251
|
Komrokji RS, Verstovsek S, Padron E, List AF. Advances in the management of myelofibrosis. Cancer Control 2012; 19:4-15. [PMID: 23042420 DOI: 10.1177/107327481201904s04] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Myelofibrosis (MF) is a rare and serious hematologic malignancy classified as a Philadelphia chromosome-negative myeloproliferative neoplasm (MPN). The disease is more common in males and in older individuals. Of the MPNs, MF presents with the most severe morbidity and greatest mortality. Although the cause of MF is unknown, it is thought to occur from acquired mutations that target the hematopoietic stem cell. METHODS We reviewed the current literature pertaining to the pathophysiology, clinical presentation, diagnosis, risk stratification, and treatment of MF. The strengths and limitations of present treatment options as well as the emerging clinical experience with Janus kinase 2 (JAK2) inhibitors are explored. RESULTS Diagnosis is often one of exclusion and is facilitated using the World Health Organization or International Working Group for Myelofibrosis Research and Treatment criteria, depending on whether primary or secondary MF is suspected. Treatment is complicated by a lack of disease familiarity of general practitioners and the advanced age of presenting patients. Although allogeneic stem cell transplant offers a potential cure, most treatments for this condition are limited to symptomatic management, with little to no effect on survival. Appropriate patient assessment and risk stratification are essential for predicting outcomes and allowing treating physicians to tailor therapy accordingly. CONCLUSIONS Significant advances have been made in understanding the pathophysiology of MF, leading to novel therapeutic approaches. The discovery of the JAK2 mutation and the development of JAK2 inhibitors provide clinicians with a new effective treatment option. Ruxolitinib is the first JAK1/2 inhibitor approved by the Food and Drug Administration (FDA) for the treatment of patients with intermediate- or high-risk MF. In clinical studies, ruxolitinib produced a significantly greater reduction in spleen size and improved quality of life compared with placebo or best available therapy. Several future therapies, including combination therapies with ruxolitinib, are currently under investigation.
Collapse
Affiliation(s)
- Rami S Komrokji
- Department of Malignant Hematology at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33617, USA.
| | | | | | | |
Collapse
|
252
|
Vannucchi AM, Pieri L, Susini MC, Guglielmelli P. BCR-ABL1-negative chronic myeloid neoplasms: an update on management techniques. Future Oncol 2012; 8:575-93. [PMID: 22646772 DOI: 10.2217/fon.12.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent discoveries concerning mutations associated with chronic myeloproliferative neoplasms have modified our understanding of the biology of these incurable diseases and guided us to the development of inhibitors active on the constitutively activated JAK-STAT pathway. Concurrently, numerous studies dealt with clinical issues; it led to a revised WHO classification; clarified the role of mutated JAK2 and leukocytosis in the pathogenesis of cardiovascular events; allowed the development of risk prognostic scores and tools for monitoring response to therapy; and resulted in completion of Phase III trials with JAK2 inhibitor in myelofibrosis. All these results hold the promise of improving patient prognostication and therapeutic approach, with the aim of efficiently preventing disease-associated complications and, hopefully, to improve the dismal survival associated with myelofibrosis. This review discusses how to manage, according to current clinical practice, the steps of diagnosis, prognostication and therapeutic choices in myeloproliferative neoplasm patients.
Collapse
Affiliation(s)
- Alessandro M Vannucchi
- Section of Hematology, Department of Critical Care, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | | | | | | |
Collapse
|
253
|
ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2012; 27:82-91. [PMID: 23018865 DOI: 10.1038/leu.2012.262] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We aimed at evaluating ASXL1mut in 740 AML with intermediate risk karyotype for frequency, association with other mutations and impact on outcome. Five hundred fifty-three cases had a normal karyotype (NK) and 187 had intermediate risk aberrant cytogenetics. Overall, ASXL1mut were detected in 127/740 patients (17.2%). ASXL1mut were more frequent in males than in females (23.5% vs 9.9%, P<0.001). They were associated with higher age (median: 71.8 vs 61.8, P<0.001), a history of preceding myelodysplastic syndromes, and with a more immature immunophenotype compared with patients with wild-type ASXL1 (ASXL1wt). ASXL1mut were more frequent in patients with aberrant karyotype (58/187; 31.0%), especially in cases with trisomy 8 (39/74; 52.7%), than in those with NK (69/553; 12.5%; P<0.001). ASXL1mut were observed more frequent in RUNX1mut (P<0.001), and less frequent in NPM1mut (P<0.001), FLT3-internal tandem duplication (ITD) (P<0.001), FLT3-TKD (P=0.001) and DNMT3Amut (P<0.001). Patients with ASXL1mut had a shorter overall survival (OS) (P<0.001) and event free survival (P=0.012) compared with ASXL1wt. In multivariable analysis, ASXL1mut was an independent adverse factor for OS (P=0.032, relative risk: 1.70). In conclusion, ASXL1mut belong to the most frequent mutations in intermediate risk group AML. Their strong and independent dismal prognostic impact suggests the inclusion into the diagnostic work-up of AML.
