3151
|
Abstract
Circular RNAs (circRNAs) are highly abundant and evolutionarily conserved non-coding RNAs produced by circularization of specific exons. Since their re-discovery as potential regulators of gene expression, thousands of circRNAs were detected in different tissues and cell types across most organisms. Accumulating data suggest key roles for them in the central nervous system. Neuronal-expressed RNAs are diverted to yield highly enriched CircRNAs in human, mouse, pig and flies, with many of them enriched in neuronal tissues. CircRNA levels are dynamically modulated in neurons, both during differentiation and following bursts of electrical activity, and accumulate with age, and many of them are enriched in synapses. Together, available data suggest that circRNAs have important roles in synaptic plasticity and neuronal function. This review covers current advances in the field and lays out hypotheses regarding functions of circRNAs in the brain as well as their putative involvement in initiation and progression of neurodegenerative processes.
Collapse
Affiliation(s)
- Mor Hanan
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| | - Hermona Soreq
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel.,b The Edmond and Lily Safra Center for Brain Sciences , The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| | - Sebastian Kadener
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| |
Collapse
|
3152
|
Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep 2016; 6:37982. [PMID: 27892494 PMCID: PMC5125100 DOI: 10.1038/srep37982] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/01/2016] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown that circular RNAs (circRNAs) are abundant, widely expressed in mammals, and can display cell-type specific expression. However, how production of circRNAs is regulated and their precise biological function remains largely unknown. To study how circRNAs might be regulated during colorectal cancer progression, we used three isogenic colon cancer cell lines that differ only in KRAS mutation status. Cellular RNAs from the parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically-matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only) were analyzed using RNA-Seq. We developed a bioinformatics pipeline to identify and evaluate circRNA candidates from RNA-Seq data. Hundreds of high-quality circRNA candidates were identified in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in DLD-1 and DKO-1 cells compared to DKs-8 cells, indicating a widespread effect of mutant KRAS on circRNA abundance. This finding was confirmed in two independent colon cancer cell lines HCT116 (KRAS mutant) and HKe3 (KRAS WT). In all three cell lines, circRNAs were also found in secreted extracellular-vesicles, and circRNAs were more abundant in exosomes than cells. Our results suggest that circRNAs may serve as promising cancer biomarkers.
Collapse
|
3153
|
Frigault JJ, Morin MD, Morin PJ. Differential expression and emerging functions of non-coding RNAs in cold adaptation. J Comp Physiol B 2016; 187:19-28. [PMID: 27866230 DOI: 10.1007/s00360-016-1049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.
Collapse
Affiliation(s)
- Jacques J Frigault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Mathieu D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
3154
|
Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study. Int J Genomics 2016; 2016:4503840. [PMID: 27965971 PMCID: PMC5124670 DOI: 10.1155/2016/4503840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The recent advantage obtained by next generation sequencing allows a depth investigation of a new “old” kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert.
Collapse
|
3155
|
Abstract
Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs.
Collapse
Affiliation(s)
| | | | - Niles Lehman
- c Department of Chemistry , Portland State University , Portland OR , 97207 USA
| | - Henri Orland
- d Institut de Physique Théorique, Commissariat à l'énergie atomique CEA, IPhT CNRS, UMR3681 , F-91191 Gif-sur-Yvette France.,e Beijing Computational Science Research Center , Haidian District Beijing , 100084 , China
| | | |
Collapse
|
3156
|
Abstract
Vast parts of mammalian genomes encode for transcripts that are not further translated into proteins. The purpose of the majority of such noncoding ribonucleic acids (RNAs) remained paradoxical for a long time. However, a growing body of evidence demonstrates that long noncoding RNAs are dynamically expressed in different cell types, diseases, or developmental stages to execute a wide variety of regulatory roles at virtually every step of gene expression and translation. Indeed, long noncoding RNAs influence gene expression via epigenetic modulations, through regulating alternative splicing, or by acting as molecular sponges. The abundance of long noncoding RNAs in the cardiovascular system indicates that they may be part of a complex regulatory network governing physiology and pathology of the heart. In this review, we discuss the multifaceted functions of long noncoding RNAs and highlight the current literature with an emphasis on cardiac development and disease. Furthermore, as the enormous spectrum of long noncoding RNAs potentially opens up new avenues for diagnosis and prevention of heart failure, we ultimately evaluate the futuristic prospects of long noncoding RNAs as biomarkers, and therapeutic targets for the treatment of cardiovascular disorders, as well.
Collapse
Affiliation(s)
- Christian Bär
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- From Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3157
|
Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: the Emerging Class of Non-coding RNAs and Their Potential Role in Human Neurodegenerative Diseases. Mol Neurobiol 2016; 54:7224-7234. [PMID: 27796758 DOI: 10.1007/s12035-016-0213-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
The exciting world of research with RNAs has to its credit some breakthrough findings that led to newer insights on multiple problems including that of human diseases. After the advent of siRNA, microRNA, and lncRNA, exciting novel molecules called circular RNAs (circRNAs) have been recently described. circRNAs are a class of non-coding RNAs, which are produced by scrambling of exons at the time of splicing. They are primarily produced in the brain region and are naturally present inside the cell. The best known ones so far include a particular type of circRNA namely "circular RNA sponge for miR-7" (ciRS-7 and CDR1as) which is the inhibitor of miR-7 microRNA-known to regulate various diseases like, cancer, neurodegenerative diseases, diabetes, and atherosclerosis. Similarly, another circRNA molecule called circmbl modulates the ratio of linear mRNA by competing with linear muscleblind gene through which it is synthesized. Considering the complex association of these molecules with critical microRNAs and gene families, circRNAs might have important roles in the cause and progression of human diseases. In particular, the multi-factorial nature of neurodegenerative diseases does warrant studies employing novel approaches towards identifying underlying root causes of these ailments. The non-coding RNAs, like circRNAs and microRNAs, could well present a common genetic trigger to multiple factors associated with neurodegenerative diseases. A specific fingerprint of a combination of various marker circRNAs could be explored for early diagnostic purpose as well. Herein, we review the possibility of exploring the role of circRNAs in the context of the central nervous system (CNS) and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Lalit Kumar
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Shamsuzzama
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Rizwanul Haque
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Tanvi Baghel
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226 031, India.
