zhang
- Departments of Surgery and Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|