301
|
Davidson L, Kerr A, West S. Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J 2012; 31:2566-78. [PMID: 22522706 PMCID: PMC3365414 DOI: 10.1038/emboj.2012.101] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/27/2012] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic protein-coding genes are transcribed as pre-mRNAs that are matured by capping, splicing and cleavage and polyadenylation. Although human pre-mRNAs can be long and complex, containing multiple introns and many alternative processing sites, they are usually processed co-transcriptionally. Mistakes during nuclear mRNA maturation could lead to potentially harmful transcripts that are important to eliminate. However, the processes of human pre-mRNA degradation are not well characterised in the human nucleus. We have studied how aberrantly processed pre-mRNAs are degraded and find a role for the 5'→3' exonuclease, Xrn2. Xrn2 associates with and co-transcriptionally degrades nascent β-globin transcripts, mutated to inhibit splicing or 3' end processing. Importantly, we provide evidence that many endogenous pre-mRNAs are also co-transcriptionally degraded by Xrn2 when their processing is inhibited by Spliceostatin A. Our data therefore establish a previously unknown function for Xrn2 and an important further aspect of pre-mRNA metabolism that occurs co-transcriptionally.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
302
|
The yeast RPL9B gene is regulated by modulation between two modes of transcription termination. EMBO J 2012; 31:2427-37. [PMID: 22505027 DOI: 10.1038/emboj.2012.81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/13/2012] [Indexed: 11/08/2022] Open
Abstract
RNA Pol II transcription termination can occur by at least two alternative pathways. Cleavage and polyadenylation by the CPF/CF complex precedes mRNA transcription termination, while the Nrd1 complex is involved in transcription termination of non-coding RNAs such as sno/snRNAs or cryptic unstable transcripts. Here we show that transcription of RPL9B, one of the two genes coding for the ribosomal protein Rpl9p, terminates by either of these two pathways. The balance between these two pathways is modulated in response to the RPL9 gene copy number, resulting in the autoregulation of RPL9B gene expression. This autoregulation mechanism requires a conserved potential stem-loop structure very close to the polyadenylation sites. We propose a model in which Rpl9p, when in excess, binds this conserved 3'-UTR structure, negatively interfering with cleavage and polyadenylation to the benefit of the Nrd1-dependent termination pathway, which, being coupled to degradation by the nuclear exosome, results in downregulation of RPL9B gene expression.
Collapse
|
303
|
The Poly(A)-Binding Protein Nuclear 1 Suppresses Alternative Cleavage and Polyadenylation Sites. Cell 2012; 149:538-53. [DOI: 10.1016/j.cell.2012.03.022] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/15/2011] [Accepted: 03/02/2012] [Indexed: 11/22/2022]
|
304
|
García-Martínez J, Ayala G, Pelechano V, Chávez S, Herrero E, Pérez-Ortín JE. The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription 2012; 3:39-44. [PMID: 22456320 DOI: 10.4161/trns.3.1.19416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been recently stated that stress-responding genes in yeast are enriched in cryptic transcripts and that this is the cause of the differences observed between mRNA amount and RNA polymerase occupancy profiles. Other studies have shown that such differences are mainly due to modulation of mRNA stabilities. Here we analyze the relationship between the presence of cryptic transcripts in genes and their stress response profiles. Despite some of the stress-responding gene groups being indeed enriched in specific classes of cryptic transcripts, we found no statistically significant evidence that cryptic transcription is responsible for the differences observed between mRNA and transcription rate profiles.
