251
|
Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:286-93. [PMID: 22012863 DOI: 10.1002/wrna.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular organisms are similar to biological communities, consisting of various cell types; thus, inter-cell communication is critical for the functioning of the whole system that ultimately constitutes a living being. Conventional models of cellular exchange include signaling molecules and direct contact-mediated cell communications. Exosomes, small vesicles originating from an inward budding of the plasma membrane, represent a new avenue for signaling between cells. This interchange is achieved by packaging RNA species into exosomes endowed with specific cell surface-targeting motifs. The delivered RNA molecules are functional, and mRNA can be translated into new proteins, while microRNAs (miRNAs) target host mRNAs in the recipient cell. RNA involved in transmitting information or molecules between cells is called exosomal RNA (esRNA). This review summarizes the characteristics of exosomes, specifically focusing on their role in the horizontal transfer of cellular information.
Collapse
Affiliation(s)
- Saraswathi Ramachandran
- Department of Craniofacial Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
252
|
Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD, Song E. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011; 10:117. [PMID: 21939504 PMCID: PMC3190352 DOI: 10.1186/1476-4598-10-117] [Citation(s) in RCA: 555] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are alternatively activated cells induced by interleukin-4 (IL-4)-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs) circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. RESULTS We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO) that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. CONCLUSIONS We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.
Collapse
Affiliation(s)
- Mei Yang
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Lee YH, Zhou H, Reiss JK, Yan X, Zhang L, Chia D, Wong DTW. Direct Saliva Transcriptome Analysis. Clin Chem 2011; 57:1295-302. [DOI: 10.1373/clinchem.2010.159210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Current standard operating procedures for salivary transcriptomic analysis require low temperatures and lengthy mRNA isolation, which substantially hamper its use in the clinic. We developed a streamlined, ambient-temperature processing, stabilization, and storage protocol for clinical analysis of salivary RNA.
METHODS
The direct saliva transcriptome analysis (DSTA) used cell-free saliva supernatant instead of isolated mRNA for saliva transcriptomic detection, and all procedures, including processing, stabilization, and storage of saliva samples, were performed at ambient temperature without a stabilizing reagent. We evaluated this streamlined protocol by comparing the mRNA expression levels of 3 saliva internal reference genes [glyceraldehyde-3-phosphate dehydrogenase (GAPDH); actin, beta (ACTB); and ribosomal protein S9 (RPS9)] to levels measured with standard procedures, and detecting the variation of their expression levels under long-term ambient temperature storage. The clinical utility of DSTA was assessed by use of 7 oral cancer salivary mRNA biomarkers in a clinical study.
RESULTS
Each saliva internal reference gene mRNA showed similar expression levels when assayed by the DSTA or standard procedures, and remained stable under ambient temperature storage for at least 10 weeks without significant degradation (P = 0.918, 0.288, and 0.242 for GAPDH, ACTB, and RPS9, respectively). Compared with standard procedures, the performance characteristics of oral cancer salivary transcriptomic markers were retained as assayed by DSTA after 10 weeks of storage at ambient temperature. These results indicate that the DSTA is a suitable alternative method for saliva transcriptomic analysis and is feasible for use in clinical cancer research applications.
CONCLUSIONS
The streamlined DSTA protocol can impact the saliva-handling method and improve the standard operating procedures for clinical saliva transcriptomic diagnostics.