| |
Collapse
|
3158
|
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 2016; 13:34-42. [PMID: 26669964 DOI: 10.1080/15476286.2015.1128065] [Citation(s) in RCA: 897] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) are widely expressed in animal cells, but their biogenesis and functions are poorly understood. CircRNAs have been shown to act as sponges for miRNAs and may also potentially sponge RNA-binding proteins (RBPs) and are thus predicted to function as robust posttranscriptional regulators of gene expression. The joint analysis of large-scale transcriptome data coupled with computational analyses represents a powerful approach to elucidate possible biological roles of ribonucleoprotein (RNP) complexes. Here, we present a new web tool, CircInteractome (circRNA interactome), for mapping RBP- and miRNA-binding sites on human circRNAs. CircInteractome searches public circRNA, miRNA, and RBP databases to provide bioinformatic analyses of binding sites on circRNAs and additionally analyzes miRNA and RBP sites on junction and junction-flanking sequences. CircInteractome also allows the user the ability to (1) identify potential circRNAs which can act as RBP sponges, (2) design junction-spanning primers for specific detection of circRNAs of interest, (3) design siRNAs for circRNA silencing, and (4) identify potential internal ribosomal entry sites (IRES). In sum, the web tool CircInteractome, freely accessible at http://circinteractome.nia.nih.gov, facilitates the analysis of circRNAs and circRNP biology.
Collapse
Affiliation(s)
- Dawood B Dudekula
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Amaresh C Panda
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Ioannis Grammatikakis
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Supriyo De
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Kotb Abdelmohsen
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| |
Collapse
|
3159
|
Ye CY, Zhang X, Chu Q, Liu C, Yu Y, Jiang W, Zhu QH, Fan L, Guo L. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 2016; 14:1055-1063. [PMID: 27739910 DOI: 10.1080/15476286.2016.1245268] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Circular RNAs (circRNAs) have been identified in diverse eukaryotic species and are characterized by RNA backsplicing events. Current available methods for circRNA identification are able to determine the start and end locations of circRNAs in the genome but not their full-length sequences. In this study, we developed a method to assemble the full-length sequences of circRNAs using the backsplicing RNA-Seq reads and their corresponding paired-end reads. By applying the method to an rRNA-depleted/RNase R-treated RNA-Seq dataset, we for the first time identified full-length sequences of nearly 3,000 circRNAs in rice. We further showed that alternative circularization of circRNA is a common feature in rice and, surprisingly, found that the junction sites of a large number of rice circRNAs are flanked by diverse non-GT/AG splicing signals while most human exonic circRNAs are flanked by canonical GT/AG splicing signals. Our study provides a method for genome-wide identification of full-length circRNAs and expands our understanding of splicing signals of circRNAs.
Collapse
Affiliation(s)
- Chu-Yu Ye
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Xingchen Zhang
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Qinjie Chu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Chen Liu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Yongyi Yu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Weiqin Jiang
- c The First Affiliated Hospital, Zhejiang University , Hangzhou , China
| | - Qian-Hao Zhu
- d CSIRO Agriculture and Food, Black Mountain Laboratories , Canberra , Australia
| | - Longjiang Fan
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China.,b Institute of Bioinformatics, Zhejiang University , Hangzhou , China
| | - Longbiao Guo
- e China National Rice Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou , China
| |
Collapse
|
3160
|
Bonizzato A, Gaffo E, te Kronnie G, Bortoluzzi S. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J 2016; 6:e483. [PMID: 27740630 PMCID: PMC5098259 DOI: 10.1038/bcj.2016.81] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Cell states in hematopoiesis are controlled by master regulators and by complex circuits of a growing family of RNA species impacting cell phenotype maintenance and plasticity. Circular RNAs (circRNAs) are rapidly gaining the status of particularly stable transcriptome members with distinctive qualities. RNA-seq identified thousands of circRNAs with developmental stage- and tissue-specific expression corroborating earlier suggestions that circular isoforms are a natural feature of the cell expression program. CircRNAs are abundantly expressed also in the hematopoietic compartment. There are a number of studies on circRNAs in blood cells, a specific overview is however lacking. In this review we first present current insight in circRNA biogenesis discussing the relevance for hematopoiesis of the highly interleaved processes of splicing and circRNA biogenesis. Regarding molecular functions circRNAs modulate host gene expression, but also compete for binding of microRNAs, RNA-binding proteins or translation initiation and participate in regulatory circuits. We examine circRNA expression in the hematopoietic compartment and in hematologic malignancies and review the recent breakthrough study that identified pathogenic circRNAs derived from leukemia fusion genes. CircRNA high and regulated expression in blood cell types indicate that further studies are warranted to inform the position of these regulators in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- A Bonizzato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - E Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - S Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3161
|
Koh W, Gonzalez V, Natarajan S, Carter R, Brown PO, Gawad C. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells. PLoS One 2016; 11:e0164085. [PMID: 27736885 PMCID: PMC5063410 DOI: 10.1371/journal.pone.0164085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology.
