301
|
Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. RNA toxins: mediators of stress adaptation and pathogen defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:890-903. [PMID: 21809449 DOI: 10.1002/wrna.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA toxins are a group of enzymes primarily synthesized by bacteria, fungi, and plants that either cleave or depurinate RNA molecules. These proteins may be divided according to their RNA substrates: ribotoxins are nucleases that cleave ribosomal RNA (rRNA), ribosome inactivating proteins are glycosidases that remove a base from rRNA, messenger RNA (mRNA) interferases are nucleases that cleave mRNAs, and anticodon nucleases cleave transfer RNAs (tRNAs). These modifications to the RNAs may substantially alter gene expression and translation rates. Given that some of these enzymes cause cell death, it has been suggested that they function mainly in defense, either to kill competing cells or to elicit suicide and thereby limit pathogen spread from infected cells. Although good correlations have been drawn between their enzymatic functions and toxicity, recent work has shown that some RNA toxins cause apoptosis in the absence of damage to RNA and that defense against pathogens can be achieved without host cell death. Moreover, a decrease in cellular translation rate, insufficient to cause cell death, allows some organisms to adapt to stress and environmental change. Although ascribing effects observed in vitro to the roles of these toxins in nature has been challenging, recent results have expanded our understanding of their modes of action, and emphasized the importance of these toxins in development, adaptation to stress and defense against pathogens.
Collapse
|
302
|
Abstract
Eukaryotic genomes accommodate numerous types of information within diverse DNA and RNA sequence elements. At many loci, these elements overlap and the same sequence is read multiple times during the production, processing, localization, function and turnover of a single transcript. Moreover, two or more transcripts from the same locus might use a common sequence in different ways, to perform distinct biological roles. Recent results show that many transcripts also undergo post-transcriptional cleavage to release specific fragments, which can then function independently. This phenomenon appears remarkably widespread, with even well-documented transcript classes such as messenger RNAs yielding fragments. RNA fragmentation significantly expands the already extraordinary spectrum of transcripts present within eukaryotic cells, and also calls into question how the 'gene' should be defined.
Collapse
|
303
|
Abstract
Apoptotic regulation is critical to organismal homeostasis and protection against many human disease processes such as cancer. Significant research efforts over the past several decades have illuminated many signaling molecules and effecter proteins responsible for this form of programmed cell death. Recent evidence suggests that transfer RNA (tRNA) regulates apoptotic sensitivity at the level of cytochrome c-mediated apoptosome formation. This finding unexpectedly places tRNA at the nexus of cellular biosynthesis and survival. Here we review the current understanding of both the apoptotic machinery and tRNA biology. We describe the evidence linking tRNA and cytochrome c in depth, and speculate on the implications of this link in cell biology.
Collapse
|
304
|
Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase. Proc Natl Acad Sci U S A 2010; 108:1104-9. [PMID: 21189302 DOI: 10.1073/pnas.1013746108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A recent body of evidence indicates an active role for stromal (mis)-regulation in the progression of neoplasias. Within this conceptual framework, genes belonging to the growing but still poorly characterized class of tumor antagonizing/malignancy suppressor genes (TAG/MSG) seem to play a crucial role in the regulation of the cross-talk between stromal and epithelial cells by controlling malignant growth in vivo without affecting any cancer-related phenotype in vitro. Here, we have functionally characterized the human RNASET2 gene, which encodes the first human member of the widespread Rh/T2/S family of extracellular RNases and was recently found to be down-regulated at the transcript level in several primary ovarian tumors or cell lines and in melanoma cell lines. Although we could not detect any activity for RNASET2 in several functional in vitro assays, a remarkable control of ovarian tumorigenesis could be detected in vivo. Moreover, the control of ovarian tumorigenesis mediated by this unique tumor suppressor gene occurs through modification of the cellular microenvironment and the induction of immunocompetent cells of the monocyte/macrophage lineage. Taken together, the data presented in this work strongly indicate RNASET2 as a previously unexplored member of the growing family of tumor-antagonizing genes.