Collapse
|
305
|
Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T. A quantitative atlas of polyadenylation in five mammals. Genome Res 2012; 22:1173-83. [PMID: 22454233 PMCID: PMC3371698 DOI: 10.1101/gr.132563.111] [Citation(s) in RCA: 498] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We developed PolyA-seq, a strand-specific and quantitative method for high-throughput sequencing of 3′ ends of polyadenylated transcripts, and used it to globally map polyadenylation (polyA) sites in 24 matched tissues in human, rhesus, dog, mouse, and rat. We show that PolyA-seq is as accurate as existing RNA sequencing (RNA-seq) approaches for digital gene expression (DGE), enabling simultaneous mapping of polyA sites and quantitative measurement of their usage. In human, we confirmed 158,533 known sites and discovered 280,857 novel sites (FDR < 2.5%). On average 10% of novel human sites were also detected in matched tissues in other species. Most novel sites represent uncharacterized alternative polyA events and extensions of known transcripts in human and mouse, but primarily delineate novel transcripts in the other three species. A total of 69.1% of known human genes that we detected have multiple polyA sites in their 3′UTRs, with 49.3% having three or more. We also detected polyadenylation of noncoding and antisense transcripts, including constitutive and tissue-specific primary microRNAs. The canonical polyA signal was strongly enriched and positionally conserved in all species. In general, usage of polyA sites is more similar within the same tissues across different species than within a species. These quantitative maps of polyA usage in evolutionarily and functionally related samples constitute a resource for understanding the regulatory mechanisms underlying alternative polyadenylation.
Collapse
Affiliation(s)
- Adnan Derti
- Department of Informatics IT, Merck and Co., Inc., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 2012; 8:e1002558. [PMID: 22396667 PMCID: PMC3291568 DOI: 10.1371/journal.pgen.1002558] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system. A renewable source of energy is a pressing global need. The biological conversion of lignocellulose to biofuels by microorganisms presents a promising avenue, but few organisms have been studied thoroughly enough to develop the genetic tools necessary for rigorous experimentation. The filamentous-fungal endophyte A. sarcoides produces metabolites when grown on a cellulose-based medium that include eight-carbon volatile organic compounds, which are potential biofuel targets. Here we use broadly applicable methods including genomics, transcriptomics, and metabolomics to explore the biofuel production of A. sarcoides. These data were used to assemble the genome into 16 scaffolds, to thoroughly annotate the cellulose-degradation machinery, and to make predictions for the production pathway for the eight-carbon volatiles. Extremely high expression of the gene swollenin when grown on cellulose highlights the importance of accessory proteins in addition to the enzymes that catalyze the breakdown of the polymers. Correlation of the production of the eight-carbon biofuel-like metabolites with the expression of lipoxygenase pathway genes suggests the catabolism of linoleic acid as the mechanism of eight-carbon compound production. This is the first fungal genome to be sequenced in the family Helotiaceae, and A. sarcoides was isolated as an endophyte, making this work also potentially useful in fungal systematics and the study of plant–fungus relationships.
Collapse
Affiliation(s)
- Tara A. Gianoulis
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Meghan A. Griffin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Daniel J. Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Brian F. Dunican
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Cambria J. Alpha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Andrea Sboner
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - A. Michael Sismour
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States of America
| | - Chinnappa Kodira
- Roche 454 Life Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- Pall Corporation, Long Island City, New York, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States of America
| | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (MBG); (SAS)
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (MBG); (SAS)
| |
Collapse
|
307
|
Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol Cell Biol 2012; 32:1468-82. [PMID: 22354987 DOI: 10.1128/mcb.06536-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue-specific alternative splicing is achieved through the coordinated assembly of RNA binding proteins at specific sites to enhance or silence splicing at nearby splice sites. We used high-throughput sequencing (RNA-Seq) to investigate the complete spectrum of alternative splicing events that are regulated by the epithelium-specific splicing regulatory proteins ESRP1 and ESRP2. We also combined this analysis with direct RNA sequencing (DRS) to reveal ESRP-mediated regulation of alternative polyadenylation. To define binding motifs that mediate direct regulation of splicing and polyadenylation by ESRP, SELEX-Seq analysis was performed, coupling traditional SELEX with high-throughput sequencing. Identification and scoring of high-affinity ESRP1 binding motifs within ESRP target genes allowed the generation of RNA maps that define the position-dependent activity of the ESRPs in regulating cassette exons and alternative 3' ends. These extensive analyses provide a comprehensive picture of the functions of the ESRPs in an epithelial posttranscriptional gene expression program.