Collapse
|
254
|
Martin SE, Sausen M, Joseph A, Kingham BF, Martin ES. Identification of a HMGA2-EFCAB6 gene rearrangement following next-generation sequencing in a patient with a t(12;22)(q14.3;q13.2) and JAK2V617F-positive myeloproliferative neoplasm. Cancer Genet 2012; 205:295-303. [PMID: 22749035 DOI: 10.1016/j.cancergen.2012.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 03/31/2012] [Indexed: 12/15/2022]
Abstract
Myeloproliferative neoplasms (MPNs) result from genetically altered hematopoietic stem cells that retain the capacity for multilineage differentiation. The study of genomic mutations identified so far suggests that they occur after a common ancestral event or that different mutations result in similar MPN phenotypes. We report analysis of a chromosomal translocation, t(12;22)(q14.3;q13.2), in a patient with a BCR-ABL1-negative, JAK2V617F-positive MPN. Comparative genomic hybridization (CGH) array and targeted sequencing detected no mutation in nine genes reported to influence the JAK2V617F-driven MPNs (MPL, LNK, CBL, TET2, EZH2, IKZF1, IDH1, IDH2, ASXL1). Next-generation sequencing revealed a balanced HMGA2-EFCAB6 genomic rearrangement. The HMGA2 breakpoint leads to the loss of seven 3'UTR binding sites for the microRNA (miRNA) let-7 tumor suppressor. The breakpoint in the EFCAB6 gene abrogates transcription of EFCAB6. Measurement of expression showed retention of HMGA2 transcription and no detectable EFCAB6 transcript. Allele burden comparison in a sample containing the translocation, showed 90% HMGA2-EFCAB6 versus 50% JAK2V617F allele dose, suggesting HMGA2-EFCAB6 rearrangement plays a more ancestral role, pre-JAK2V617F, in the neoplastic process. The pathogenicity of the translocation may rest on collaborations among JAK2V617F-induced constitutive activation of JAK2, the oncogenic property of HMGA2, and disrupted pathways, such as alteration in DJ-1 expression, resulting from the impact of EFCAB6 abrogation.
Collapse
|
255
|
Hájková H, Marková J, Haškovec C, Šárová I, Fuchs O, Kostečka A, Cetkovský P, Michalová K, Schwarz J. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res 2012; 36:1128-33. [DOI: 10.1016/j.leukres.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
|
256
|
Bastie JN, Aucagne R, Droin N, Solary E, Delva L. Heterogeneity of molecular markers in chronic myelomonocytic leukemia: a disease associated with several gene alterations. Cell Mol Life Sci 2012; 69:2853-61. [PMID: 22415325 PMCID: PMC11114957 DOI: 10.1007/s00018-012-0956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022]
Abstract
The relatively homogenous clinical features and poor prognosis of chronic myelomonocytic leukemia (CMML) are associated with a molecular heterogeneity, with various mutations impacting several convergent pathways. Due to the restricted understanding of the mechanism involved in leukemogenesis, CMML still appears as a diagnostic and therapeutic undertaking, and poor prognosis of leukemia. Contrary to chronic myelogenous leukemia, BCR-ABL1-positive, cytogenetic, and molecular abnormalities of CMML are not specific and not pathognomonic, confirming the different levels of heterogeneity of this disease. Various mutations can be associated with a common phenotype not distinct at the clinical level, further demonstrating that molecular probings are needed for choosing individual targeted therapies.
Collapse
Affiliation(s)
- Jean-Noël Bastie
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
- Service d’Hématologie Clinique, Centre Hospitalo-Universitaire, 21000 Dijon, France
| | - Romain Aucagne
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
- Laboratoire de Génétique Moléculaire des Cellules Souches, Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Nathalie Droin
- Inserm UMR 1009, IRCIV, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Solary
- Inserm UMR 1009, IRCIV, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Laurent Delva
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
| |
Collapse
|
257
|
Bennemann K, Galm O, Wilop S, Schubert C, Brümmendorf TH, Jost E. Epigenetic dysregulation of secreted frizzled-related proteins in myeloproliferative neoplasms complements the JAK2V617F-mutation. Clin Epigenetics 2012; 4:12. [PMID: 22935201 PMCID: PMC3502569 DOI: 10.1186/1868-7083-4-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/14/2012] [Indexed: 01/08/2023] Open
Abstract
Background Secreted frizzled-related proteins (SFRPs) are antagonists of the Wnt signaling pathway, which plays a central role in stem cell maintenance and differentiation of stem cells and hematopoietic progenitors. Epigenetic downregulation of SFRPs by promoter hypermethylation has been described to be involved in the pathogenesis of hematopoietic malignancies. There is an association between aberrant Wnt signaling and the established cancer stem cell concept. In contrast to BCR-ABL1-positive chronic myeloid leukemia CML, BCR-ABL1-negative myeloproliferative neoplasms (Ph-MPN) are characterized by the frequent occurrence of an autoactivating mutation in the JAK2 tyrosine kinase (JAK2V617F) or other mutations in the JAK-STAT pathway. However, pathogenetic mechanisms of JAK2 mutated or unmutated Ph-MPN remain not completely understood. We determined the promoter methylation status of SFRP-1, -2, -4, and -5 in 57 MPN patient samples by methylation-specific polymerase chain reaction (PCR) (MSP). JAK2V617F was assessed by allele-specific PCR. Results Aberrant methylation among primary MPN samples was 4% for SFRP-1, 25% for SFRP-2, 2% for SFRP-4, and 0% for SFRP-5. Hypermethylation of SFRP-2, which was the most frequently hypermethylated gene in our study, could not be correlated to any specific MPN subtype. However, we detected a significant correlation between SFRP-2 methylation and presence of a JAK2V617F mutation (P = 0.008). None of the 10 CML samples showed any SFRP-methylation. Conclusions Our data indicate that epigenetic dysregulation of the Wnt signaling pathway is a common event in MPN with aberrant methylation of at least one SFRP being detected in 25% of the primary patient samples and in 30% if only accounting for Ph-MPN. A significant correlation between SFRP-2 methylation and presence of JAK2V617F in our data supports the hypothesis that epigenetic dysregulation may be a complementary mechanism to genetic aberrations. Aberrant methylation of crucial stem cell maintenance genes seems to contribute to disease pathogenesis in Ph-MPN.