Collapse
|
305
|
Chan CTY, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010; 6:e1001247. [PMID: 21187895 PMCID: PMC3002981 DOI: 10.1371/journal.pgen.1001247] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m(5)C, and m(2) (2)G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m(5)C, and m(2) (2)G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.
Collapse
Affiliation(s)
- Clement T. Y. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Madhu Dyavaiah
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (PCD); (TJB)
| | - Thomas J. Begley
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
- * E-mail: (PCD); (TJB)
| |
Collapse
|
306
|
Couvillion MT, Sachidanandam R, Collins K. A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev 2010; 24:2742-7. [PMID: 21106669 DOI: 10.1101/gad.1996210] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Argonaute/Piwi proteins associate with small RNAs that typically provide sequence specificity for RNP function in gene and genome regulation. Here we show that Twi12, a Tetrahymena Piwi protein essential for growth, is loaded with mature tRNA fragments. The tightly bound ~18- to 22-nucleotide tRNA 3' fragments are biochemically distinct from the tRNA halves produced transiently in response to stress. Notably, the end positions of Twi12-bound tRNA 3' fragments precisely match RNAs detected in total small RNA of mouse embryonic stem cells and human cancer cells. Our studies demonstrate unanticipated evolutionary conservation of mature tRNA processing to tRNA fragment small RNAs.
Collapse
Affiliation(s)
- Mary T Couvillion
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
307
|
Erhard F, Zimmer R. Classification of ncRNAs using position and size information in deep sequencing data. Bioinformatics 2010; 26:i426-32. [PMID: 20823303 PMCID: PMC2935403 DOI: 10.1093/bioinformatics/btq363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Motivation: Small non-coding RNAs (ncRNAs) play important roles in various cellular functions in all clades of life. With next-generation sequencing techniques, it has become possible to study ncRNAs in a high-throughput manner and by using specialized algorithms ncRNA classes such as miRNAs can be detected in deep sequencing data. Typically, such methods are targeted to a certain class of ncRNA. Many methods rely on RNA secondary structure prediction, which is not always accurate and not all ncRNA classes are characterized by a common secondary structure. Unbiased classification methods for ncRNAs could be important to improve accuracy and to detect new ncRNA classes in sequencing data. Results: Here, we present a scoring system called ALPS (alignment of pattern matrices score) that only uses primary information from a deep sequencing experiment, i.e. the relative positions and lengths of reads, to classify ncRNAs. ALPS makes no further assumptions, e.g. about common structural properties in the ncRNA class and is nevertheless able to identify ncRNA classes with high accuracy. Since ALPS is not designed to recognize a certain class of ncRNA, it can be used to detect novel ncRNA classes, as long as these unknown ncRNAs have a characteristic pattern of deep sequencing read lengths and positions. We evaluate our scoring system on publicly available deep sequencing data and show that it is able to classify known ncRNAs with high sensitivity and specificity. Availability: Calculated pattern matrices of the datasets hESC and EB are available at the project web site http://www.bio.ifi.lmu.de/ALPS. An implementation of the described method is available upon request from the authors. Contact:florian.erhard@bio.ifi.lmu.de
Collapse
Affiliation(s)
- Florian Erhard
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | | |
Collapse
|
308
|
Meineke B, Schwer B, Schaffrath R, Shuman S. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Res 2010; 39:687-700. [PMID: 20855293 PMCID: PMC3025547 DOI: 10.1093/nar/gkq831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast.
Collapse
Affiliation(s)
- Birthe Meineke
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Beate Schwer
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Raffael Schaffrath
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
- *To whom correspondence should be addressed. Tel: +1 212 639 7145; Fax: +1 212 717 3623;
| |
Collapse
|
309
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
310
|
Abstract
Piwi proteins and their partner small RNAs play an essential role in fertility, germ-line stem cell development, and the basic control and evolution of animal genomes. However, little knowledge exists regarding piRNA biogenesis. Utilizing microfluidic chip analysis, we present a quantitative profile of zebrafish piRNAs expressed differentially between testis and ovary. The sex-specific piRNAs are derived from separate loci of repeat elements in the genome. Ovarian piRNAs can be categorized into groups that reach up to 92 members, indicating a sex-specific arrangement of piRNA genes in the genome. Furthermore, precursor piRNAs preferentially form a hairpin structure at the 3'end, which seem to favor the generation of mature sex-specific piRNAs. In addition, the mature piRNAs from both the testis and the ovary are 2'-O-methylated at their 3' ends.
