301
|
Pirrotta V, Li HB. A view of nuclear Polycomb bodies. Curr Opin Genet Dev 2011; 22:101-9. [PMID: 22178420 DOI: 10.1016/j.gde.2011.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/10/2011] [Accepted: 11/28/2011] [Indexed: 12/27/2022]
Abstract
Polycomb group (PcG) proteins are concentrated in nuclear foci called PcG bodies. Although some of these foci are due to the tendency of PcG binding sites in the genome to occur in linear clusters, distant PcG sites can contact one another and in some cases congregate in the same PcG body when they are repressed. Experiments using transgenes containing PcG binding sites reveal that co-localization depends on the presence of insulator elements rather than of Polycomb Response Elements (PREs) and that it can occur also when the transgenes are in the active state. A model is proposed according to which insulator proteins mediate shuttling of PcG target genes between PcG bodies when repressed to transcription factories when transcriptionally active.
Collapse
Affiliation(s)
- Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
302
|
Abstract
A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
Collapse
|
303
|
Meldi L, Brickner JH. Compartmentalization of the nucleus. Trends Cell Biol 2011; 21:701-8. [PMID: 21900010 PMCID: PMC3970429 DOI: 10.1016/j.tcb.2011.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/14/2022]
Abstract
The nucleus is a spatially organized compartment. The most obvious way in which this is achieved is at the level of chromosomes. The positioning of chromosomes with respect to nuclear landmarks and with respect to each other is both non-random and cell-type specific. This suggests that cells possess molecular mechanisms to influence the folding and disposition of chromosomes within the nucleus. The localization of many proteins is also heterogeneous within the nucleus. Therefore, chromosome folding and the localization of proteins leads to a model in which individual genes are positioned in distinct protein environments that can affect their transcriptional state. We focus here on the spatial organization of the nucleus and how it impacts upon gene expression.
Collapse
Affiliation(s)
- Lauren Meldi
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
304
|
Throwing transcription for a loop: expression of the genome in the 3D nucleus. Chromosoma 2011; 121:107-16. [PMID: 22094989 DOI: 10.1007/s00412-011-0352-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
The functional output of the genome is closely dependent on its organization within the nucleus, which ranges from the 10-nm chromatin fiber to the three-dimensional arrangement of this fiber in the nuclear space. Recent observations suggest that intra- and inter-chromosomal interactions between distant sequences underlie several aspects of transcription regulatory processes. These contacts can bring enhancers close to their target genes or prevent inappropriate interactions between regulatory sequences via insulators. In addition, intra- and inter-chromosomal interactions can bring co-activated or co-repressed genes to the same nuclear location. Recent technological advances have made it possible to map long-range cis and trans interactions at relatively high resolution. This information is being used to develop three-dimensional maps of the arrangement of the genome in the nucleus and to understand causal relationships between nuclear structure and function.
Collapse
|
305
|
Tanizawa H, Noma KI. Unravelling global genome organization by 3C-seq. Semin Cell Dev Biol 2011; 23:213-21. [PMID: 22120510 DOI: 10.1016/j.semcdb.2011.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022]
Abstract
Eukaryotic genomes exist in the cell nucleus as an elaborate three-dimensional structure which reflects various nuclear processes such as transcription, DNA replication and repair. Next-generation sequencing (NGS) combined with chromosome conformation capture (3C), referred to as 3C-seq in this article, has recently been applied to the yeast and human genomes, revealing genome-wide views of functional associations among genes and their regulatory elements. Here, we compare the latest genomic approaches such as 3C-seq and ChIA-PET, and provide a condensed overview of how eukaryotic genomes are functionally organized in the nucleus.