Collapse
Affiliation(s)
- Karla Bennemann
- Clinic for oncology, hematology and stem cell transplantation, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany.
| | | | | | | | | | | |
Collapse
|
258
|
Papadantonakis N, Matsuura S, Ravid K. Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood 2012; 120:1774-81. [PMID: 22767499 PMCID: PMC3433087 DOI: 10.1182/blood-2012-02-402594] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, are capable of accumulating DNA greater than a diploid content as part of their cell cycle. MKs have been recognized as mediating fibrosis in a subset of hematologic malignancies, including acute megakaryoblastic leukemia and a subset of myeloproliferative neoplasms. The mechanisms responsible for fibrosis remain only partially understood. Past studies highlighted the role of growth factors in such pathologies, and recently, the protein lysyl oxidase (LOX) has been implicated in proliferation of MKs, ploidy and deposition of fibers. LOX was initially characterized as a protein responsible for the intermolecular cross-linking of elastin and collagen, and in recent years it has been identified as regulator of various pathologies, such as cancer and inflammation. Here, we review recent advances in the understanding of the contribution of MKs to the progression of myelofibrosis, highlighting the newly identified role of LOX.
Collapse
Affiliation(s)
- Nikolaos Papadantonakis
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
259
|
Abstract
The chronic myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproduction of mature myeloid cells. They share associations with molecular abnormalities such as the JAK2V617F mutation but are distinguished by important phenotypic differences. This review first considers the factors that may influence phenotype in JAK2-mutated MPNs, especially polycythemia vera (PV) and essential thrombocythemia (ET), and then discusses the mutations implicated in JAK2-negative MPNs such as in MPL and epigenetic regulators. Current evidence supports a model where ET and PV are disorders of relatively low genetic complexity, whereas evolution to myelofibrosis or blast-phase disease reflects accumulation of a higher mutation burden.
Collapse
|
260
|
Fiskus W, Ganguly S, Kambhampati S, Bhalla KN. Role of additional novel therapies in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:959-80. [PMID: 23009932 DOI: 10.1016/j.hoc.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recent approval of ruxolitinib (INCB018424) for myelofibrosis and the preclinical/clinical development of several additional janus kinase (JAK)-targeted agents have ushered in an era of novel therapies for advanced myeloproliferative neoplasms (MPN), which are associated with constitutive activation of the JAK-signal transducer and activation of transcription (STAT) signaling pathway. Collectively, these novel therapeutic approaches could rapidly broaden the spectrum of available therapies, with potential for improved clinical outcome for patients with advanced MPN. This review covers the recent developments in the testing of novel therapeutic agents other than JAK inhibitors that target signaling pathways in addition to JAK/STAT, or target the deregulated epigenetic mechanisms in MPN.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Kansas Medical Center, 3901 Rainbow Boulevard, Robinson Hall 4030, Mail Stop 1027, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
261
|
Abstract
Ras proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer.
Collapse
|
262
|
Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer 2012; 12:304. [PMID: 22823977 PMCID: PMC3418560 DOI: 10.1186/1471-2407-12-304] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 06/30/2012] [Indexed: 12/05/2022] Open
Abstract
Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach.
Collapse
Affiliation(s)
- Anne Murati
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, Institut Paoli-Calmettes, 27 Bd, Leï Roure, BP 30059, Marseille, 13273, France
| | | | | | | | | | | |
Collapse
|
263
|
Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 2012; 19:754-9. [PMID: 22820988 PMCID: PMC3414675 DOI: 10.1038/nsmb.2348] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 11/09/2022]
Abstract
The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.