Collapse
|
311
|
|
312
|
Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 2010; 107:15163-8. [PMID: 20699384 DOI: 10.1073/pnas.1006432107] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Canonical animal microRNAs (miRNAs) are generated by sequential cleavage of precursor substrates by the Drosha and Dicer RNase III enzymes. Several variant pathways exploit other RNA metabolic activities to generate functional miRNAs. However, all of these pathways culminate in Dicer cleavage, suggesting that this is a unifying feature of miRNA biogenesis. Here, we show that maturation of miR-451, a functional miRNA that is perfectly conserved among vertebrates, is independent of Dicer. Instead, structure-function and knockdown studies indicate that Drosha generates a short pre-mir-451 hairpin that is directly cleaved by Ago2 and followed by resection of its 3' terminus. We provide stringent evidence for this model by showing that Dicer knockout cells can generate mature miR-451 but not other miRNAs, whereas Ago2 knockout cells reconstituted with wild-type Ago2, but not Slicer-deficient Ago2, can process miR-451. Finally, we show that the mir-451 backbone is amenable to reprogramming, permitting vector-driven expression of diverse functional miRNAs in the absence of Dicer. Beyond the demonstration of an alternative strategy to direct gene silencing, these observations open the way for transgenic rescue of Dicer conditional knockouts.
Collapse
|
313
|
Saikia M, Fu Y, Pavon-Eternod M, He C, Pan T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA (NEW YORK, N.Y.) 2010; 16:1317-27. [PMID: 20484468 PMCID: PMC2885681 DOI: 10.1261/rna.2057810] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/14/2010] [Indexed: 05/19/2023]
Abstract
The N(1)-methyl-Adenosine (m(1)A58) modification at the conserved nucleotide 58 in the TPsiC loop is present in most eukaryotic tRNAs. In yeast, m(1)A58 modification is essential for viability because it is required for the stability of the initiator-tRNA(Met). However, m(1)A58 modification is not required for the stability of several other tRNAs in yeast. This differential m(1)A58 response for different tRNA species raises the question of whether some tRNAs are hypomodified at A58 in normal cells, and how hypomodification at A58 may affect the stability and function of tRNA. Here, we apply a genomic approach to determine the presence of m(1)A58 hypomodified tRNAs in human cell lines and show how A58 hypomodification affects stability and involvement of tRNAs in translation. Our microarray-based method detects the presence of m(1)A58 hypomodified tRNA species on the basis of their permissiveness in primer extension. Among five human cell lines examined, approximately one-quarter of all tRNA species are hypomodified in varying amounts, and the pattern of the hypomodified tRNAs is quite similar. In all cases, no hypomodified initiator-tRNA(Met) is detected, consistent with the requirement of this modification in stabilizing this tRNA in human cells. siRNA knockdown of either subunit of the m(1)A58-methyltransferase results in a slow-growth phenotype, and a marked increase in the amount of m(1)A58 hypomodified tRNAs. Most m(1)A58 hypomodified tRNAs can associate with polysomes in varying extents. Our results show a distinct pattern for m(1)A58 hypomodification in human tRNAs, and are consistent with the notion that this modification fine tunes tRNA functions in different contexts.
