301
|
Horgan D, Čufer T, Gatto F, Lugowska I, Verbanac D, Carvalho Â, Lal JA, Kozaric M, Toomey S, Ivanov HY, Longshore J, Malapelle U, Hasenleithner S, Hofman P, Alix-Panabières C. Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring. Healthcare (Basel) 2022; 10:1714. [PMID: 36141326 PMCID: PMC9498805 DOI: 10.3390/healthcare10091714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Tanja Čufer
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute and Oncology Centre (MSCI), 02781 Warsaw, Poland
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ângela Carvalho
- i3S—nstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Sinead Toomey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Smurfit Building, D09 Dublin, Ireland
| | - Hristo Y. Ivanov
- Department of Paediatric and Medical Genetics, Medical University, 4000 Plovdiv, Bulgaria
| | - John Longshore
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80137 Naples, Italy
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8036 Graz, Austria
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, University Côte d’Azur, CEDEX 01, 06001 Nice, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 641 Avenue du Doyen Gaston Giraud, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
302
|
Hofman P, Calin GA, Mani SA, Bontoux C, Ilié M, Wistuba II. The Third Joint Meeting on Lung Cancer of the FHU OncoAge (University Côte d'Azur, Nice, France) and the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Understanding New Therapeutic Options and Promising Predictive Biomarkers for Lung Cancer Patients. Cancers (Basel) 2022; 14:4327. [PMID: 36077862 PMCID: PMC9454909 DOI: 10.3390/cancers14174327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
We are proud and happy to present this Special Issue, a follow-up to the third joint meeting on lung cancer of the FHU OncoAge (University Côte d'Azur, Nice, France) and the University of Texas MD Anderson Cancer Center (Houston, TX, USA), which was held virtually on 4 October 2021 [...].
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sandurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Biobank-Related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
303
|
Precision Oncology for Biliary Tract Tumors: It’s Written in Blood! Ann Oncol 2022; 33:1209-1211. [DOI: 10.1016/j.annonc.2022.09.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022] Open
|
304
|
Roma C, Sacco A, Forgione L, Esposito Abate R, Lambiase M, Dotolo S, Maiello MR, Frezzetti D, Nasti G, Morabito A, De Luca A, Normanno N. Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics (Basel) 2022; 12:diagnostics12081956. [PMID: 36010306 PMCID: PMC9406879 DOI: 10.3390/diagnostics12081956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Targeted sequencing of circulating cell-free DNA (cfDNA) is used in routine clinical diagnostics for the identification of predictive biomarkers in cancer patients in an advanced stage. The presence of KRAS mutations associated with clonal hematopoiesis of indeterminate potential (CHIP) might represent a confounding factor. We used an amplicon-based targeted sequencing panel, covering selected regions of 52 genes, for circulating cell-free total nucleic acid (cfTNA) analysis of 495 plasma samples from cancer patients. The cfDNA test failed in 4 cases, while circulating cell-free RNA (cfRNA) sequencing was invalid in 48 cases. In the 491 samples successfully tested on cfDNA, at least one genomic alteration was found in 222 cases (45.21%). We identified 316 single nucleotide variants (SNVs) in 21 genes. The most frequently mutated gene was TP53 (74 variants), followed by KRAS (71), EGFR (56), PIK3CA (33) and BRAF (19). Copy number variations (CNVs) were detected in 36 cases, while sequencing of cfRNA revealed 6 alterations. Analysis with droplet digital PCR (ddPCR) of peripheral blood leukocyte (PBL)-derived genomic DNA did not identify any KRAS mutations in 39 cases that showed KRAS mutations at cfDNA analysis. These findings suggest that the incidence of CHIP-associated KRAS mutations is relatively rare in routine clinical diagnostics.
Collapse
Affiliation(s)
- Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Matilde Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Guglielmo Nasti
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
305
|
Imai M, Nakamura Y, Sunami K, Kage H, Komine K, Koyama T, Amano T, Ennishi D, Kanai M, Kenmotsu H, Maeda T, Morita S, Sakai D, Bando H, Makiyama A, Suzuki T, Hirata M, Kohsaka S, Tsuchihara K, Naito Y, Yoshino T. Expert Panel Consensus Recommendations on the Use of Circulating Tumor DNA Assays for Patients with Advanced Solid Tumors. Cancer Sci 2022; 113:3646-3656. [PMID: 35876224 PMCID: PMC9633310 DOI: 10.1111/cas.15504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022] Open
Abstract
Comprehensive genomic profiling is increasingly used to facilitate precision oncology based on molecular stratification. In addition to conventional tissue comprehensive genomic profiling, comprehensive genomic profiling of circulating tumor DNA has become widely utilized in cancer care owing on its advantages, including less invasiveness, rapid turnaround time, and capturing heterogeneity. However, circulating tumor DNA comprehensive genomic profiling has some limitations, mainly false negatives due to low levels of plasma circulating tumor deoxyribonucleic acid and false positives caused by clonal hematopoiesis. Nevertheless, no guidelines and recommendations fully address these issues. Here, an expert panel committee involving representatives from 12 Designated Core Hospitals for Cancer Genomic Medicine in Japan was organized to develop expert consensus recommendations for the use of circulating tumor deoxyribonucleic acid‐based comprehensive genomic profiling. The aim was to generate guidelines for clinicians and allied healthcare professionals on the optimal use of the circulating tumor DNA assays in advanced solid tumors and to aid the design of future clinical trials that utilize and develop circulating tumor DNA assays to refine precision oncology. Fourteen clinical questions regarding circulating tumor deoxyribonucleic acid comprehensive genomic profiling including the timing of testing and considerations for interpreting results were established by searching and curating associated literatures, and corresponding recommendations were prepared based on the literature for each clinical question. Final consensus recommendations were developed by voting to determine the level of each recommendation by the Committee members.
Collapse
Affiliation(s)
- Mitsuho Imai
- Translational Research Support Section, National Cancer Center Hospital East.,Genomics Unit, Keio University School of Medicine
| | - Yoshiaki Nakamura
- Translational Research Support Section, National Cancer Center Hospital East.,Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, Graduate School of Medicine, The University of Tokyo
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital
| | - Toraji Amano
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
| | | | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences
| | - Sachi Morita
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - Daisuke Sakai
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital
| | - Hideaki Bando
- Translational Research Support Section, National Cancer Center Hospital East.,Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
| | | | - Tatsuya Suzuki
- Department of Hematology, National Cancer Center Hospital
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Japan
| | - Yoichi Naito
- Department of General Internal medicine/Experimental Therapeutics/Medical Oncology, National Cancer Center Hospital East
| | - Takayuki Yoshino
- Translational Research Support Section, National Cancer Center Hospital East.,Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East
| |
Collapse
|