251
|
Wong Y, Luk K, Purtell K, Nanni SB, Stoessl AJ, Trudeau LE, Yue Z, Krainc D, Oertel W, Obeso JA, Volpicelli-Daley L. Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals? Mov Disord 2019; 34:1406-1422. [PMID: 31483900 PMCID: PMC6879792 DOI: 10.1002/mds.27823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yvette Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Kerry Purtell
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - A. Jon Stoessl
- University of British Columbia and Vancouver Coastal Health, Pacific Parkinson’s Research Centre & National Parkinson Foundation Centre of Excellence, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wolfgang Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Jose A. Obeso
- HM CINAC, HM Puerta del Sur, Hospitales de Madrid, Mostoles Medical School, CEU-San Pablo University, and CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Laura Volpicelli-Daley
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
252
|
Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J, Pearson JA, Park EJ, Dam K, Acehan D, Ramos-Espiritu LS, Wang W, Zhang J, Shim JW, Ciceri G, Brichta L, Studer L, Greengard P. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell 2019; 25:514-530.e8. [PMID: 31543366 DOI: 10.1016/j.stem.2019.08.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a mechanism used by mitotic cells to prevent uncontrolled cell division. As senescent cells persist in tissues, they cause local inflammation and are harmful to surrounding cells, contributing to aging. Generally, neurodegenerative diseases, such as Parkinson's, are disorders of aging. The contribution of cellular senescence to neurodegeneration is still unclear. SATB1 is a DNA binding protein associated with Parkinson's disease. We report that SATB1 prevents cellular senescence in post-mitotic dopaminergic neurons. Loss of SATB1 causes activation of a cellular senescence transcriptional program in dopamine neurons both in human stem cell-derived dopaminergic neurons and in mice. We observed phenotypes that are central to cellular senescence in SATB1 knockout dopamine neurons in vitro and in vivo. Moreover, we found that SATB1 directly represses expression of the pro-senescence factor p21 in dopaminergic neurons. Our data implicate senescence of dopamine neurons as a contributing factor in the pathology of Parkinson's disease.
Collapse
Affiliation(s)
- Markus Riessland
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jordan A Pearson
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Emily J Park
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Kevin Dam
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Devrim Acehan
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Lavoisier S Ramos-Espiritu
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Wei Wang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jack Zhang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Korea
| | - Gabriele Ciceri
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - Lars Brichta
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA.
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| |
Collapse
|
253
|
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. [PMID: 31327002 PMCID: PMC6736046 DOI: 10.1093/brain/awz193] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience, Free University Berlin, Berlin, Germany
| | - Maria C G Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, Medical School of the University of São Paulo, Brazil
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | | | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milan, Italy
| | - Clare Loane
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Max C Keuken
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience research unit, Amsterdam, The Netherlands
- University of Leiden, Cognitive Psychology, Leiden, The Netherlands
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Falk Lüsebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Klaus Fliessbach
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Raymond Dolan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing, University College London, UK
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Kamil Uludag
- Centre for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Helmut Heinsen
- University of São Paulo Medical School, São Paulo, Brazil
- Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- University of São Paulo Medical School, São Paulo, Brazil
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi I L Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
254
|
Nissen SK, Shrivastava K, Schulte C, Otzen DE, Goldeck D, Berg D, Møller HJ, Maetzler W, Romero-Ramos M. Alterations in Blood Monocyte Functions in Parkinson's Disease. Mov Disord 2019; 34:1711-1721. [PMID: 31449711 DOI: 10.1002/mds.27815] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PD is a multisystem disease where both central and peripheral nervous systems are affected. This systemic involvement also includes the immune response in PD, which implicates not only microglia in the brain, but also peripheral immune cells, such as monocytes; however, this aspect has been understudied. OBJECTIVES The purpose of this study was to investigate the PD-related changes in peripheral immune cells, their responsiveness to stimulation, and their ability to release immunomodulatory molecules that might have consequences for the disease progression. METHODS Using flow cytometry, we investigated the monocytic population in peripheral blood mononuclear cells from PD patients and healthy individuals. We also evaluated the in vitro response to inflammogen lipopolysaccharides and to fibrillar α-synuclein by measuring the expression of CD14, CD163, and HLA-DR and by analysis of soluble immune-related molecules in the supernatant. RESULTS Peripheral blood