Collapse
|
308
|
Ozsolak F. Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discov 2012; 7:231-43. [PMID: 22468954 DOI: 10.1517/17460441.2012.660145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an immediate need for functional and molecular studies to decipher differences between disease and 'normal' settings to identify large quantities of validated targets with the highest therapeutic utilities. Furthermore, drug mechanism of action and biomarkers to predict drug efficacy and safety need to be identified for effective design of clinical trials, decreasing attrition rates, regulatory agency approval process and drug repositioning. By expanding the power of genetics and pharmacogenetics studies, next-generation nucleic acid sequencing technologies have started to play an important role in all stages of drug discovery. AREAS COVERED This article reviews the first- and second-generation sequencing technologies (SGSTs) and challenges they pose to biomedicine. The article then focuses on the emerging third-generation sequencing technologies (TGSTs), their technological foundations and potential contributions to drug discovery. EXPERT OPINION Despite the scientific and commercial success of SGSTs, the goal of rapid, comprehensive and unbiased sequencing of nucleic acids has not been achieved. TGSTs promise to increase sequencing throughput and read lengths, decrease costs, run times and error rates, eliminate biases inherent in SGSTs and offer capabilities beyond nucleic acid sequencing. Such changes will have positive impact on all sequencing applications to drug discovery.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corp., Cambridge, MA 02139, USA.
| |
Collapse
|
309
|
Pelechano V, Wilkening S, Järvelin AI, Tekkedil MM, Steinmetz LM. Genome-wide polyadenylation site mapping. Methods Enzymol 2012; 513:271-96. [PMID: 22929774 DOI: 10.1016/b978-0-12-391938-0.00012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative polyadenylation site usage gives rise to variation in 3' ends of transcripts in diverse organisms ranging from yeast to human. Accurate mapping of polyadenylation sites of transcripts is of major biological importance, since the length of the 3'UTR can have a strong influence on transcript stability, localization, and translation. However, reads generated using total mRNA sequencing mostly lack the very 3' end of transcripts. Here, we present a method that allows simultaneous analysis of alternative 3' ends and transcriptome dynamics at high throughput. By using transcripts produced in vitro, the high precision of end mapping during the protocol can be controlled. This method is illustrated here for budding yeast. However, this method can be applied to any natural or artificially polyadenylated RNA.
Collapse
Affiliation(s)
- Vicent Pelechano
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
310
|
Abstract
We determined the genome-wide digital gene expression (DGE) profiles of primary acute lymphoblastic leukemia (ALL) cells from 21 patients taking advantage of ‘second-generation' sequencing technology. Patients included in this study represent four cytogenetically distinct subtypes of B-cell precursor (BCP) ALL and T-cell lineage ALL (T-ALL). The robustness of DGE combined with supervised classification by nearest shrunken centroids (NSC) was validated experimentally and by comparison with published expression data for large sets of ALL samples. Genes that were differentially expressed between BCP ALL subtypes were enriched to distinct signaling pathways with dic(9;20) enriched to TP53 signaling, t(9;22) to interferon signaling, as well as high hyperdiploidy and t(12;21) to apoptosis signaling. We also observed antisense tags expressed from the non-coding strand of ∼50% of annotated genes, many of which were expressed in a subtype-specific pattern. Antisense tags from 17 gene regions unambiguously discriminated between the BCP ALL and T-ALL subtypes, and antisense tags from 76 gene regions discriminated between the 4 BCP subtypes. We observed a significant overlap of gene regions with alternative polyadenylation and antisense transcription (P<1 × 10−15). Our study using DGE profiling provided new insights into the RNA expression patterns in ALL cells.