Collapse
Affiliation(s)
- Winston Koh
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, 94305, United States of America
| | - Veronica Gonzalez
- Departments of Oncology and Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Sivaraman Natarajan
- Departments of Oncology and Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Robert Carter
- Departments of Oncology and Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Patrick O. Brown
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, United States of America
| | - Charles Gawad
- Departments of Oncology and Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
- * E-mail:
| |
Collapse
|
3162
|
Suzuki H, Aoki Y, Kameyama T, Saito T, Masuda S, Tanihata J, Nagata T, Mayeda A, Takeda S, Tsukahara T. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot. Int J Mol Sci 2016; 17:ijms17101722. [PMID: 27754374 PMCID: PMC5085753 DOI: 10.3390/ijms17101722] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45–55 of the DMD gene, might improve patients’ symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45–55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44–56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5′ splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan.
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| | - Toshiki Kameyama
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| | - Satoru Masuda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyoku, Tokyo 113-0034, Japan.
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan.
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
3163
|
Sun X, Wang L, Ding J, Wang Y, Wang J, Zhang X, Che Y, Liu Z, Zhang X, Ye J, Wang J, Sablok G, Deng Z, Zhao H. Integrative analysis of Arabidopsis thaliana
transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 2016; 590:3510-3516. [DOI: 10.1002/1873-3468.12440] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyong Sun
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Lin Wang
- Department of Plant Pathology; Nanjing Agricultural University; China
| | - Jiechao Ding
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Yanru Wang
- Department of Plant Pathology; Nanjing Agricultural University; China
| | - Jiansheng Wang
- Department of Plant Pathology; Nanjing Agricultural University; China
| | - Xiaoyang Zhang
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Yulei Che
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Ziwei Liu
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Xinran Zhang
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Jiazhen Ye
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Jie Wang
- Agricultural Big-Data Research Center; College of Information Science and Engineering; Shandong Agricultural University; Taian China
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3); University of Technology Sydney; Broadway NSW Australia
| | - Zhiping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - Hongwei Zhao
- Department of Plant Pathology; Nanjing Agricultural University; China
| |
Collapse
|
3164
|
Jin X, Feng CY, Xiang Z, Chen YP, Li YM. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget 2016; 7:66455-66467. [PMID: 27677588 PMCID: PMC5341813 DOI: 10.18632/oncotarget.12186] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as "miRNA sponge". Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH.
Collapse
Affiliation(s)
- Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun-yan Feng
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zun Xiang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - You-ming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3165
|
circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 2016; 6:34985. [PMID: 27725737 PMCID: PMC5057092 DOI: 10.1038/srep34985] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
It has been known that circular RNAs are widely expressed in human tissues and cells, and play important regulatory roles in physiological or pathological processes. However, there is lack of comprehensively annotated human circular RNAs database. In this study we established a circRNA database, named as circRNADb, containing 32,914 human exonic circRNAs carefully selected from diversified sources. The detailed information of the circRNA, including genomic information, exon splicing, genome sequence, internal ribosome entry site (IRES), open reading frame (ORF) and references were provided in circRNADb. In addition, circRNAs were found to be able to encode proteins, which have not been reported in any species. 16328 circRNAs were annotated to have ORF longer than 100 amino acids, of which 7170 have IRES elements. 46 circRNAs from 37 genes were found to have their corresponding proteins expressed according mass spectrometry. The database provides the function of data search, browse, download, submit and feedback for the user to study particular circular RNA of interest and update the database continually. circRNADb will be built to be a biological information platform for circRNA molecules and related biological functions in the future. The database can be freely available through the web server at http://reprod.njmu.edu.cn/circrnadb.
Collapse
|
3166
|
Abstract
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs characterized by the presence of a covalent bond linking the 3' and 5' ends generated by backsplicing. In this review, we summarize a number of the latest theories regarding the biogenesis, properties and functions of circRNAs. Specifically, we focus on the advancing characteristics and functions of circRNAs in the brain and neurological diseases. CircRNAs exhibit the characteristics of species conservation, abundance and tissue/developmental-stage-specific expression in the brain. We also describe the relationship between circRNAs and several neurological diseases and highlight their functions in neurological diseases.
