251
|
Alternative RNA splicing produces multiple forms of c-Myb with unique transcriptional activities. Mol Cell Biol 2008; 28:2091-101. [PMID: 18195038 DOI: 10.1128/mcb.01870-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Myb transcription factor regulates the proliferation and differentiation of hematopoietic cells, and activated alleles of c-myb induce leukemias and lymphomas in animals. Relatively minor changes in the structure of c-Myb protein change the genes that it regulates and can unleash its latent transforming activities. Here, quantitative assays were used to analyze the alternative splicing of human c-myb transcripts. We identified an array of variant transcripts, expressed in highly regulated, lineage-specific patterns, that were formed through the use of alternate exons 8A, 9A, 9B, 10A, 13A, and 14A. Expression levels of the different splice variant transcripts were regulated independently of one another during human hematopoietic cell differentiation, and the alternative splicing of c-myb mRNAs was increased in primary leukemia samples. The alternatively spliced c-myb transcripts were associated with polysomes and encoded a series of c-Myb proteins with identical DNA binding domains but unique C-terminal domains. In several types of assays, the variant c-Myb proteins exhibited quantitative and qualitative differences in transcriptional activities and specificities. The results suggest that the human c-myb gene encodes a family of related proteins with different transcriptional activities. Enhanced alternative splicing may be a mechanism for unmasking the transforming activity of c-myb in human leukemias.
Collapse
|
252
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
253
|
Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 2007; 27:8431-41. [PMID: 17923691 PMCID: PMC2169420 DOI: 10.1128/mcb.00565-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/07/2007] [Accepted: 09/19/2007] [Indexed: 02/07/2023] Open
Abstract
The alternative splicing of Bcl-x generates the proapoptotic Bcl-x(S) protein and the antiapoptotic isoform Bcl-x(L). Bcl-x splicing is coupled to signal transduction, since ceramide, hormones, and growth factors alter the ratio of the Bcl-x isoforms in different cell lines. Here we report that the protein kinase C (PKC) inhibitor and apoptotic inducer staurosporine switches the production of Bcl-x towards the x(S) mRNA isoform in 293 cells. The increase in Bcl-x(S) elicited by staurosporine likely involves signaling events that affect splicing decisions, because it requires active transcription and no new protein synthesis and is independent of caspase activation. Moreover, the increase in Bcl-x(S) is reproduced with more specific inhibitors of PKC. Alternative splicing of the receptor tyrosine kinase gene Axl is similarly affected by staurosporine in 293 cells. In contrast to the case for 293 cells, PKC inhibitors do not influence the alternative splicing of Bcl-x and Axl in cancer cell lines, suggesting that these cells have sustained alterations that uncouple splicing decisions from PKC-dependent signaling. Using minigenes, we show that an exonic region located upstream of the Bcl-x(S) 5' splice site is important to mediate the staurosporine shift in Bcl-x splicing. When transplanted to other alternative splicing units, portions of this region confer splicing modulation and responsiveness to staurosporine, suggesting the existence of factors that couple splicing decisions with PKC signaling.
Collapse
Affiliation(s)
- Timothée Revil
- RNA/RNP Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
254
|
Aartsma-Rus A, van Ommen GJB. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA (NEW YORK, N.Y.) 2007; 13:1609-24. [PMID: 17684229 PMCID: PMC1986821 DOI: 10.1261/rna.653607] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- DMD genetic therapy group, Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
255
|
Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007; 8:749-61. [PMID: 17726481 DOI: 10.1038/nrg2164] [Citation(s) in RCA: 765] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human genes contain a dense array of diverse cis-acting elements that make up a code required for the expression of correctly spliced mRNAs. Alternative splicing generates a highly dynamic human proteome through networks of coordinated splicing events. Cis- and trans-acting mutations that disrupt the splicing code or the machinery required for splicing and its regulation have roles in various diseases, and recent studies have provided new insights into the mechanisms by which these effects occur. An unexpectedly large fraction of exonic mutations exhibit a primary pathogenic effect on splicing. Furthermore, normal genetic variation significantly contributes to disease severity and susceptibility by affecting splicing efficiency.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
256
|
Möröy T, Heyd F. The impact of alternative splicing in vivo: mouse models show the way. RNA (NEW YORK, N.Y.) 2007; 13:1155-71. [PMID: 17563071 PMCID: PMC1924907 DOI: 10.1261/rna.554607] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alternative splicing is widely believed to have a major impact on almost all biological processes since it increases proteome complexity and thereby controls protein function. Recently, gene targeting in mice has been used to create in vivo models to study the regulation and consequences of alternative splicing. The evidence accumulated so far argues for a nonredundant, highly specific role of individual splicing factors in mammalian development, and furthermore, demonstrates the importance of distinct protein isoforms in vivo. In this review, we will compare phenotypes of mouse models for alternative splicing to crystallize common themes and to put them into perspective with the available in vitro data.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada.