Collapse
|
311
|
Miura P, Amirouche A, Clow C, Bélanger G, Jasmin BJ. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem 2011; 120:230-8. [PMID: 22081998 DOI: 10.1111/j.1471-4159.2011.07583.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is required for efficient skeletal-muscle regeneration and perturbing its expression causes abnormalities in the proliferation and differentiation of skeletal muscle cells. In this study, we investigated the mechanism of BDNF suppression that occurs during myogenic differentiation. BDNF is expressed at the mRNA level as two isoforms that differ in the length of their 3'UTRs as a result of alternative cleavage and polyadenylation. Sequence analysis revealed the presence of three miR-206 target sites in the long BDNF 3'UTR (BDNF-L), whereas only one site was found in the short mRNA BDNF 3'UTR (BDNF-S). miR-206 is known to regulate the differentiation of C2C12 myoblasts and its expression is induced during the transition from myoblasts to myotubes. We thus examined whether miR-206-mediated suppression is responsible for the expression pattern of BDNF during myogenic differentiation. BDNF-L was suppressed to a greater extent than BDNF-S during differentiation of C2C12 myoblasts. Transfection of a miR-206 precursor decreased activity of reporters representative of the BDNF-L 3'UTR, but not BDNF-S 3'UTR, and repressed endogenous BDNF mRNA levels. This suppression was found to be dependent on the presence of multiple miR-206 target sites in the BDNF-L 3'UTR. Conversely, suppression of miR-206 levels resulted in de-repression of BDNF 3'UTR reporter activity and increased endogenous BDNF-L mRNA levels. A receptor for BDNF, p75(NTR) , was also suppressed during differentiation and in response to miR-206, but this appeared to not be entirely mediated via a miR-206 target site its 3'UTR. Based on these observations, BDNF represents a novel target through which miR-206 controls the initiation and maintenance of the differentiated state of muscle cells. These results further suggest that miR-206 might play a role in regulating retrograde signaling of BDNF at the neuromuscular junction.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular & Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
312
|
Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011; 43:853-66. [PMID: 21925375 DOI: 10.1016/j.molcel.2011.08.017] [Citation(s) in RCA: 565] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3' UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechanisms governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenylation.
Collapse
|
313
|
Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA (NEW YORK, N.Y.) 2011; 17:2011-2025. [PMID: 21954178 PMCID: PMC3198594 DOI: 10.1261/rna.2840711] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/16/2011] [Indexed: 05/29/2023]
Abstract
RNA polymerase II transcribes both coding and noncoding genes, and termination of these different classes of transcripts is facilitated by different sets of termination factors. Pre-mRNAs are terminated through a process that is coupled to the cleavage/polyadenylation machinery, and noncoding RNAs in the yeast Saccharomyces cerevisiae are terminated through a pathway directed by the RNA-binding proteins Nrd1, Nab3, and the RNA helicase Sen1. We have used an in vivo cross-linking approach to map the binding sites of components of the yeast non-poly(A) termination pathway. We show here that Nrd1, Nab3, and Sen1 bind to a number of noncoding RNAs in an unexpected manner. Sen1 shows a preference for H/ACA over box C/D snoRNAs. Nrd1, which binds to snoRNA terminators, also binds to the upstream region of some snoRNA transcripts and to snoRNAs embedded in introns. We present results showing that several RNAs, including the telomerase RNA TLC1, require Nrd1 for proper processing. Binding of Nrd1 to transcripts from tRNA genes is another unexpected observation. We also observe RNA polymerase II binding to transcripts from RNA polymerase III genes, indicating a possible role for the Nrd1 pathway in surveillance of transcripts synthesized by the wrong polymerase. The binding targets of Nrd1 pathway components change in the absence of glucose, with Nrd1 and Nab3 showing a preference for binding to sites in the mature snoRNA and tRNAs. This suggests a novel role for Nrd1 and Nab3 in destruction of ncRNAs in response to nutrient limitation.
Collapse
Affiliation(s)
- Nuttara Jamonnak
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tyler J. Creamer
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Miranda M. Darby
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
314
|
Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011; 52:413-35. [PMID: 21698376 PMCID: PMC3189340 DOI: 10.1007/s13353-011-0057-x] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 12/21/2022]
Abstract
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Laboratory of Functional Genomics, Institute of General and Molecular Biology, Nicolaus Copernicus University, Torun, Poland.
| | | | | |
Collapse
|
315
|
Abstract
Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
316
|
Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:385-96. [PMID: 22012871 DOI: 10.1002/wrna.116] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for 3' end formation of almost all protein-coding transcripts in eukaryotes. The reaction, involving cleavage of nascent mRNA followed by addition of a polyadenylate or poly(A) tail, is controlled by cis-acting elements in the pre-mRNA surrounding the cleavage site. Experimental and bioinformatic studies in the past three decades have elucidated conserved and divergent elements across eukaryotes, from yeast to human. Here we review histories and current models of these elements in a broad range of species.