Collapse
Affiliation(s)
- Tao-Ran Li
- a Department of Neurology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou University , Zhengzhou , PR. China.,b Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR. China ; China National Clinical Research Center for Neurological Diseases , Beijing , PR. China
| | - Yan-Jie Jia
- a Department of Neurology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou University , Zhengzhou , PR. China
| | - Qun Wang
- b Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR. China ; China National Clinical Research Center for Neurological Diseases , Beijing , PR. China
| | - Xiao-Qiu Shao
- b Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR. China ; China National Clinical Research Center for Neurological Diseases , Beijing , PR. China
| | - Rui-Juan Lv
- b Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR. China ; China National Clinical Research Center for Neurological Diseases , Beijing , PR. China
| |
Collapse
|
3167
|
Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat Struct Mol Biol 2016; 23:1011-1019. [DOI: 10.1038/nsmb.3302] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
|
3168
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
3169
|
Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun 2016; 479:132-138. [DOI: 10.1016/j.bbrc.2016.07.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/17/2023]
|
3170
|
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2016; 96:1297-1325. [PMID: 27535639 DOI: 10.1152/physrev.00041.2015] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
3171
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
3172
|
Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R, Gorospe M. Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY) 2016; 7:903-10. [PMID: 26546448 PMCID: PMC4694061 DOI: 10.18632/aging.100834] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circular RNAs (circRNAs) have been identified in numerous species, including human, mouse, nematode, and coelacanth. They are believed to function as regulators of gene expression at least in part by sponging microRNAs. Here, we describe the identification of circRNAs in monkey (Rhesus macaque) skeletal muscle. RNA sequencing analysis was employed to identify and annotate ∼12,000 circRNAs, including numerous circular intronic RNAs (ciRNAs), from skeletal muscle of monkeys of a range of ages. Reverse transcription followed by real-time quantitative (q)PCR analysis verified the presence of these circRNAs, including the existence of several highly abundant circRNAs, and the differential abundance of a subset of circRNAs as a function of age. Taken together, our study has documented systematically circRNAs expressed in skeletal muscle and has identified circRNAs differentially abundant with advancing muscle age. We propose that some of these circRNAs might influence muscle function.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jun Ding
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
3173
|
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 2016; 238:42-51. [PMID: 27671698 DOI: 10.1016/j.jbiotec.2016.09.011] [Citation(s) in RCA: 597] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that are involved in transcriptional and posttranscriptional gene expression regulation. The development of deep sequencing of ribosomal RNA (rRNA)-depleted RNA libraries, associated with improved computational tools, has provided the identification of several new circRNAs in all sorts of organisms, from protists, plants and fungi to animals. Recently, it was discovered that endogenous circRNAs can work as microRNA (miRNA) sponges. This means that the circRNAs bind to miRNAs and consequently repress their function, providing a new model of action for this class of ncRNA, as well as indicating another mechanism that regulates miRNA activity. As miRNAs control a large set of biological processes, circRNA sponge activity will also affect these pathways. Several studies have associated miRNA sponges with human diseases, including osteoarthritis, diabetes, neurodegenerative pathologies and several types of cancer. Additionally, high stability, abundance and tissue-specific expression patterns make circRNA sponges very attractive for clinical research. Herein, we review the biogenesis, properties and function of endogenous circRNA sponges, with a special focus on those related to human cancer. A list of web tools available for the study of circRNAs is also given. Additionally, we discuss the possibility of using circRNAs as molecular markers for the diagnosis of diseases.
Collapse
Affiliation(s)
- Franceli Rodrigues Kulcheski
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil.
| |
Collapse
|
3174
|
Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27612318 DOI: 10.1002/wrna.1386] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Circular RNAs (circRNAs) represent a large class of noncoding RNAs (ncRNAs) that have recently emerged as regulators of gene expression. They have been shown to suppress microRNAs, thereby increasing the translation and stability of the targets of such microRNAs. In this review, we discuss the emerging functions of circRNAs, including RNA transcription, splicing, turnover, and translation. We also discuss other possible facets of circRNAs that can influence their function depending on the cell context, such as circRNA abundance, subcellular localization, interacting partners (RNA, DNA, and proteins), dynamic changes in interactions following stimulation, and potential circRNA translation. The ensuing changes in gene expression patterns elicited by circRNAs are proposed to drive key cellular processes, such as cell proliferation, differentiation, and survival, that govern health and disease. WIREs RNA 2017, 8:e1386. doi: 10.1002/wrna.1386 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
3175
|
Cardozo T, Gupta P, Ni E, Young LM, Tivon D, Felsovalyi K. Data sources for in vivo molecular profiling of human phenotypes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:472-484. [PMID: 27599755 DOI: 10.1002/wsbm.1354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022]
Abstract
Molecular profiling of human diseases has been approached at the genetic (DNA), expression (RNA), and proteomic (protein) levels. An important goal of these efforts is to map observed molecular patterns to specific, mechanistic organic entities, such as loci in the genome, individual RNA molecules or defined proteins or protein assemblies. Importantly, such maps have been historically approached in the more intuitive context of a theoretical individual cell, but diseases are better described in reality using an in vivo framework, namely a library of several tissue-specific maps. In this article, we review the existing data atlases that can be used for this purpose and identify critical gaps that could move the field forward from cellular to in vivo dimensions. WIREs Syst Biol Med 2016, 8:472-484. doi: 10.1002/wsbm.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.
| | - Priyanka Gupta
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,GeneCentrix Inc., New York, NY, USA
| | - Eric Ni
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,GeneCentrix Inc., New York, NY, USA
| | - Lauren M Young
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
3176
|
Veneziano D, Di Bella S, Nigita G, Laganà A, Ferro A, Croce CM. Noncoding RNA: Current Deep Sequencing Data Analysis Approaches and Challenges. Hum Mutat 2016; 37:1283-1298. [PMID: 27516218 DOI: 10.1002/humu.23066] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
One of the most significant biological discoveries of the last decade is represented by the reality that the vast majority of the transcribed genomic output comprises diverse classes of noncoding RNAs (ncRNAs) that may play key roles and/or be affected by many biochemical cellular processes (i.e., RNA editing), with implications in human health and disease. With 90% of the human genome being transcribed and novel classes of ncRNA emerging (tRNA-derived small RNAs and circular RNAs among others), the great majority of the human transcriptome suggests that many important ncRNA functions/processes are yet to be discovered. An approach to filling such vast void of knowledge has been recently provided by the increasing application of next-generation sequencing (NGS), offering the unprecedented opportunity to obtain a more accurate profiling with higher resolution, increased throughput, sequencing depth, and low experimental complexity, concurrently posing an increasing challenge in terms of efficiency, accuracy, and usability of data analysis software. This review provides an overview of ncRNAs, NGS technology, and the most recent/popular computational approaches and the challenges they attempt to solve, which are essential to a more sensitive and comprehensive ncRNA annotation capable of furthering our understanding of this still vastly uncharted genomic territory.