immune cells from PD patients had lower survival in culture, but showed a higher monocytic proliferative ability than control cells, which was correlated with shorter disease duration and late disease onset. In addition, PD patients' cells were less responsive to stimulation, as shown by the lack of changes in CD163 and CD14 expression, and by the absence of significant upregulation of anti-inflammatory cytokines in culture. Moreover, PD peripheral immune cells shed lower in vitro levels of soluble CD163, which suggests a less responsive monocytic population and/or an activation status different from control cells. Interestingly, some of the results were sex associated, supporting a differential immune response in females versus males. CONCLUSIONS Our data suggest that PD involves monocytic changes in blood. These cells show reduced viability and are unresponsive to specific stimuli, which might have a relevant consequence for disease progression. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen & German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology and Genetics & iNANO, Aarhus University, Aarhus, Denmark
| | - David Goldeck
- Department of Internal Medicine II, Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | | |
Collapse
|
255
|
Giguère N, Delignat-Lavaud B, Herborg F, Voisin A, Li Y, Jacquemet V, Anand-Srivastava M, Gether U, Giros B, Trudeau LÉ. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet 2019; 15:e1008352. [PMID: 31449520 PMCID: PMC6730950 DOI: 10.1371/journal.pgen.1008352] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/06/2019] [Accepted: 08/07/2019] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Rare genetic mutations in genes such as Parkin, Pink1, DJ-1, α-synuclein, LRRK2 and GBA are found to be responsible for the disease in about 15% of the cases. A key unanswered question in PD pathophysiology is why would these mutations, impacting basic cellular processes such as mitochondrial function and neurotransmission, lead to selective degeneration of SNc DA neurons? We previously showed in vitro that SNc DA neurons have an extremely high rate of mitochondrial oxidative phosphorylation and ATP production, characteristics that appear to be the result of their highly complex axonal arborization. To test the hypothesis in vivo that axon arborization size is a key determinant of vulnerability, we selectively labeled SNc or VTA DA neurons using floxed YFP viral injections in DAT-cre mice and showed that SNc DA neurons have a much more arborized axon than those of the VTA. To further enhance this difference, which may represent a limiting factor in the basal vulnerability of these neurons, we selectively deleted in mice the DA D2 receptor (D2-cKO), a key negative regulator of the axonal arbour of DA neurons. In these mice, SNc DA neurons have a 2-fold larger axonal arborization, release less DA and are more vulnerable to a 6-OHDA lesion, but not to α-synuclein overexpression when compared to control SNc DA neurons. This work adds to the accumulating evidence that the axonal arborization size of SNc DA neurons plays a key role in their vulnerability in the context of PD. Parkinson’s disease motor symptoms have been linked to age-dependent degeneration of a class of neurons in the brain that release the chemical messenger dopamine. The reason for the selective loss of these neurons represents a key unsolved mystery. One hypothesis is that the neurons most at risk in this disease are those with the most extensive and complex connectivity in the brain, which would make these cells most dependent on high rates of mitochondrial energy production and expose them to higher rates of oxidative stress. Here we selectively deleted in dopamine neurons a key gene providing negative feedback control of the axonal arbor size of these neurons, in the objective of producing mice in which dopamine neurons have more extensive connectivity. We found that deletion of the dopamine D2 receptor gene in dopamine neurons leads to dopamine neurons with a longer and more complex axonal domain. We also found that in these mice, dopamine neurons in a region of the brain called the substantia nigra show increased vulnerability to a neurotoxin often used to model Parkinson’s disease in rodents. Our findings provide support for the hypothesis that the scale of a neuron’s connectivity directly influences its vulnerability to cellular stressors that trigger Parkinson’s disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Benoît Delignat-Lavaud
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aurore Voisin
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Yuan Li
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Research Center of the Hôpital de Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Madhu Anand-Srivastava
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Giros
- Department of Psychiatry, McGill University Faculty of Medicine, Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Louis-Éric Trudeau
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
256
|
Kuznetsov IA, Kuznetsov AV. Modelling transport and mean age of dense core vesicles in large axonal arbours. Proc Math Phys Eng Sci 2019; 475:20190284. [PMID: 31534430 PMCID: PMC6735487 DOI: 10.1098/rspa.2019.0284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/19/2019] [Indexed: 10/14/2023] Open
Abstract