Collapse
Affiliation(s)
| | - Hui Zhou
- School of Dentistry and Dental Research Institute
| | | | - Xinmin Yan
- School of Dentistry and Dental Research Institute
| | - Lei Zhang
- School of Dentistry and Dental Research Institute
| | - David Chia
- Department of Pathology and Laboratory Medicine
| | - David TW Wong
- School of Dentistry and Dental Research Institute
- Jonsson Comprehensive Cancer Center
- Molecular Biology Institute
- Division of Head and Neck Surgery and Otolaryngology, David Geffen School of Medicine
- Henry Samuel School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
254
|
Abstract
For the past two decades, salivary diagnostic approaches have been developed to monitor oral diseases such as periodontal diseases and to assess caries risk. Recently, the combination of emerging biotechnologies and salivary diagnostics has extended the range of saliva-based diagnostics from the oral cavity to the whole physiologic system as most compounds found in blood are also present in saliva. Accordingly, saliva can reflect the physiologic state of the body, including emotional, endocrinal, nutritional and metabolic variations and acts as a source for the monitoring of oral and also systemic health. This review presents an update on the status of saliva diagnostics and delves into their applications to the discovery of biomarkers for cancer detection and therapeutic applications. Translating scientific findings of nucleic acids, proteins and metabolites in body fluids to clinical applications is a cumbersome and challenging journey. Our research group is pursuing the biology of salivary analytes and the development of technologies for detection of distinct biomarkers with high sensitivity and specificity. The avenue of saliva diagnostics incorporating transcriptomic, proteomic and metabolomic findings will enable us to connect salivary molecular analytes to monitor therapies, therapeutic outcomes, and finally disease progression in cancer.
Collapse
Affiliation(s)
- N Spielmann
- School of Dentistry and Dental Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | | |
Collapse
|
255
|
Abstract
Abstract
On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.
Collapse
|
256
|
Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81:1171-82. [PMID: 21371441 DOI: 10.1016/j.bcp.2011.02.011] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022]
Abstract
Cell secretion is a general process involved in various biological responses. Exosomes are part of this process and have gained considerable scientific interest in the past five years. Several steps through investigations across the last 20 years can explain this interest. First characterized during reticulocyte maturation, they were next evidenced as a key player in the immune response and cancer immunotherapy. More recently they were reported as vectors of mRNAs, miRNAs and also lipid mediators able to act on target cells. They are the only type of vesicles released from an intracellular compartment from cells in viable conditions. They appear as a vectorized signaling system operating from inside a donor cell towards either the periphery, the cytosol, or possibly to the nucleus of target cells. Exosomes from normal cells trigger positive effects, whereas those from pathological ones, such as tumor cells or infected ones may trigger non-positive health effects. Therefore regulating the biogenesis and secretion of exosomes appear as a pharmacological challenge to intervene in various pathophysiologies. Exosome biogenesis and molecular content, interaction with target cells, utilisation as biomarkers, and functional effects in various pathophysiologies are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France.
| | | | | | | |
Collapse
|
257
|
Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 2011; 11:709-20. [PMID: 21241021 DOI: 10.1002/pmic.201000422] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/16/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
Exosomes are membranous vesicles released by cells in extracellular fluids: they have been found and analyzed in blood, urine, amniotic fluid, breast milk, seminal fluid, saliva and malignant effusions, besides conditioned media from different cell lines. Several recent papers show that exosome proteomes of different origin include both a common set of membrane and cytosolic proteins, and specific subsets of proteins, likely correlated to cell-type associated functions. This is particularly interesting in relation to their possible involvement in human diseases. The knowledge of exosome proteomics can help not only in understanding their biological roles but also in supplying new biomarkers to be searched for in patients' fluids. This review offers an overview of technical and analytical issues in exosome proteomics, and it highlights the significance of proteomic studies in terms of biological and clinical usefulness.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | |
Collapse
|
258
|
Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 2011; 9:9. [PMID: 21235781 PMCID: PMC3033821 DOI: 10.1186/1479-5876-9-9] [Citation(s) in RCA: 702] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/14/2011] [Indexed: 12/12/2022] Open
Abstract
Background Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages. Method Exosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy. Results RNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages. Conclusions Exosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Box 424, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
In all, 350,000 new cases of oral cancer are reported annually worldwide, 35,000 of these occur in the United States. For decades, the 5-year survival rate has remained low at only 60%, which is mainly due to cancer diagnosis at late and progressed stage. Using saliva as a diagnostic medium could be the key for early detection and thus improved survival rates. Among all salivary constituents, the transcriptome has turned out to be a highly promising biomarker source. So far, seven mRNA and two microRNA markers were found to be discriminatory in saliva of oral cancer patients. This review will give an overview on the field of salivary transcriptome research with focus on oral cancer detection as well as the translation of salivary diagnostics into clinical reality.