Collapse
Affiliation(s)
- Rajintha M Bandaranayake
- Structural Biology Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
264
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
265
|
Malak S, Labopin M, Saint-Martin C, Bellanne-Chantelot C, Najman A. Long term follow up of 93 families with myeloproliferative neoplasms: life expectancy and implications of JAK2V617F in the occurrence of complications. Blood Cells Mol Dis 2012; 49:170-6. [PMID: 22818858 DOI: 10.1016/j.bcmd.2012.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 02/02/2023]
Abstract
The long-term evolution of familial myeloproliferative neoplasms was studied in 93 families with 227 subjects including 97 with polycythemia vera (PV), 105 essential thrombocythemia (ET), 14 primary myelofibrosis (PMF) and 11 chronic myeloid leukemia (CML). In PV patients, with 12years of median follow-up, overall survival was 83% at 10years and 37% at 20years. A high JAK2(V617F) allele burden was correlated with the transformation to myelofibrosis (p<0.0001), but not with the transformation to acute leukemia. Among the 105 ET, with 8years of median follow-up, overall survival was 83% at 10years and 57% at 20years. Progression to acute leukemia and progression to myelofibrosis were 10% and 13%. There was a trend toward a more frequent evolution to myelofibrosis when the JAK2(V617F) mutated allele burden was >50% (p=0.09), but not to AML. Hematologic transformation of the MPN was responsible for 69% of the deaths, cerebral stroke for 7% and 4% died of myocardial infarction. Eleven JAK2(V617F) mutated patients developed 13 deep splanchnic thromboses in PV and ET. Finally whereas patients with familial PV and ET have a comparable prognosis to non-familial MPN, the JAK2(V617F) mutation was associated with a more frequent occurrence of thrombosis in the entire population.
Collapse
Affiliation(s)
- Sandra Malak
- Department of Hematology, Assistance Publique-Hopitaux de Paris (AP-HP) Saint-Antoine, Universite Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
266
|
Huang H, Woo AJ, Waldon Z, Schindler Y, Moran TB, Zhu HH, Feng GS, Steen H, Cantor AB. A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev 2012; 26:1587-601. [PMID: 22759635 DOI: 10.1101/gad.192054.112] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoietic development occurs in complex microenvironments and is influenced by key signaling events. Yet how these pathways communicate with master hematopoietic transcription factors to coordinate differentiation remains incompletely understood. The transcription factor RUNX1 plays essential roles in definitive hematopoietic stem cell (HSC) ontogeny, HSC maintenance, megakaryocyte (Mk) maturation, and lymphocyte differentiation. It is also the most frequent target of genetic alterations in human leukemia. Here, we report that RUNX1 is phosphorylated by Src family kinases (SFKs) and that this occurs on multiple tyrosine residues located within its negative regulatory DNA-binding and autoinhibitory domains. Retroviral transduction, chemical inhibitor, and genetic studies demonstrate a negative regulatory role of tyrosine phosphorylation on RUNX1 activity in Mk and CD8 T-cell differentiation. We also demonstrate that the nonreceptor tyrosine phosphatase Shp2 binds directly to RUNX1 and contributes to its dephosphorylation. Last, we show that RUNX1 tyrosine phosphorylation correlates with reduced GATA1 and enhanced SWI/SNF interactions. These findings link SFK and Shp2 signaling pathways to the regulation of RUNX1 activity in hematopoiesis via control of RUNX1 multiprotein complex assembly.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
|
268
|
Abstract
In this issue of Blood, Yan et al1 and Walz et al2 exploit mouse genetics to investigate the contribution of signal transducer and activator of transcription 5 (STAT5) to the abnormal in vivo growth of hematopoietic cells expressing JAK2V617F or BCR-ABL. Eliminating STAT5 expression had dramatic effects in both contexts, and this new work and other recent studies support the therapeutic potential of targeting pathways regulated by this important signaling molecule in patients with myeloproliferative neoplasms (MPNs).
Collapse
|
269
|
Abstract
Recently, 5-hydroxymethylcytosine (5-hmC), the 6th base of DNA, was discovered as the product of the hydroxylation of 5-methylcytosine (5-mC) by the ten-eleven translocation (TET) oncogene family members. One of them, TET oncogene family member 2 (TET2), is mutated in a variety of myeloid malignancies, including in 15% of myeloproliferative neoplasms (MPNs). Recent studies tried to go further into the biological and epigenetic function of TET2 protein and 5-hmC marks in the pathogenesis of myeloid malignancies. Although its precise function remains partially unknown, TET2 appears to be an important regulator of hematopoietic stem cell biology. In both mouse and human cells, its inactivation leads to a dramatic deregulation of hematopoiesis that ultimately triggers blood malignancies. Understanding this leukemogenic process will provide tools to develop new epigenetic therapies against blood cancers.