Collapse
Affiliation(s)
- Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | | | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029
| | - Afredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, 95125, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
3177
|
Chen BJ, Mills JD, Takenaka K, Bliim N, Halliday GM, Janitz M. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem 2016; 139:485-496. [DOI: 10.1111/jnc.13752] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - James D. Mills
- Deptartment of (Neuro) Pathology; Academic Medical Center and Swammerdam Institute for Life Sciences; Centre for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Nicola Bliim
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney New South Wales Australia
- School of Medical Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
3178
|
Abstract
Circular RNA from backspliced exons (or exonic circular RNA, circRNA) is a type of covalently closed non-colinear RNA that was recently rediscovered in eukaryotes. Although circRNAs are often expressed at low levels, emerging evidence indicates that many circRNAs are linked to physiological development and various diseases. Notably, circRNAs have been shown to serve as oncogenic stimuli or tumor suppressors in cancer. circRNAs may regulate gene expression through different mechanisms. In addition, circRNAs have been shown to be useful as biomarkers of diseases due to their stability, specific expression and relation to diseases both in cells and in extracellular fluid. This review summarizes current knowledge of human circRNAs and discusses the emerging role and clinical implication of these multifarious transcripts.
Collapse
Affiliation(s)
- Dongbin Lyu
- a Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Shenglin Huang
- a Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
3179
|
Xie W, Yuan S, Sun Z, Li Y. Long noncoding and circular RNAs in lung cancer: advances and perspectives. Epigenomics 2016; 8:1275-87. [DOI: 10.2217/epi-2016-0036] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Better understanding and management of lung cancer are needed. Although much has been learned from known protein coding genes, long noncoding RNAs (lncRNAs), a relatively new and fast evolving large family of transcripts, have recently generated much attention for new discoveries. LncRNAs play critical regulatory functions and are emerging as new players in tumorigenesis and phenotypic determinators of lung cancer. In this review, we highlight the latest development of lncRNAs, including circular RNAs in lung cancer. We start with well-characterized lncRNAs and circular RNAs as an oncogene or tumor suppressor and then extend our discussion on the impact of SNPs in lncRNA on its functions and lung cancer risk and the clinical applications of lncRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Shuai Yuan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3180
|
Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med 2016; 10:943-52. [PMID: 27404501 DOI: 10.2217/bmm-2016-0130] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: This study aimed to determine whether circular RNA (circRNA) molecules in peripheral blood mononuclear cells (PBMCs) could be used as novel non-invasive biomarkers for major depressive disorder (MDD). Materials & methods: Differentially expressed circRNAs were screened using an Arraystar Human CircRNA Array (which includes 13,617 human circRNAs) and qRT-PCR. Thirty MDD patients were randomly selected to retest the circRNA levels after 4-week and 8-week antidepressant regimens. Results: Four differentially expressed circRNAs were identified between MDD patients and controls, and only down-regulated hsa_circRNA_103636 was significantly altered after the 8-week treatment in MDD patients. Conclusion: These results suggest that altered expression of hsa_circRNA_103636 in PBMCs is a potential novel biomarker for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Xuelian Cui
- Department of Health Care, Changzhou Maternal & Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, People's Republic of China
| | - Wei Niu
- Department of Rehabilitation, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Lingming Kong
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Mingjun He
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Kunhong Jiang
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Shengdong Chen
- Department of Neurology, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Aifang Zhong
- Clinical Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Wanshuai Li
- Gopath Diagnostic Laboratory Co Ltd, No. 801, Changzhou, People's Republic of China
| | - Jim Lu
- Gopath Diagnostic Laboratory Co Ltd, No. 801, Changzhou, People's Republic of China
- Gopath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, USA
| | - Liyi Zhang
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| |
Collapse
|
3181
|
DNA and RNA topoisomerase activities of Top3β are promoted by mediator protein Tudor domain-containing protein 3. Proc Natl Acad Sci U S A 2016; 113:E5544-51. [PMID: 27582462 DOI: 10.1073/pnas.1605517113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Topoisomerase 3β (Top3β) can associate with the mediator protein Tudor domain-containing protein 3 (TDRD3) to participate in two gene expression processes of transcription and translation. Despite the apparent importance of TDRD3 in binding with Top3β and directing it to cellular compartments critical for gene expression, the biochemical mechanism of how TDRD3 can affect the functions of Top3β is not known. We report here sensitive biochemical assays for the activities of Top3β on DNA and RNA substrates in resolving topological entanglements and for the analysis of TDRD3 functions. TDRD3 stimulates the relaxation activity of Top3β on hypernegatively supercoiled DNA and changes the reaction from a distributive to a processive mode. Both supercoil retention assays and binding measurement by fluorescence anisotropy reveal a heretofore unknown preference for binding single-stranded nucleic acids over duplex. Whereas TDRD3 has a structure-specific binding preference, it does not discriminate between DNA and RNA. This unique property for binding with nucleic acids can have an important function in serving as a hub to form nucleoprotein complexes on DNA and RNA. To gain insight into the roles of Top3β on RNA metabolism, we designed an assay by annealing two single-stranded RNA circles with complementary sequences. Top3β is capable of converting two such single-stranded RNA circles into a double-stranded RNA circle, and this strand-annealing activity is enhanced by TDRD3. These results demonstrate that TDRD3 can enhance the biochemical activities of Top3β on both DNA and RNA substrates, in addition to its function of targeting Top3β to critical sites in subcellular compartments.