Collapse
|
260
|
Abstract
Salivary diagnostics is a dynamic and emerging field utilizing nanotechnology and molecular diagnostics to aid in the diagnosis of oral and systemic diseases. In this article the author critically reviews the latest advances using oral biomarkers for disease detection. The use of oral fluids is broadening perspectives in clinical diagnosis, disease monitoring, and decision making for patient care. Important elements determining the future possibilities and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Daniel Malamud
- Department of Basic Sciences, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
261
|
Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 2011; 728:235-46. [PMID: 21468952 DOI: 10.1007/978-1-61779-068-3_15] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While the existence of exosomes has been known for over three decades, they have garnered recent interest due to their potential diagnostic and therapeutic relevance. The expression and release of specific tumor-derived proteins into the peripheral circulation has served as the centerpiece of cancer screening and diagnosis. Recently, tissue-associated microRNA (miRNA) has been shown to be characteristic of tumor type and developmental origin, as well as exhibit diagnostic potential. Tumors actively release exosomes, exhibiting proteins and RNAs derived from the originating cell, into the peripheral circulation and other biologic fluids. Recently, we have demonstrated the presence of miRNAs within the RNA fraction of circulating tumor-derived exosomes. Currently, in over 75 investigations compiled in ExoCarta, over 2,300 proteins and 270 miRNAs have been linked with exosomes derived from biologic fluids. Our previous work has indicated that these circulating exosomal proteins and miRNAs can serve as surrogates for the tumor cell-associated counterparts, extending their diagnostic potential to asymptomatic individuals. In this chapter, we compare currently utilized methods for purifying exosomes for postisolation analyses. The exosomes derived from these approaches were assessed for quantity and quality of specific RNA populations and specific marker proteins. These results suggest that, while each method purifies exosomal material, circulating exosomes isolated by ExoQuick precipitation produces exosomal RNA and protein with greater purity and quantity than chromatography, ultracentrifugation, and DynaBeads. While this precipitation approach isolates exosomes in general and does not exhibit specificity for the originating cell, the increased quantity and quality of exosomal proteins and RNA should enhance the sensitivity and accuracy of down-stream analyses, such as qRT-PCR profiling of miRNA and mass spectrometric and electrophoretic analyses of exosomal proteins.
Collapse
Affiliation(s)
- Douglas D Taylor
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | | | | |
Collapse
|
262
|
Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2010; 33:419-40. [PMID: 21174094 DOI: 10.1007/s00281-010-0233-9] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 12/20/2022]
Abstract
To communicate, cells are known to release in their environment proteins which bind to receptors on surrounding cells. But cells also secrete more complex structures, called membrane vesicles, composed of a lipid bilayer with inserted transmembrane proteins, enclosing an internal content of hydrophilic components. Exosomes represent a specific subclass of such secreted membrane vesicles, which, despite having been described more than 20 years ago by two groups studying reticulocyte maturation, have only recently received attention from the scientific community. This renewed interest originated first from the description of exosome secretion by antigen-presenting cells, suggesting a potential role in immune responses, and very recently by the identification of the presence of RNA (both messenger and microRNA) in exosomes, suggesting a potential transfer of genetic information between cells. In this review, we will describe the conclusions of 20 years of studies on the immune properties of exosomes and the most recent advances on their roles and potential uses as markers or as therapeutic tools during pathologies, especially in cancer.
Collapse
Affiliation(s)
- Nathalie Chaput
- Institut National de la Santé et de la Recherche Médicale U1015, Villejuif, 94805, France
| | | |
Collapse
|
263
|
Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, Lötvall J. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 2010; 5:e15353. [PMID: 21179422 PMCID: PMC3003701 DOI: 10.1371/journal.pone.0015353] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/11/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress. CONCLUSIONS/SIGNIFICANCE These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus.