Collapse
Affiliation(s)
- Elodie Pronier
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Institut Gustave Roussy, Université Paris Sud (Paris 11), Villejuif, France
| | | |
Collapse
|
270
|
|
271
|
Santos FPS, Verstovsek S. Breakthroughs in myeloproliferative neoplasms. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2012; 17 Suppl 1:S55-8. [PMID: 22507780 DOI: 10.1179/102453312x13336169155574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The discovery of the JAK2V617F mutation ushered the field of Philadelphia-negative myeloproliferative neoplasms (MPNs) into the era of targeted therapy. Currently, there are several JAK2 inhibitors in clinical trials for patients with MPNs, particularly for patients with myelofibrosis (MF). These drugs act by blocking the proliferation of neoplastic cells by disrupting the JAK2-STAT signaling and by abrogating inflammatory cytokine signaling which is dependent on JAK kinases. Therapy with JAK2 inhibitors can improve splenomegaly and debilitating constitutional symptoms in great majority of MF patients, improving greatly their quality of life. Long-term follow-up will reveal whether these drugs can also prolong survival by better controlling signs and symptoms of the MF. There are other compounds in clinical trials for MPNs, including the new immunomodulatory drug pomalidomide, and inhibitor of mammalian target of Rapamycin everolimus. In this article, we briefly review the latest therapeutic advances in the field of Philadelphia-negative MPNs.
Collapse
Affiliation(s)
- Fabio P S Santos
- Hematology and Stem Cell Transplantation, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | |
Collapse
|
272
|
Characterization and discovery of novel miRNAs and moRNAs in JAK2V617F-mutated SET2 cells. Blood 2012; 119:e120-30. [DOI: 10.1182/blood-2011-07-368001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
To gain insights into a possible role of microRNAs in myeloproliferative neoplasms, we performed short RNA massive sequencing and extensive bioinformatic analysis in the JAK2V617F-mutated SET2 cell line. Overall, 652 known mature miRNAs were detected, of which 21 were highly expressed, thus being responsible of most of miRNA-mediated gene repression. microRNA putative targets were enriched in specific signaling pathways, providing information about cell activities under massive posttranscriptional regulation. The majority of miRNAs were mixtures of sequence variants, called isomiRs, mainly because of alternative, noncanonical processing of hairpin precursors. We also identified 78 novel miRNAs (miRNA*) derived from known hairpin precursors. Both major and minor (*) forms of miRNAs were expressed concurrently from half of expressed hairpins, highlighting the relevance of miRNA* and the complexity of strand selection bias regulation. Finally, we discovered that SET2 cells express a number of miRNA-offset RNAs (moRNAs), short RNAs derived from genomic regions flanking mature miRNAs. We provide novel data about the possible origin of moRNAs, although their functional role remains to be elucidated. Overall, this study shed light on the complexity of microRNA-mediated gene regulation in SET2 cells and represents the basis for future studies in JAK2V617F-mutated cellular models.
Collapse
|
273
|
Harrison C, Verstovsek S, McMullin MF, Mesa R. Janus kinase Inhibition and its effect upon the therapeutic landscape for myelofibrosis: from palliation to cure? Br J Haematol 2012; 157:426-37. [DOI: 10.1111/j.1365-2141.2012.09108.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Claire Harrison
- Department of Haematology; Guy's and St Thomas' NHS Foundation Trust; London; UK
| | - Srdan Verstovsek
- Department of Leukemia; MD Anderson Cancer Center, University of Texas; Houston; TX, USA
| | - Mary F. McMullin
- Department of Haematology, CCRCB; Queen's University Hospital; Belfast; UK
| | - Ruben Mesa
- Division of Hematology and Oncology; Mayo Clinic; Scottsdale; AZ; USA
| |
Collapse
|
274
|
Myeloproliferation and hematopoietic stem cell dysfunction due to defective Notch receptor modification by O-fucose glycans. Semin Immunopathol 2012; 34:455-69. [DOI: 10.1007/s00281-012-0303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/24/2012] [Indexed: 02/01/2023]
|
275
|
Ohanian M, Leventaki V, Verstovsek S, Estrov Z, Lin P, Yin C, Kantarjian H, Huh Y, Ravandi F. Acute lymphoblastic leukemia arising in post-polycythemic myelofibrosis: a rare entity. Leuk Lymphoma 2012; 53:1839-41. [PMID: 22303899 DOI: 10.3109/10428194.2012.663916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
276
|
Pavithran K, Pande SB. Janus kinase inhibitors: jackpot or potluck? Oncol Rev 2012; 6:e13. [PMID: 25992203 PMCID: PMC4419642 DOI: 10.4081/oncol.2012.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/23/2022] Open
Abstract
The reports of a unique mutation in the Janus kinase-2 gene (JAK2) in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN): primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Keechilat Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences, Kochi, India
| | - Shripad Brahmanand Pande
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences, Kochi, India
| |
Collapse
|
277
|
Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, McQuitty M, Hunter DS, Levy R, Knoops L, Cervantes F, Vannucchi AM, Barbui T, Barosi G. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366:787-98. [PMID: 22375970 DOI: 10.1056/nejmoa1110556] [Citation(s) in RCA: 1399] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Treatment options for myelofibrosis are limited. We evaluated the efficacy and safety of ruxolitinib, a potent and selective Janus kinase (JAK) 1 and 2 inhibitor, as compared with the best available therapy, in patients with myelofibrosis. METHODS We assigned 219 patients with intermediate-2 or high-risk primary myelofibrosis, post-polycythemia vera myelofibrosis, or post-essential thrombocythemia myelofibrosis to receive oral ruxolitinib or the best available therapy. The primary end point and key secondary end point of the study were the percentage of patients with at least a 35% reduction in spleen volume at week 48 and at week 24, respectively, as assessed with the use of magnetic resonance imaging or computed tomography. RESULTS A total of 28% of the patients in the ruxolitinib group had at least a 35% reduction in spleen volume at week 48, as compared with 0% in the group receiving the best available therapy (P<0.001); the corresponding percentages at week 24 were 32% and 0% (P<0.001). At 48 weeks, the mean palpable spleen length had decreased by 56% with ruxolitinib but had increased by 4% with the best available therapy. The median duration of response with ruxolitinib was not reached, with 80% of patients still having a response at a median follow-up of 12 months. Patients in the ruxolitinib group had an improvement in overall quality-of-life measures and a reduction in symptoms associated with myelofibrosis. The most common hematologic abnormalities of grade 3 or higher in either group were thrombocytopenia and anemia, which were managed with a dose reduction, interruption of treatment, or transfusion. One patient in each group discontinued treatment owing to thrombocytopenia, and none discontinued owing to anemia. Nonhematologic adverse events were rare and mostly grade 1 or 2. Two cases of acute myeloid leukemia were reported with the best available therapy. CONCLUSIONS Continuous ruxolitinib therapy, as compared with the best available therapy, was associated with marked and durable reductions in splenomegaly and disease-related symptoms, improvements in role functioning and quality of life, and modest toxic effects. An influence on overall survival has not yet been shown. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT00934544.).
Collapse
Affiliation(s)
- Claire Harrison
- Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Reddy MM, Deshpande A, Sattler M. Targeting JAK2 in the therapy of myeloproliferative neoplasms. Expert Opin Ther Targets 2012; 16:313-24. [PMID: 22339244 DOI: 10.1517/14728222.2012.662956] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are a group of stem cell diseases, including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, there is no curative therapy for these diseases other than bone marrow transplant; therefore there is an apparent need for palliative treatment. MPNs are frequently associated with activating mutations in JAK2; small-molecule drugs targeting this molecule have entered clinical trials. AREAS COVERED In this review novel JAK2 inhibitors are discussed and alternative approaches to inhibiting their transforming potential are highlighted. Current clinical approaches do not only aim at blocking JAK2 activity, but also at reducing its stability and expression are highlighted, including inhibition of heat shock protein 90 (HSP90) and deacetylases (DAC) have the potential to significantly enhance the efficacy of JAK2 inhibitors. EXPERT OPINION Preliminary results from clinical trials indicate the feasibility and efficacy of JAK2-targeted approaches. However, JAK2 inhibitor treatment is limited by dose-dependent toxicity and combination treatment might be required. The discovery of JAK2 mutations that cause secondary resistance in vitro would further highlight the need for the development of next-generation JAK2 inhibitors and novel synergistic approaches.
Collapse
Affiliation(s)
- Mamatha M Reddy
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA
| | | | | |
Collapse
|
279
|
Vannucchi AM, Biamonte F. Epigenetics and mutations in chronic myeloproliferative neoplasms. Haematologica 2012; 96:1398-402. [PMID: 21972209 DOI: 10.3324/haematol.2011.052068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
280
|
da Silva RR, Domingues Hatzlhofer BL, Machado CGDF, Lima ASDM, de Albuquerque DM, dos Santos MNN, Fertrin KY, Costa FF, Araújo ADS, Bezerra MAC. JAK2 V617F mutation prevalence in myeloproliferative neoplasms in Pernambuco, Brazil. Genet Test Mol Biomarkers 2012; 16:802-5. [PMID: 22304488 DOI: 10.1089/gtmb.2011.0272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The JAK2 V617F mutation is associated with three myeloproliferative neoplasms (MPNs): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). It generates an unregulated clonal hematopoietic progenitor and leads to abnormal increased proliferation of one or more myeloid lineages. Subjects bearing this mutation may present more frequently with complications such as thrombosis and bleeding, and no specific treatment has yet been developed for BCR-ABL-negative JAK2 V617F-negative MPNs. AIMS To determine the prevalence of JAK2 V617F in MPNs in Pernambuco, Brazil, and to compare it with previous studies. MATERIAL AND METHODS 144 blood samples were collected at the Hospital of Hematology of the HEMOPE Foundation and were genotyped by polymerase chain reaction-restriction fragment length polymorphism with BsaXI enzymatic digestion. RESULTS AND DISCUSSION 88% (46/52) of the patients with PV, 47% (39/81) with ET, and 77% (8/11) with PMF were positive for JAK2 V617F, while more than 35% of the individuals were JAK2 V617F-negative, confirming a high prevalence of this abnormality in MPNs, more frequently with a low mutated allele burden, similar to what has been reported in other Western countries, despite differences among methods used to detect this mutation. Screening for JAK2 V617F may allow specific management of these diseases with JAK2 inhibitors in the future and highlights the need for further studies on the pathogenesis of BCR-ABL-negative JAK2 V617F-negative MPNs.