| | | |
Collapse
|
257
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|
258
|
Singh RN. Unfolding the mystery of alternative splicing through a unique method of in vivo selection. FRONT BIOSCI-LANDMRK 2007; 12:3263-72. [PMID: 17485297 PMCID: PMC7495358 DOI: 10.2741/2310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a fundamental mechanism of gene regulation in higher eukaryotes. In addition to creating protein diversity, alternative splicing provides the safest mode of gene evolution. Of late, more and more forms of alternatively spliced transcripts (mRNAs) are being discovered for key genes. Some of the alternatively spliced transcripts are also associated with major human diseases. This has created a sense of urgency to find the methods by which regulation of alternative splicing of specific exons could be best understood. Here I review a powerful in vivo selection method that uses a combinatorial library of partially random sequences. Several advantages of this method include in vivo analysis of large sequences, identification of unique sequence motifs, determination of relative strength of splice sites and identification of long-distance interactions including role of RNA structures. This unique method could be applied to identify tissue-specific cis-elements. Similarly, the method is suitable to find cis-elements that become active in response to specific treatments of cells. Considering this unbiased method uses in vivo conditions, it has potential to identify critical regulatory elements as therapeutic targets for a growing number of splicing-associated diseases.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| |
Collapse
|
259
|
Blaustein M, Pelisch F, Srebrow A. Signals, pathways and splicing regulation. Int J Biochem Cell Biol 2007; 39:2031-48. [PMID: 17507279 DOI: 10.1016/j.biocel.2007.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/09/2023]
Abstract
Alternative splicing of messenger RNA precursors is an extraordinary source of protein diversity and the regulation of this process is crucial for diverse cellular functions in both physiological and pathological situations. For many years, several signaling pathways have been implicated in alternative splicing regulation. Recent work has begun to unravel the molecular mechanisms by which extracellular stimuli activate signaling cascades that modulate the activity of the splicing machinery and therefore the splicing pattern of many different target messenger RNA precursors. These experiments are revealing unexpected aspects of the mechanism that control splicing and the consequences of the regulated splicing events. We summarize here the current knowledge about signal-induced alternative splicing regulation of Slo, NR1, CD44, CD45 and fibronectin genes, and also discuss the importance of some of these events in determination of cellular fate. Furthermore, we highlight the relevance of signal-induced changes in phosphorylation state and subcellular distribution of splicing factors as a way of regulating the splicing process. Lastly, we explore new and unexpected findings about regulated splicing in anucleated cells.
Collapse
Affiliation(s)
- Matias Blaustein
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | |
Collapse
|
260
|
Taylor KR, Yamasaki K, Radek KA, Nardo AD, Goodarzi H, Golenbock D, Beutler B, Gallo RL. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 2007; 282:18265-18275. [PMID: 17400552 DOI: 10.1074/jbc.m606352200] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammation under sterile conditions is not well understood despite its importance in trauma and autoimmune disease. To investigate this process we established mouse models of sterile injury and explored the role of hyaluronan in mediating inflammation following injury. The response of cultured monocytes to hyaluronan was different than the response to lipopolysaccharide (LPS) despite both being dependent on Toll-like receptor 4 (TLR4). Cultured cells exposed to hyaluronan showed a pattern of gene induction that mimics the response seen in mouse skin after sterile injury with an increase in molecules such as transforming growth factor-beta2 and matrix metalloproteinase-13. These factors were not induced by LPS despite the mutual dependence of both hyaluronan and LPS on TLR4. Explanation for the unique response to hyaluronan was provided by observations that a lack of TLR4 or CD44 in mice diminished the response to sterile injury, and together with MD-2, was required for responsiveness to hyaluronan in vitro. Thus, a unique complex of TLR4, MD-2, and CD44 recognizes hyaluronan. Immunoprecipitation experiments confirmed the physical association of TLR4 and CD44. Taken together, our results define a previously unknown mechanism for initiation of sterile inflammation that involves recognition of released hyaluronan fragments as an endogenous signal of tissue injury.
Collapse
Affiliation(s)
- Kristen R Taylor
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161
| | - Kenshi Yamasaki
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161
| | - Katherine A Radek
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161
| | - Anna Di Nardo
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161
| | - Heidi Goodarzi
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161
| | - Douglas Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Bruce Beutler
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Richard L Gallo
- Division of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161.
| |
Collapse
|
261
|
Tarn WY. Cellular signals modulate alternative splicing. J Biomed Sci 2007; 14:517-22. [PMID: 17385059 DOI: 10.1007/s11373-007-9161-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022] Open
Abstract
Alternative splicing is a post-transcriptional mechanism that can substantially change the pattern of gene expression. Proper regulation of alternative splicing is important for cell physiology, and aberrant splicing may lead to clinical manifestations. Cellular signals or environmental stimuli can determine the outcome of alternative splicing through trans-acting splicing regulatory factors. Networks of signaling cascades may post-translationally modify these splicing factors, thereby altering their subcellular localization or activity and hence impacting pre-mRNA splicing. Moreover, some extracellular signals, mostly steroid hormones, may regulate alternative splicing through a transcription-coupled splicing mechanism. Nevertheless, further intensive investigation will be needed to fully understand the intricacies of signal-mediated alternative splicing control.
Collapse
Affiliation(s)
- Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
262
|
Affiliation(s)
- Stephen W Hunsucker
- Department of Pediatrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA
| | | | | |
Collapse
|
263
|
Abstract
Alternative splicing is a major source of diversity in the human proteome. The regulation of alternative splicingmodulates the composition of this diversity to fulfill the physiological requirements of a cell. When control of alternative splicing is disrupted, the result can be a failure to meet cellular and tissue requirements resulting in dysfunction and disease. There are several well-characterized examples in which disruption of alternative splicing is a cause of disease. Investigations into how the mis-regulation of alternative splicing causes disease complements investigations of normal regulatory processes and enhances our understanding of regulatory mechanisms in general Ultimately, an understanding of how alternative splicing is altered in disease will facilitate strategies directed at reversing or circumventing mis-regulated splicing events.
Collapse
|