Collapse
Affiliation(s)
- Mridusmita Saikia
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
314
|
Abstract
The CCA sequence is conserved at the 3' end of all mature tRNA molecules to function as the site of amino acid attachment. This sequence is acquired and maintained by stepwise nucleotide addition by the ubiquitous CCA enzyme, which is an unusual RNA polymerase that does not use a nucleic acid template for nucleotide addition. Crystal structural work has divided CCA enzymes into two structurally distinct classes, which differ in the mechanism of template-independent nucleotide selection. Recent kinetic work of the class II E. coli CCA enzyme has demonstrated a rapid and uniform rate constant for the chemistry of nucleotide addition at each step of CCA synthesis, although the enzyme uses different determinants to control the rate of each step. Importantly, the kinetic work reveals that, at each step of CCA synthesis, E. coli CCA enzyme has an innate ability to discriminate against tRNA backbone damage. This discrimination suggests the possibility of a previously unrecognized quality control mechanism that would prevent damaged tRNA from CCA maturation and from entering the ribosome machinery of protein synthesis. This quality control is relevant to cellular stress conditions that damage tRNA backbone and predicts a role of CCA addition in stress response.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB 220, Philadelphia 19107, PA, USA.
| |
Collapse
|
315
|
Abstract
The broadly prescribed antitumor drug cisplatin coordinates to DNA, altering the activity of cellular proteins whose functions rely upon sensing DNA structure. Cisplatin is also known to coordinate to RNA, but the effects of RNA-Pt adducts on the large number of proteins that process the transcriptome are currently unknown. In an effort to address how platination of an RNA alters the function of RNA processing enzymes, we have determined the influence of [Pt(NH(3))(2)](2+)-RNA adducts on the activities of 3'-->5' and 5'-->3' phosphodiesterases, a purine-specific endoribonuclease, and a reverse transcriptase. Single Pt(II) adducts on RNA oligonucleotides of the form (5'-U(6)-XY-U(5)-3': XY = GG, GA, AG, GU) are found to block exonucleolytic digestion. Similar disruption of endonucleolytic cleavage is observed, except for the platinated XY = GA RNA where RNase U2 uniquely tolerates platinum modification. Platinum adducts formed with a more complex RNA prevent reverse transcription, providing evidence that platination is capable of interfering with RNA's role in relaying sequence information. The observed disruptions in enzymatic activity point to the possibility that cellular RNA processing may be similarly affected, which could contribute to the cell-wide effects of platinum antitumor drugs. Additionally, we show that thiourea reverses cisplatin-RNA adducts, providing a chemical tool for use in future studies regarding cisplatin targeting of cellular RNAs.
Collapse
Affiliation(s)
- Erich G Chapman
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
316
|
Abstract
The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin-proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.
Collapse
Affiliation(s)
- Sylvie Dinant
- Institut National de la Recherche Agronomique, institut Jean-Pierre-Bourgin, route de St-Cyr, Versailles cedex, France.
| | | |
Collapse
|
317
|
Schutz K, Hesselberth JR, Fields S. Capture and sequence analysis of RNAs with terminal 2',3'-cyclic phosphates. RNA (NEW YORK, N.Y.) 2010; 16:621-31. [PMID: 20075163 PMCID: PMC2822926 DOI: 10.1261/rna.1934910] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The combination of ligation-based RNA capture methods and high-throughput sequencing has facilitated the characterization of transcriptomes and the identification of novel noncoding RNAs. However, current ligation-based RNA capture methods require RNA substrates with terminal 3'-hydroxyl groups, limiting their utility for identifying RNAs with modified termini like 2',3'-cyclic phosphates. Cyclic phosphate-terminated RNAs are generated by endonucleolytic cleavages and self-cleaving ribozymes and are found as stable modifications on cellular RNAs such as the U6 spliceosomal RNA. We developed a method that uses the Arabidopsis thaliana tRNA ligase to add an adaptor oligonucleotide to RNAs that terminate in 2',3'-cyclic phosphates. The adaptor allows specific priming by reverse transcriptase, which is followed by additional steps for PCR amplification and high-throughput DNA sequencing. Applying the method to total human RNA, we found 2836 sequencing reads corresponding to the 3' terminus of U6 snRNA, validating the method. In addition to a large background of reads that map throughout abundantly transcribed RNAs, we also found 42,324 reads of specific fragments from several tRNA isoacceptor families, suggesting that this method may identify processing events previously undetected by other RNA cloning techniques.