Collapse
Affiliation(s)
- Rafael Ramos da Silva
- Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife-Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Tognon R, Gasparotto EPL, Neves RP, Nunes NS, Ferreira AF, Palma PVB, Kashima S, Covas DT, Santana M, Souto EX, Zanichelli MA, Simões BP, de Souza AM, Castro FA. Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in Essential Thrombocythemia and Myelofibrosis. J Hematol Oncol 2012; 5:2. [PMID: 22300941 PMCID: PMC3298534 DOI: 10.1186/1756-8722-5-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/02/2012] [Indexed: 11/21/2022] Open
Abstract
Background Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34+ hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. Results By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34+ cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34+ cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. Conclusions Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.
Collapse
Affiliation(s)
- Raquel Tognon
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Kawamata T, Tojo A. Helicobacter pylori-induced thrombocytosis clinically indistinguishable from essential thrombocythemia. Leuk Lymphoma 2012; 53:1423-4. [PMID: 22204454 DOI: 10.3109/10428194.2011.653787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
283
|
Barosi G, Lupo L, Rosti V. Management of Myeloproliferative Neoplasms: From Academic Guidelines to Clinical Practice. Curr Hematol Malig Rep 2012; 7:50-6. [DOI: 10.1007/s11899-011-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
284
|
Hochhaus A, Reiter A, Ernst T, La Rosée P. Imatinib and beyond--targeting activated tyrosine kinases in myeloproliferative disorders. ONKOLOGIE 2012; 35 Suppl 1:34-41. [PMID: 22286586 DOI: 10.1159/000334824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tyrosine kinases (TKs) play a major role in cellular signal transduction. Deregulated TK activity has been observed in solid cancers and hematologic malignancies. Advances in the understanding of the oncogenic activation of TKs led to the identification of new kinase inhibitors with improved potency, specificity, and efficacy. With the advent of imatinib mesylate, a new era in the management of patients with BCR-ABL+ chronic myelogenous leukemia (CML), gastrointestinal stromal tumors, and myeloproliferative neoplasms including chronic myelomonocytic leukemia with PDGFRB gene rearrangements and hypereosinophilic syndrome has begun. CML represents a model for the rational design of TK inhibitors based on the insights into signal transduction pathways. In CML, treatment with imatinib led to an outstanding clinical efficacy with limited toxicity. In BCR-ABL-negative myeloproliferation, the finding of activating point mutations in JAK2 prompted the development of JAK inhibitors to target this activated pathway. Aberrations of epigenetically active genes are the latest finding in the pathogenesis of myeloproliferative disorders and will serve as another target for innovative therapies.
Collapse
Affiliation(s)
- Andreas Hochhaus
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany.
| | | | | | | |
Collapse
|
285
|
Mercher T, Quivoron C, Couronné L, Bastard C, Vainchenker W, Bernard OA. TET2, a tumor suppressor in hematological disorders. Biochim Biophys Acta Rev Cancer 2012; 1825:173-7. [PMID: 22240200 DOI: 10.1016/j.bbcan.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/24/2011] [Indexed: 01/16/2023]
Abstract
The TET family of proteins has been described a few years ago. Only recently, their roles in DNA modification, through the oxidation of methyl-cytosine, and in normal and malignant development, through the description of TET2 as a tumor suppressor have been documented. The conjunction of these findings has prompted large efforts to understand the biology of these novel entities. Here, we summarize the recent results implicating TET2 in hematological malignancies suggesting that further studies are required to fully understand the role of DNA methylation alterations during transformation.
Collapse
|
286
|
Mascarenhas J, Mughal TI, Verstovsek S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr Med Chem 2012; 19:4399-413. [PMID: 22830345 PMCID: PMC3480698 DOI: 10.2174/092986712803251511] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/16/2022]
Abstract
Myeloproliferative neoplasms (MPN) are debilitating stem cell-derived clonal myeloid malignancies. Conventional treatments for the BCR-ABL1-negative MPN including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have, so far, been unsatisfactory. Following the discovery of dysregulated JAK-STAT signaling in patients with MPN, many efforts have been directed toward the development of molecularly targeted therapies, including inhibitors of JAK1 and JAK2. Ruxolitinib (previously known as INCB018424; Incyte Corporation, Wilmington, Delaware, USA) is a rationally designed potent oral JAK1 and JAK2 inhibitor that has undergone clinical trials in patients with PV, ET, and PMF. Ruxolitinib was approved on November 16, 2011 by the United States Food and Drug Administration for the treatment of intermediate or high-risk myelofibrosis (MF), including patients with PMF, post-PV MF, and post-ET MF. In randomized phase III studies, ruxolitinib treatment resulted in significant and durable reductions in splenomegaly and improvements in disease-related symptoms in patients with MF compared with placebo or best available therapy. The most common adverse events were anemia and thrombocytopenia, which were manageable and rarely led to discontinuation. This review addresses the cellular and molecular biology, and the clinical management of MPN.