Collapse
|
3182
|
Abstract
Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- a Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , PA , USA
| |
Collapse
|
3183
|
van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: Novel Regulators of Neuronal Development. Front Mol Neurosci 2016; 9:74. [PMID: 27616979 PMCID: PMC4999478 DOI: 10.3389/fnmol.2016.00074] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons.
Collapse
Affiliation(s)
- Daniëlle van Rossum
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
3184
|
Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol 2016; 13:1011-1024. [PMID: 27560004 DOI: 10.1080/15476286.2016.1218588] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among all tissues of the metazoa, the transcritpome of testis displays the highest diversity and specificity. However, its composition and dynamics during spermatogenesis have not been fully understood. Here, we have identified 20,639 message RNAs (mRNAs), 7,168 long non-coding RNAs (lncRNAs) and 15,101 circular RNAs (circRNAs) in mouse spermatogenic cells, and found many of them were specifically expressed in testes. lncRNAs are significantly more testis-specific than mRNAs. At all stages, mRNAs are generally more abundant than lncRNAs, and linear transcripts are more abundant than circRNAs. We showed that the productions of circRNAs and piRNAs were highly regulated instead of random processes. Based on the results of a small-scale functional screening experiment using cultured mouse spermatogonial stem cells, many evolutionarily conserved lncRNAs are likely to play roles in spermatogenesis. Typical classes of transcription factor binding sites are enriched in the promoters of testis-specific m/lncRNA genes. Target genes of CREM and RFX2, 2 key TFs for spermatogenesis, were further validated by using ChIP-chip assays and RNA-seq on RFX2-knockout spermatogenic cells. Our results contribute to the current understanding of the transcriptomic complexity of spermatogenic cells and provide a valuable resource from which many candidate genes may be selected for further functional studies.
Collapse
Affiliation(s)
- Xiwen Lin
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Miao Han
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Lu Cheng
- c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Jian Chen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Zhuqiang Zhang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Ting Shen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Min Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Bo Wen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China.,c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Ting Ni
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Chunsheng Han
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
3185
|
Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1579490. [PMID: 27642589 PMCID: PMC5013215 DOI: 10.1155/2016/1579490] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
As a special form of noncoding RNAs, circular RNAs (circRNAs) played important roles in regulating cancer progression mainly by functioning as miRNA sponge. While the function of circular RNA-ITCH (cir-ITCH) in lung cancer is still less reported, in this study, we firstly detected the expression of cir-ITCH in tumor tissues and paired adjacent noncancer tissues of 78 patients with lung cancer using a TaqMan-based quantitative real-time PCR (qRT-PCR). The results showed that the expression of cir-ITCH was significantly decreased in lung cancer tissues. In cellular studies, cir-ITCH was also enhanced in different lung cancer cell lines, A549 and NIC-H460. Ectopic expression of cir-ITCH markedly elevated its parental cancer-suppressive gene, ITCH, expression and inhibited proliferation of lung cancer cells. Molecular analysis further revealed that cir-ITCH acted as sponge of oncogenic miR-7 and miR-214 to enhance ITCH expression and thus suppressed the activation of Wnt/β-catenin signaling. Altogether, our results suggested that cir-ITCH may play an inhibitory role in lung cancer progression by enhancing its parental gene, ITCH, expression.
Collapse
|
3186
|
Floris G, Zhang L, Follesa P, Sun T. Regulatory Role of Circular RNAs and Neurological Disorders. Mol Neurobiol 2016; 54:5156-5165. [PMID: 27558238 DOI: 10.1007/s12035-016-0055-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) are a class of long noncoding RNAs that are characterized by the presence of covalently linked ends and have been found in all life kingdoms. Exciting studies in regulatory roles of circRNAs are emerging. Here, we summarize classification, characteristics, biogenesis, and regulatory functions of circRNAs. CircRNAs are found to be preferentially expressed along neural genes and in neural tissues. We thus highlight the association of circRNA dysregulation with neurodegenerative diseases such as Alzheimer's disease. Investigation of regulatory role of circRNAs will shed novel light in gene expression mechanisms during development and under disease conditions and may identify circRNAs as new biomarkers for aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Tao Sun
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
3187
|
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016; 7:12429. [PMID: 27539542 PMCID: PMC4992165 DOI: 10.1038/ncomms12429] [Citation(s) in RCA: 844] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- or to
| | - Anika Stahringer
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Kristina Sass
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Garwin Pichler
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nils A. Kulak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Wilfert
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Andreas Herbst
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Bernd H. Northoff
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Alexandros Nicolaou
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Frank Beutner
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Markus Scholz
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, 04107 Leipzig, Germany
| | - Joachim Thiery
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Kiran Musunuru
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Knut Krohn