Collapse
Affiliation(s)
- Kevin Schutz
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
318
|
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220:126-39. [PMID: 19882673 DOI: 10.1002/path.2638] [Citation(s) in RCA: 763] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI-interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein-coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
319
|
A role for a bacterial ortholog of the Ro autoantigen in starvation-induced rRNA degradation. Proc Natl Acad Sci U S A 2010; 107:4022-7. [PMID: 20160119 DOI: 10.1073/pnas.1000307107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular adaptations to stress often involve changes in RNA metabolism. One RNA-binding protein that has been implicated in RNA handling during environmental stress in both animal cells and prokaryotes is the Ro autoantigen. However, the function of Ro in stress conditions has been unknown. We report that a Ro protein in the radiation-resistant eubacterium Deinococcus radiodurans participates in ribosomal RNA (rRNA) degradation during growth in stationary phase, a form of starvation. Levels of the Ro ortholog Rsr increase dramatically during growth in stationary phase and the presence of Rsr confers a growth advantage. Examination of rRNA profiles reveals that Rsr, the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNP) and additional nucleases are all involved in the extensive rRNA decay that occurs during starvation of this bacterium. We show that Rsr, PNP, and an Rsr-PNP complex exhibit increased sedimentation with ribosomal subunits during stationary phase. As the fractionation of PNP with ribosomal subunits is strongly enhanced in the presence of Rsr, we propose that Ro proteins function as cofactors to increase the association of exonucleases with certain substrates during stress.
Collapse
|
320
|
Pütz J, Giegé R, Florentz C. Diversity and similarity in the tRNA world: overall view and case study on malaria-related tRNAs. FEBS Lett 2009; 584:350-8. [PMID: 19931530 DOI: 10.1016/j.febslet.2009.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are ancient macromolecules that have evolved under various environmental pressures as adaptors in translation in all forms of life but also towards alternative structures and functions. The present knowledge on both "canonical" and "deviating" signature motifs retrieved from vertical and horizontal sequence comparisons is briefly reviewed. Novel characteristics, proper to tRNAs from a given translation system, are revealed by a case study on the nuclear and organellar tRNA sets from malaria-related organisms. Unprecedented distinctive features for Plasmodium falciparum apicoplastic tRNAs appear, which provide novel routes to be explored towards anti-malarial drugs. The ongoing high-throughput sequencing programs are expected to allow for further horizontal comparisons and to reveal other signatures of either full or restricted sets of tRNAs.
Collapse
Affiliation(s)
- Joern Pütz
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
321
|
Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2009; 584:310-7. [PMID: 19931532 DOI: 10.1016/j.febslet.2009.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
This discussion focuses on the cellular dynamics of tRNA transcription, processing, and turnover. Early tRNA biosynthesis steps are shared among most tRNAs, while later ones are often individualized for specific tRNAs. In yeast, tRNA transcription and early processing occur coordinately in the nucleolus, requiring topological arrangement of approximately 300 tRNA genes and early processing enzymes to this site; later processing events occur in the nucleoplasm or cytoplasm. tRNA nuclear export requires multiple exporters which function in parallel and the export process is coupled with other cellular events. Nuclear-cytoplasmic tRNA subcellular movement is not unidirectional as a retrograde pathway delivers mature cytoplasmic tRNAs to the nucleus. Despite the long half-lives, there are multiple pathways to turnover damaged tRNAs or normal tRNAs upon cellular stress.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, 484 W. 12th Ave., Room Riffe 800, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
322
|
Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. PLANT PHYSIOLOGY 2009; 151:2120-32. [PMID: 19854858 PMCID: PMC2785986 DOI: 10.1104/pp.109.147280] [Citation(s) in RCA: 513] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/21/2009] [Indexed: 04/14/2023]
Abstract
Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tzyy-Jen Chiou
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (L.-C.H., W.-H.L.); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-I.L., J.-W.C., W.-Y.L., C.-Y.T., T.-J.C.); Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan (S.-I.L., T.-J.C.); Institute of Information Science, Academia Sinica, Taipei 115, Taiwan (A.C.-C.S.); Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (W.-Y.L., T.-J.C.); Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan (W.-Y.L.); Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan (W.-H.L.); Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 (W.-H.L.); and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan (T.-J.C.)
| |
Collapse
|