Collapse
Affiliation(s)
- Bin Tian
- UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
317
|
Kapranov P, Chen L, Dederich D, Dong B, He J, Steinmann KE, Moore AR, Thompson JF, Milos PM, Xiao W. Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing. Hum Gene Ther 2011; 23:46-55. [PMID: 21875357 DOI: 10.1089/hum.2011.160] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The single-stranded genome of adeno-associated viral (AAV) vectors is one of the key factors leading to slow-rising but long-term transgene expression kinetics. Previous molecular studies have established what is now considered a textbook molecular model of AAV genomes with two copies of inverted tandem repeats at either end. In this study, we profiled hundreds of thousands of individual molecules of AAV vector DNA directly isolated from capsids, using single-molecule sequencing (SMS), which avoids any intermediary steps such as plasmid cloning. The sequence profile at 3' ends of both the regular and oversized vector did show the presence of an inverted terminal repeat (ITR), which provided direct confirmation that AAV vector packaging initiates from its 3' end. Furthermore, the vector 5'-terminus profile showed inconsistent termination for oversized vectors. Such incomplete vectors would not be expected to undergo canonical synthesis of the second strand of their genomic DNA and thus could function only via annealing of complementary strands of DNA. Furthermore, low levels of contaminating plasmid DNA were also detected. SMS may become a valuable tool during the development phase of vectors that are candidates for clinical use and for facilitating/accelerating studies on vector biology.
Collapse
|
318
|
Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc Natl Acad Sci U S A 2011; 108:17082-6. [PMID: 21969566 DOI: 10.1073/pnas.1114648108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orderly expression of specific genes is the basis for cell differentiation. Saccharomyces cerevisiae has two haploid mating types, a and α cells, in which the mating-specific genes are differentially expressed. When a and α cells are committed to mate, their growth is arrested. Here we show that a cryptic polyadenylation site is present inside the coding region of the a-specific STE2 gene, encoding the receptor for the α-factor. The two cell types produce an incomplete STE2 transcript, but only a cells generate full-length STE2 mRNA. We eliminated the cryptic poly(A) signal, thereby allowing the production of a complete STE2 mRNA in α cells. We mutagenized α cells and isolated a mutant producing full-length STE2 mRNA. The mutation occurred in the ITC1 gene, whose product, together with the product of ISW2, is known to repress STE2 transcriptional initiation. We propose that the regulation of the yeast mating genes is achieved through a concerted mechanism involving transcriptional and posttranscriptional events. In particular, the early poly(A) site in STE2 could contribute to a complete shutoff of its expression in α cells, avoiding autocrine activation and growth arrest. Remarkably, no cryptic poly(A) sites are present in the a-factor receptor STE3 gene, indicating that S. cerevisiae has devised different strategies to regulate the two receptor genes. It is predictable that a correlation between the repression of a gene and the presence of a cryptic poly(A) site could also be found in other organisms, especially when expression of that gene may be harmful.
Collapse
|
319
|
Johnson SA, Kim H, Erickson B, Bentley DL. The export factor Yra1 modulates mRNA 3' end processing. Nat Struct Mol Biol 2011; 18:1164-71. [PMID: 21947206 PMCID: PMC3307051 DOI: 10.1038/nsmb.2126] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 07/20/2011] [Indexed: 11/09/2022]
Abstract
The Saccharomyces cerevisiae mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A that links export to 3' end formation. We found that an unexpected consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit; instead, Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice, particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A 3' processing factor.