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Interdisciplinary Center for Clinical Research, University Leipzig, 04103 Leipzig, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- or to
| |
Collapse
|
3188
|
Abu N, Jamal R. Circular RNAs as Promising Biomarkers: A Mini-Review. Front Physiol 2016; 7:355. [PMID: 27588005 PMCID: PMC4988965 DOI: 10.3389/fphys.2016.00355] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/04/2016] [Indexed: 01/01/2023] Open
Abstract
The interest in circular RNAs has resurfaced in the past few years. What was considered as "junk" for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the "next big thing" especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| |
Collapse
|
3189
|
Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H. The emerging landscape of circular RNA in life processes. RNA Biol 2016; 14:992-999. [PMID: 27617908 PMCID: PMC5680710 DOI: 10.1080/15476286.2016.1220473] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNA that assumes a covalently closed continuous conformation. CircRNAs were previously thought to be the byproducts of splicing errors caused by low abundance and the technological limitations. With the recent development of high-throughput sequencing technology, numerous circRNAs have been discovered in many species. Recent studies have revealed that circRNAs are stable and widely expressed, and often exhibit cell type-specific or tissue-specific expression. Most circRNAs can be generated from exons, introns, or both. Remarkably, emerging evidence indicates that some circRNAs can serve as microRNA (miRNA) sponges, regulate transcription or splicing, and can interact with RNA binding proteins (RBPs). Moreover, circRNAs have been reported to play essential roles in myriad life processes, such as aging, insulin secretion, tissue development, atherosclerotic vascular disease risk, cardiac hypertrophy and cancer. Although circRNAs are ancient molecules, they represent a newly appreciated form of noncoding RNA and as such have great potential implications in clinical and research fields. Here, we review the current understanding of circRNA classification, function and significance in physiological and pathological processes. We believe that future research will increase our understanding of the regulation and function of these novel molecules.
Collapse
Affiliation(s)
- Shibin Qu
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Yue Zhong
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China.,b Department of General Surgery , The Second People's Hospital of Shaanxi Province , Xi'an , China
| | - Runze Shang
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Xuan Zhang
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Wenjie Song
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Jørgen Kjems
- c Department of Molecular Biology and Genetics (MBG) and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| | - Haimin Li
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
3190
|
CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci Rep 2016; 6:31313. [PMID: 27510448 PMCID: PMC4980667 DOI: 10.1038/srep31313] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component.
Collapse
|
3191
|
Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol 2016; 67:1214-1226. [PMID: 26965544 DOI: 10.1016/j.jacc.2015.12.051] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the majority of the human genome is transcribed, but only about 2% accounts for protein-coding exons. Long noncoding RNAs (lncRNAs) constitute a heterogenic class of RNAs that includes, for example, intergenic lncRNAs, antisense transcripts, and enhancer RNAs. Moreover, alternative splicing can lead to the formation of circular RNAs. In support of putative functions, GWAS for cardiovascular diseases have shown predictive single-nucleotide polymorphisms in lncRNAs, such as the 9p21 susceptibility locus that encodes the lncRNA antisense noncoding RNA in the INK4 locus (ANRIL). Many lncRNAs are regulated during disease. For example, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and myocardial infarction-associated transcript (MIAT) were shown to affect endothelial cell functions and diabetic retinopathy, whereas lincRNA-p21 controls neointima formation. In the heart, several lncRNAs were shown to act as microRNA sponges and to control ischemia-reperfusion injury or act as epigenetic regulators. In this review, the authors summarize the current understanding of lncRNA functions and their role as biomarkers in cardiovascular diseases.
Collapse
|
3192
|
Li LJ, Huang Q, Pan HF, Ye DQ. Circular RNAs and systemic lupus erythematosus. Exp Cell Res 2016; 346:248-54. [DOI: 10.1016/j.yexcr.2016.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
|
3193
|
Zhang Q, Li H, Zhao XQ, Xue H, Zheng Y, Meng H, Jia Y, Bo SL. The evolution mechanism of intron length. Genomics 2016; 108:47-55. [DOI: 10.1016/j.ygeno.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
3194
|
Filippenkov IB, Kalinichenko EO, Limborska SA, Dergunova LV. Circular RNAs—one of the enigmas of the brain. Neurogenetics 2016; 18:1-6. [DOI: 10.1007/s10048-016-0490-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
|
3195
|
Granados-Riveron JT, Aquino-Jarquin G. The complexity of the translation ability of circRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1245-51. [PMID: 27449861 DOI: 10.1016/j.bbagrm.2016.07.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/21/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are a new class of long non-coding RNAs that play a potential role in gene expression regulation, acting as efficient microRNAs sponges. The latest surprise concerning circRNAs is that we now know that they can serve as transcriptional activators in human cells, indicating that circRNAs are involved in important regulatory tasks. Recently, new insight has been gained about the coding potential of circular viroid RNAs, as well as the presence of Internal Ribosomal Entry Sites (IRES) allowing the formation of peptides or proteins from circular RNA. Here, we discuss the current state of our knowledge regarding evidence supporting the hypothesis that circRNAs serve as protein-coding sequences in vitro and in vivo. Also, we remark on the difficulties of their identification and highlight some tools currently available for exploring the coding potential of circRNA.