Collapse
Affiliation(s)
- Maria Eldh
- Krefting Research Centre, Dept. of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Ekström
- Krefting Research Centre, Dept. of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Sjöstrand
- Krefting Research Centre, Dept. of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bob Olsson
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Jernås
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Dept. of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
264
|
Lässer C, O'Neil SE, Ekerljung L, Ekström K, Sjöstrand M, Lötvall J. RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 2010; 25:89-93. [PMID: 21172122 DOI: 10.2500/ajra.2011.25.3573] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Exosomes are nanovesicles of endocytic origin released by cells and present in human body fluids such as plasma, breast milk, and bronchoalveolar lavage fluid. These vesicles take part in communication between cells. Recently, it was shown that exosomes contain both mRNA and microRNA. This RNA can be shuttled between cells (exosomal shuttle RNA), which is a new route of communication between cells. The aim of this study was to determine whether nasal secretions harbor exosomes and furthermore, whether these exosomes contain RNA. METHODS Human nasal lavage fluid (NLF) underwent centrifugation and filtration to discard cells and debris, followed by a final ultracentrifugation at 120,000 × g to pellet the exosomes. Exosomes were detected using electron microscopy (EM), flow cytometry, and Western blot. RNA was extracted and analyzed using a Bioanalyzer. RESULTS Exosomes were visualized as 40-80 nm, CD63(+) vesicles using EM. Flow cytometry of exosomes using anti-major histocompatibility complex class II beads revealed exosomes positive for the tetraspanins CD9, CD63, and CD81. Western blot confirmed the presence of exosomal protein and absence of proteins from the endoplasmic reticulum (ER), because the exosomes were positive for Tsg101, but negative for the ER marker, calnexin. Bioanalyzer analysis revealed that, these exosomes contain RNA. CONCLUSION This study shows for the first time that NLF contains exosomes and that these exosomes contain RNA. Further characterization of the exosomal RNA and proteins may provide important information about communication in the nose and potentially provide a source of biomarkers for upper airway diseases.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
265
|
Nanocharacterization in dentistry. Int J Mol Sci 2010; 11:2523-45. [PMID: 20640166 PMCID: PMC2904930 DOI: 10.3390/ijms11062523] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022] Open
Abstract
About 80% of US adults have some form of dental disease. There are a variety of new dental products available, ranging from implants to oral hygiene products that rely on nanoscale properties. Here, the application of AFM (Atomic Force Microscopy) and optical interferometry to a range of dentistry issues, including characterization of dental enamel, oral bacteria, biofilms and the role of surface proteins in biochemical and nanomechanical properties of bacterial adhesins, is reviewed. We also include studies of new products blocking dentine tubules to alleviate hypersensitivity; antimicrobial effects of mouthwash and characterizing nanoparticle coated dental implants. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented.
Collapse
|
266
|
Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, Brown D, Russo LM. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010; 78:191-9. [PMID: 20428099 DOI: 10.1038/ki.2010.106] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Urinary exosomes or microvesicles are being studied intensively to identify potential new biomarkers for renal disease. We sought to identify whether these microvesicles contain nucleic acids. We isolated microvesicles from human urine in the same density range as that previously described for urinary exosomes and found them to have an RNA integrity profile similar to that of kidney tissue, including 18S and 28S rRNA. This profile was better preserved in urinary microvesicles compared with whole cells isolated from urine, suggesting that microvesicles may protect RNA during urine passage. We were able to detect mRNA in the human urinary microvesicles encoding proteins from all regions of the nephron and the collecting duct. Further, to provide a proof of principle, we found that microvesicles isolated from the urine of the V-ATPase B1 subunit knockout mice lacked mRNA of this subunit while containing a normal amount of the B2 subunit and aquaporin 2. The microvesicles were found to be contaminated with extraneous DNA potentially on their surface; therefore, we developed a rapid and reliable means to isolate nucleic acids from within urine microvesicles devoid of this extraneous contamination. Our study provides an experimental strategy for the routine isolation and use of urinary microvesicles as a novel and non-invasive source of nucleic acids to further renal disease biomarker discovery.
Collapse
Affiliation(s)
- Kevin C Miranda
- Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|