Collapse
Affiliation(s)
| | - TI Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - S Verstovsek
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
287
|
Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11:119-31. [PMID: 22186017 DOI: 10.4161/cc.11.1.18475] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human ASXL proteins, orthologs of Drosophila Additional Sex combs, have been implicated in conjunction with TET2 as a major target for mutations and translocations leading to a wide range of myeloid leukemias, related myelodysplastic conditions (ASXL1 and ASXL2) and the Bohring-Opitz syndrome, a developmental disorder (ASXL1). Using sensitive sequence and structure comparison methods, we show that most animal ASXL proteins contain a novel N-terminal domain that is also found in several other eukaryotic chromatin proteins, diverse restriction endonucleases and DNA glycosylases, the RNA polymerase delta subunit of Gram-positive bacteria and certain bacterial proteins that combine features of the RNA polymerase α-subunit and sigma factors. This domain adopts the winged helix-turn-helix fold and is predicted to bind DNA. Based on its domain architectural contexts, we present evidence that this domain might play an important role, both in eukaryotes and bacteria, in the recruitment of diverse effector activities, including the Polycomb repressive complexes, to DNA, depending on the state of epigenetic modifications such as 5-methylcytosine and its oxidized derivatives. In other eukaryotic chromatin proteins, this predicted DNA-binding domain is fused to a region with three conserved motifs that are also found in diverse eukaryotic chromatin proteins, such as the animal BAZ/WAL proteins, plant HB1 and MBD9, yeast Itc1p and Ioc3, RSF1, CECR2 and NURF1. Based on the crystal structure of Ioc3, we establish that these motifs in conjunction with the DDT motif constitute a structural determinant that is central to nucleosomal repositioning by the ISWI clade of SWI2/SNF2 ATPases. We also show that the central domain of the ASXL proteins (ASXH domain) is conserved outside of animals in fungi and plants, where it is combined with other domains, suggesting that it might be an ancient module mediating interactions between chromatin-linked protein complexes and transcription factors via its conserved LXLLL motif. We present evidence that the C-terminal PHD finger of ASXL protein has certain peculiar structural modifications that might allow it to recognize internal modified lysines other than those from the N terminus of histone H3, making it the mediator of previously unexpected interactions in chromatin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
288
|
Gasparotto EPL, Tognon R, Ferreira AF, Oliveira GLV, Palma PVB, Zanichelli MA, Souto EX, Velano CEE, Simões BP, Carrara RDCV, Kashima S, Covas DT, Castro FAD, Souza AMD. Deregulated expression of A1, Bcl-2, Bcl-xL, and Mcl-1 antiapoptotic proteins and Bid, Bad, and Bax proapoptotic genes in polycythemia vera patients. BRAZ J PHARM SCI 2011. [DOI: 10.1590/s1984-82502011000400025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis deregulation might have a role in the pathophysiology of polycythemia vera (PV). This study evaluated Bcl-2 molecule expression in CD34+ cells and leukocytes in 12 PV patients. Gene expression was investigated by real time PCR using SybrGreen Quantitect kit and protein expression was evaluated by western-blotting. JAK2 V617F mutation was detected according to Baxter et al (2005). CD34+ cells from PV patients presented higher levels of A1 and Mcl-1 expression (median: 22.6 and 5.2, respectively) in comparison with controls (0.9 and 0.5, p=0.004 and p=0.020); while Bcl-2 and Bcl-xL expression decreased in PV patients (0.18 and 1.19) compared with controls (1.39 and 2.01, p=0.006 and p=0.020). CD34+ cells in PV patients showed an elevated Bid expression (14.4) in comparison with healthy subjects (1.0; p=0.002). Patients' leukocytes showed an A1 augmentation (7.41, p=0.001) and a reduced expression of Bax (0.19; p=0.040) and Bad (0.2; p=0.030). There was no correlation between JAK2 V617F allele burden and molecular expression. PV patients showed alterations in Bcl-2 members' expression, which may interfere with control of apoptotic machinery and contribute to disease pathogenesis.
Collapse
|
289
|
|
290
|
|
291
|
Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. Blood 2010; 119:2721-30. [PMID: 22279053 DOI: 10.1182/blood-2011-11-395228] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ruxolitinib (INCB-018424) is a potent, orally available, selective inhibitor of both JAK1 and JAK2 of the JAK-STAT signaling pathway, being developed by Incyte Corp and Novartis AG. Ruxolitinib was initially developed to target the constitutive activation of the JAK-STAT pathway in patients with myeloproliferative neoplasms (MPNs). Meaningful reductions in spleen size and constitutional symptoms have been noted in patients with myelofibrosis (both primary and post-essential thrombocythemia/polycythemia vera). Data from a phase I/II clinical trial led to ongoing registration trials in the US and Europe. Toxicity (primarily decreased erythropoiesis and thrombocytopoiesis) has been managed by close control of dosing. The inhibition of inflammatory cytokine signaling through JAK1 inhibition has led to intriguing results in patients with rheumatoid arthritis and psoriasis (using a topical cream formulation). Ruxolitinib is a well tolerated, first-in-class JAK2 inhibitor with various potential clinical indications.
Collapse
|