Collapse
Affiliation(s)
- Javier T Granados-Riveron
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Torre de Hemato-Oncología, 4to Piso, Sección 2, Hospital Infantil de México, Federico Gómez, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Torre de Hemato-Oncología, 4to Piso, Sección 2, Hospital Infantil de México, Federico Gómez, Mexico.
| |
Collapse
|
3196
|
Chen W, Schuman E. Circular RNAs in Brain and Other Tissues: A Functional Enigma. Trends Neurosci 2016; 39:597-604. [PMID: 27445124 DOI: 10.1016/j.tins.2016.06.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
Abstract
Circular RNAs (circRNAs) are RNAs with a covalently closed loop structure that have recently regained the attention of biologists. Using deep RNA sequencing (RNA-seq) coupled with novel bioinformatic approaches, genome-wide studies have detected a large number of circRNAs, many of which are abundant, stable, and well conserved during evolution. With few exceptions, the function of most circRNAs remains elusive. Several recent studies have shown that circRNAs are more enriched in neuronal tissues and are often derived from genes specific for neuronal and synaptic function. Moreover, circRNA expression is regulated during neuronal development and by synaptic plasticity, suggesting specific neuronal functions. In this review, we discuss recent advances in the detection, biogenesis, and potential functions of circRNAs, with a particular focus on brain tissues.
Collapse
Affiliation(s)
- Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany; Department of Biology, South University of Science and Technology of China, Shenzhen, China.
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
3197
|
Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues. RNA Biol 2016; 12:1030-42. [PMID: 26274505 DOI: 10.1080/15476286.2015.1076611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human sphingomyelin synthase 1 gene (SGMS1) encodes an essential enzyme that is involved in the synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Among the products of SGMS1, we found new transcripts, circular RNAs (circRNAs), that contain sequences of the gene's 5' untranslated region (5'UTR). Some of them include the gene's coding region and fragments of introns. An analysis of the abundance of circRNAs in human tissues showed that the largest transcripts were predominantly found in different parts of the brain. circRNAs of rat and mouse sphingomyelin synthase 1 orthologous genes were detected and are highly similar to the human SGMS1 gene transcripts. A quantitative analysis of the abundance of such transcripts also revealed their elevated amount in the brain. A computational analysis of sequences of human circRNAs showed their high potential of binding microRNAs (miRNAs), including the miRNAs that form complexes with Ago proteins and the mRNA of SGMS1. We assume that the circRNAs identified here participate in the regulation of the function of the SGMS1 gene in the brain.
Collapse
Affiliation(s)
- Ivan B Filippenkov
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia
| | - Olga Yu Sudarkina
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia
| | - Svetlana A Limborska
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia.,b Institute of Cerebrovascular Pathology and Stroke; Pirogov Russian National Research Medical University ; Moscow , Russia
| | - Lyudmila V Dergunova
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia.,b Institute of Cerebrovascular Pathology and Stroke; Pirogov Russian National Research Medical University ; Moscow , Russia
| |
Collapse
|
3198
|
Ng WL, Marinov GK, Liau ES, Lam YL, Lim YY, Ea CK. Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol 2016; 13:861-71. [PMID: 27362560 DOI: 10.1080/15476286.2016.1207036] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a large class of RNA species formed by the back-splicing of co-linear exons, often within protein-coding transcripts. Despite much progress in the field, it remains elusive whether the majority of circRNAs are merely aberrant splicing by-products with unknown functions, or their production is spatially and temporally regulated to carry out specific biological functions. To date, the majority of circRNAs have been cataloged in resting cells. Here, we identify an LPS-inducible circRNA: mcircRasGEF1B, which is predominantly localized in cytoplasm, shows cell-type specific expression, and has a human homolog with similar properties, hcircRasGEF1B. We show that knockdown of the expression of mcircRasGEF1B reduces LPS-induced ICAM-1 expression. Additionally, we demonstrate that mcircRasGEF1B regulates the stability of mature ICAM-1 mRNAs. These findings expand the inventory of functionally characterized circRNAs with a novel RNA species that may play a critical role in fine-tuning immune responses and protecting cells against microbial infection.
Collapse
Affiliation(s)
- Wei Lun Ng
- a Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Georgi K Marinov
- b Department of Biology , Indiana University Bloomington , Bloomington , IL , USA
| | - Ee Shan Liau
- a Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Yi Lyn Lam
- a Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Yat-Yuen Lim
- a Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Chee-Kwee Ea
- a Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
3199
|
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 2016; 26:1277-87. [PMID: 27365365 PMCID: PMC5052039 DOI: 10.1101/gr.202895.115] [Citation(s) in RCA: 732] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/28/2016] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Dong
- Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Lin Zhang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zheng Luo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, ShanghaiTech University, Shanghai 20003, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, ShanghaiTech University, Shanghai 20003, China
| |
Collapse
|
3200
|
Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 2016; 7:12060. [PMID: 27350239 PMCID: PMC4931246 DOI: 10.1038/ncomms12060] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Although previous studies demonstrated circular RNAs (circRNAs) does not exclusively comprise mRNA exons, no study has extensively explored their internal structure. By combining an algorithm with long-read sequencing data and experimental validation, we, for the first time, comprehensively investigate internal components of circRNAs in 10 human cell lines and 62 fruit fly samples, and reveal the prevalence of alternative splicing (AS) events within circRNAs. Significantly, a large proportion of circRNA AS exons can hardly be detected in mRNAs and are enriched with binding sites of distinct splicing factors from those enriched in mRNA exons. We find that AS events in circRNAs have a preference towards nucleus localization and exhibit tissue- and developmental stage-specific expression patterns. This study suggests an independent regulation on the biogenesis or decay of AS events in circRNAs and the identified circular AS isoforms provide targets for future studies on circRNA formation and function.
Collapse
Affiliation(s)
- Yuan Gao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zheng
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyang Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Chen
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|