A model simulating the transport of dense core vesicles (DCVs) in type II axonal terminals of Drosophila motoneurons has been developed. The morphology of type II terminals is characterized by the large number of en passant boutons. The lack of both scaled-up DCV transport and scaled-down DCV capture in boutons results in a less efficient supply of DCVs to distal boutons. Furthermore, the large number of boutons that DCVs pass as they move anterogradely until they reach the most distal bouton may lead to the capture of a majority of DCVs before they turn around in the most distal bouton to move in the retrograde direction. This may lead to a reduced retrograde flux of DCVs and a lack of DCV circulation in type II terminals. The developed model simulates DCV concentrations in boutons, DCV fluxes between the boutons, age density distributions of DCVs and the mean age of DCVs in various boutons. Unlike published experimental observations, our model predicts DCV circulation in type II terminals after these terminals are filled to saturation. This disagreement is likely because experimentally observed terminals were not at steady state, but rather were accumulating DCVs for later release. Our estimates show that the number of DCVs in the transiting state is much smaller than that in the resident state. DCVs travelling in the axon, rather than DCVs transiting in the terminal, may provide a reserve of DCVs for replenishing boutons after a release. The techniques for modelling transport of DCVs developed in our paper can be used to model the transport of other organelles in axons.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
257
|
Oertel WH, Henrich MT, Janzen A, Geibl FF. The locus coeruleus: Another vulnerability target in Parkinson's disease. Mov Disord 2019; 34:1423-1429. [DOI: 10.1002/mds.27785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | - Annette Janzen
- Department of Neurology Philipps University Marburg Marburg Germany
| | - Fanni F. Geibl
- Department of Neurology Philipps University Marburg Marburg Germany
| |
Collapse
|
258
|
Hernandez-Baltazar D, Nadella R, Mireya Zavala-Flores L, Rosas-Jarquin CDJ, Rovirosa-Hernandez MDJ, Villanueva-Olivo A. Four main therapeutic keys for Parkinson's disease: A mini review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:716-721. [PMID: 32373291 PMCID: PMC7196346 DOI: 10.22038/ijbms.2019.33659.8025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions. The progressive degeneration of dopamine-producing neurons that are present in the substantia nigra pars compacta (SNpc) has been the main focus of study and PD therapies since ages. MATERIALS AND METHODS In this manuscript, a systematic revision of experimental and clinical evidence of PD-associated cell process was conducted. RESULTS Classically, the damage in the dopaminergic neuronal circuits of SNpc is favored by reactive oxidative/nitrosative stress, leading to cell death. Interestingly, the therapy for PD has only focused on avoiding the symptom progression but not in finding a complete reversion of the disease. Recent evidence suggests that the renin-angiotensin system imbalance and neuroinflammation are the main keys in the progression of experimental PD. CONCLUSION The progression of neurodegeneration in SNpc is due to the complex interaction of multiple processes. In this review, we analyzed the main contribution of four cellular processes and discussed in the perspective of novel experimental approaches.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID:1840; India
| | | | | | | | | |
Collapse
|
259
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
260
|
Dopaminergic Vulnerability in Parkinson Disease: The Cost of Humans’ Habitual Performance. Trends Neurosci 2019; 42:375-383. [DOI: 10.1016/j.tins.2019.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
|
261
|
Díaz M, Luis-Amaro AC, Rodriguez Barreto D, Casañas-Sánchez V, Pérez JA, Marin R. Lipostatic Mechanisms Preserving Cerebellar Lipids in MPTP-Treated Mice: Focus on Membrane Microdomains and Lipid-Related Gene Expression. Front Mol Neurosci 2019; 12:93. [PMID: 31105522 PMCID: PMC6491966 DOI: 10.3389/fnmol.2019.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
The cerebellum is an essential component in the control of motor patterns. Despite dramatic alteration of basal ganglia morpho-functionality in Parkinson's disease (PD), cerebellar function appears to be unaffected by the disease. Only recently this brain structure has been proposed to play compensatory roles in PD-induced motor dysfunction, particularly during the initial asymptomatic stages of PD. In PD subjects and animal models of PD, such as MPTP-treated mice, brain structures other than basal ganglia are also affected by the disease, including cortical areas not involved in motor control. Thus, it is noteworthy that the cerebellum remains unaffected. In the present study, we have analyzed the lipid composition of membrane microdomains [lipid rafts (LR) and non-raft domains] and assessed the expression levels of genes encoding enzymes synthesizing membrane-related lipids. The outcomes revealed that membrane domain lipids in cerebellum are highly preserved both in control and MPTP-treated mice as compared to control animals. Likewise, only small, mostly not significant, changes were observed in the expression of lipid-related genes in the cerebellum. Indeed, most changes were related to aging rather than to the exposure to the neurotoxin. Conversely, in the same animals, lipid composition, and gene expression were dramatically altered in the occipital cortex (OC), a brain area unrelated to the control of motor function. PCR and immunohistochemical analyses of both brain areas revealed that dopamine transporter (DAT) mRNA and protein were expressed in OC but not in the cerebellum. As MPTP neurotoxicity requires the expression of DAT to access intracellular compartments, we hypothesized that the absence of DAT in cerebellum hampers MPTP-induced toxicity. We conclude that cerebellum is endowed with efficient mechanisms to preserve nerve cell lipid homeostasis, which greatly maintain the stability of membrane microdomains involved in synaptic transmission, signal transduction, and intercellular communication, which together may participate in the compensatory role of the cerebellum in PD symptomatology.