Collapse
Affiliation(s)
- Sara A Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
320
|
|
321
|
Abstract
Eukaryotic genomes accommodate numerous types of information within diverse DNA and RNA sequence elements. At many loci, these elements overlap and the same sequence is read multiple times during the production, processing, localization, function and turnover of a single transcript. Moreover, two or more transcripts from the same locus might use a common sequence in different ways, to perform distinct biological roles. Recent results show that many transcripts also undergo post-transcriptional cleavage to release specific fragments, which can then function independently. This phenomenon appears remarkably widespread, with even well-documented transcript classes such as messenger RNAs yielding fragments. RNA fragmentation significantly expands the already extraordinary spectrum of transcripts present within eukaryotic cells, and also calls into question how the 'gene' should be defined.
Collapse
|
322
|
Wei W, Pelechano V, Järvelin AI, Steinmetz LM. Functional consequences of bidirectional promoters. Trends Genet 2011; 27:267-76. [PMID: 21601935 PMCID: PMC3123404 DOI: 10.1016/j.tig.2011.04.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Several studies have shown that promoters of protein-coding genes are origins of pervasive non-coding RNA transcription and can initiate transcription in both directions. However, only recently have researchers begun to elucidate the functional implications of this bidirectionality and non-coding RNA production. Increasing evidence indicates that non-coding transcription at promoters influences the expression of protein-coding genes, revealing a new layer of transcriptional regulation. This regulation acts at multiple levels, from modifying local chromatin to enabling regional signal spreading and more distal regulation. Moreover, the bidirectional activity of a promoter is regulated at multiple points during transcription, giving rise to diverse types of transcripts.
Collapse
Affiliation(s)
| | | | | | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
323
|
Graveley BR. Getting in the loop: new insights into the mechanism of poly(A) site recognition. Structure 2011; 19:279-81. [PMID: 21397179 DOI: 10.1016/j.str.2011.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue, Yang et al. (2011) show that the 3' end processing factor CFI(m) interacts with RNA in manner that facilitates RNA looping, suggesting mechanistic roles for this factor in the regulation of poly(A) site selection.
Collapse
Affiliation(s)
- Brenton R Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
324
|
Ozsolak F, Milos PM. Single-molecule direct RNA sequencing without cDNA synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:565-70. [PMID: 21957044 DOI: 10.1002/wrna.84] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methods for in-depth genome-wide characterization of transcriptomes and quantification of transcript levels using various microarray and next-generation sequencing technologies have emerged as valuable tools for understanding cellular physiology and human disease biology and have begun to be utilized in various clinical diagnostic applications. Current methods, however, typically require RNA to be converted to complementary DNA prior to measurements. This step has been shown to introduce many biases and artifacts. In order to best characterize the 'true' transcriptome, the single-molecule direct RNA sequencing (DRS) technology was developed. This review focuses on the underlying principles behind the DRS, sample preparation steps, and the current and novel avenues of research and applications DRS offers.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corporation, Cambridge, MA, USA.
| | | |
Collapse
|
325
|
Abstract
Single-molecule sequencing enables DNA or RNA to be sequenced directly from biological samples, making it well-suited for diagnostic and clinical applications. Here we review the properties and applications of this rapidly evolving and promising technology.
Collapse
Affiliation(s)
- John F Thompson
- Helicos BioSciences Corporation, Building 200LL, One Kendall Square, Cambridge, MA 02139, USA.
| | | |
Collapse
|
326
|
Abstract
In the few years since its initial application, massively parallel cDNA sequencing, or RNA-seq, has allowed many advances in the characterization and quantification of transcriptomes. Recently, several developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts. These developments include improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative splicing events. Ongoing developments promise further advances in the application of RNA-seq, particularly direct RNA sequencing and approaches that allow RNA quantification from very small amounts of cellular materials.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
327
|
Abstract
In the few years since its initial application, massively parallel cDNA sequencing, or RNA-seq, has allowed many advances in the characterization and quantification of transcriptomes. Recently, several developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts. These developments include improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative splicing events. Ongoing developments promise further advances in the application of RNA-seq, particularly direct RNA sequencing and approaches that allow RNA quantification from very small amounts of cellular materials.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|