Collapse
Affiliation(s)
- Mario Díaz
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
| | - Ana Canerina Luis-Amaro
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Deiene Rodriguez Barreto
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Verónica Casañas-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José A. Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marin
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
262
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamin, oxidativer Stress und Protein‐Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Enrico Monzani
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| | | | | | | | | | - Fabio A. Zucca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
| | - Eugene V. Mosharov
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - David Sulzer
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - Luigi Zecca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
| | - Luigi Casella
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| |
Collapse
|
263
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl 2019; 58:6512-6527. [PMID: 30536578 DOI: 10.1002/anie.201811122] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best-studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox-active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post-translational protein modification. Thus, protein-quinone modification is a heterogeneous process involving multiple DA-derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.
Collapse
Affiliation(s)
- Enrico Monzani
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Stefania Nicolis
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | | | | | - Chiara Bacchella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA.,Departments of Neurology and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy.,Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Luigi Casella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
264
|
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019; 13:11. [PMID: 30858799 PMCID: PMC6397878 DOI: 10.3389/fncir.2019.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). Although many mechanisms have been suggested, a decisive root cause of this cell loss is unknown. A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress' variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model.
Collapse
Affiliation(s)
| | - Alekhya Mandali
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT-Madras, Chennai, India
| | | |
Collapse
|
265
|
Blesa J, Vila M. Parkinson disease, substantia nigra vulnerability, and calbindin expression: Enlightening the darkness? Mov Disord 2019; 34:161-163. [PMID: 30675930 DOI: 10.1002/mds.27618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain.,CIBERNED, Instituto Carlos III, Spain
| | - Miquel Vila
- CIBERNED, Instituto Carlos III, Spain.,Vall d'Hebron Research Institute-Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
266
|
Recalibrating the Relevance of Adult Neurogenesis. Trends Neurosci 2019; 42:164-178. [PMID: 30686490 DOI: 10.1016/j.tins.2018.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Conflicting reports about whether adult hippocampal neurogenesis occurs in humans raise questions about its significance for human health and the relevance of animal models. Drawing upon published data, I review species' neurogenesis rates across the lifespan and propose that accelerated neurodevelopmental timing is consistent with lower rates of neurogenesis in adult primates and humans. Nonetheless, protracted neurogenesis may produce populations of neurons that retain plastic properties for long intervals, and have distinct functions depending on when in the lifespan they were born. With some conceptual recalibration we may therefore be able to reconcile seemingly disparate findings and continue to ask how adult neurogenesis, as studied in animals, is relevant for human health.
Collapse
|
267
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
268
|
Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019; 59:263-289. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) mainly arise from degeneration of dopamine neurons within the substantia nigra. As no disease-modifying PD therapies are available, and side effects limit long-term benefits of current symptomatic therapies, novel treatment approaches are needed. The ongoing phase III clinical study STEADY-PD is investigating the potential of the dihydropyridine isradipine, an L-type Ca2+ channel (LTCC) blocker, for neuroprotective PD therapy. Here we review the clinical and preclinical rationale for this trial and discuss potential reasons for the ambiguous outcomes of in vivo animal model studies that address PD-protective dihydropyridine effects. We summarize current views about the roles of Cav1.2 and Cav1.3 LTCC isoforms for substantia nigra neuron function, and their high vulnerability to degenerative stressors, and for PD pathophysiology. We discuss different dihydropyridine sensitivities of LTCC isoforms in view of their potential as drug targets for PD neuroprotection, and we conclude by considering how these aspects could guide further drug development.
Collapse
Affiliation(s)
- Birgit Liss
- Institut für Angewandte Physiologie, Universität Ulm, 89081 Ulm, Germany;
| | - Jörg Striessnig
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, and Center for Molecular Biosciences Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
269
|
Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19123743. [PMID: 30477246 PMCID: PMC6321180 DOI: 10.3390/ijms19123743] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 12/18/2022] Open
Abstract
Wingless-type mouse mammary tumor virus (MMTV) integration site (Wnt) signaling is one of the most critical pathways in developing and adult tissues. In the brain, Wnt signaling contributes to different neurodevelopmental aspects ranging from differentiation to axonal extension, synapse formation, neurogenesis, and neuroprotection. Canonical Wnt signaling is mediated mainly by the multifunctional β-catenin protein which is a potent co-activator of transcription factors such as lymphoid enhancer factor (LEF) and T-cell factor (TCF). Accumulating evidence points to dysregulation of Wnt/β-catenin signaling in major neurodegenerative disorders. This review highlights a Wnt/β-catenin/glial connection in Parkinson's disease (PD), the most common movement disorder characterized by the selective death of midbrain dopaminergic (mDAergic) neuronal cell bodies in the subtantia nigra pars compacta (SNpc) and gliosis. Major findings of the last decade document that Wnt/β-catenin signaling in partnership with glial cells is critically involved in each step and at every level in the regulation of nigrostriatal DAergic neuronal health, protection, and regeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, focusing on Wnt/β-catenin signaling to boost a full neurorestorative program in PD.
Collapse
|