Collapse
|
306
|
Hampoelz B, Lecuit T. Nuclear mechanics in differentiation and development. Curr Opin Cell Biol 2011; 23:668-75. [PMID: 22079175 DOI: 10.1016/j.ceb.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
The nucleus is by far one of the stiffest organelles within cells of higher eukaryotes. Its mechanical properties are determined by contributions from the nuclear lamina and chromatin. Together they allow a viscoelastic response of the nucleus to applied stresses, where the lamina is thought to behave as an elastic shell, while the nucleoplasm contributes as a largely viscous material. Nuclear mechanics changes during differentiation and development. Altered nuclear mechanics reflects but might also influence global re-arrangements in chromatin architecture, which take place when cells commit themselves into distinct lineages. Thus it is likely that the mechanical characteristics of nuclei significantly contribute to proper differentiation.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
307
|
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43:904-14. [PMID: 21925379 DOI: 10.1016/j.molcel.2011.08.018] [Citation(s) in RCA: 3470] [Impact Index Per Article: 247.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. Here we discuss the emerging archetypes of molecular functions that lncRNAs execute-as signals, decoys, guides, and scaffolds. For each archetype, examples from several disparate biological contexts illustrate the commonality of the molecular mechanisms, and these mechanistic views provide useful explanations and predictions of biological outcomes. These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution. As new lncRNAs are being discovered at a rapid pace, the molecular mechanisms of lncRNAs are likely to be enriched and diversified.
Collapse
Affiliation(s)
- Kevin C Wang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
308
|
PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. PLoS Genet 2011; 7:e1002370. [PMID: 22072989 PMCID: PMC3207895 DOI: 10.1371/journal.pgen.1002370] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polycomb group (PcG) proteins are part of a conserved cell memory system that conveys epigenetic inheritance of silenced transcriptional states through cell division. Despite the considerable amount of information about PcG mechanisms controlling gene silencing, how PcG proteins maintain repressive chromatin during epigenome duplication is still unclear. Here we identified a specific time window, the early S phase, in which PcG proteins are recruited at BX-C PRE target sites in concomitance with H3K27me3 repressive mark deposition. Notably, these events precede and are uncoupled from PRE replication timing, which occurs in late S phase when most epigenetic signatures are reduced. These findings shed light on one of the key mechanisms for PcG-mediated epigenetic inheritance during S phase, suggesting a conserved model in which the PcG-dependent H3K27me3 mark is inherited by dilution and not by de novo methylation occurring at the time of replication.
Collapse
|
309
|
Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 2011; 43:1059-65. [PMID: 22001755 DOI: 10.1038/ng.947] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/25/2011] [Indexed: 12/13/2022]
Abstract
Hi-C experiments measure the probability of physical proximity between pairs of chromosomal loci on a genomic scale. We report on several systematic biases that substantially affect the Hi-C experimental procedure, including the distance between restriction sites, the GC content of trimmed ligation junctions and sequence uniqueness. To address these biases, we introduce an integrated probabilistic background model and develop algorithms to estimate its parameters and renormalize Hi-C data. Analysis of corrected human lymphoblast contact maps provides genome-wide evidence for interchromosomal aggregation of active chromatin marks, including DNase-hypersensitive sites and transcriptionally active foci. We observe extensive long-range (up to 400 kb) cis interactions at active promoters and derive asymmetric contact profiles next to transcription start sites and CTCF binding sites. Clusters of interacting chromosomal domains suggest physical separation of centromere-proximal and centromere-distal regions. These results provide a computational basis for the inference of chromosomal architectures from Hi-C experiments.
Collapse
|
310
|
Splinter E, de Laat W. The complex transcription regulatory landscape of our genome: control in three dimensions. EMBO J 2011; 30:4345-55. [PMID: 21952046 DOI: 10.1038/emboj.2011.344] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/29/2011] [Indexed: 11/09/2022] Open
Abstract
The non-coding part of our genome contains sequence motifs that can control gene transcription over distance. Here, we discuss functional genomics studies that uncover and characterize these sequences across the mammalian genome. The picture emerging is of a genome being a complex regulatory landscape. We explore the principles that underlie the wiring of regulatory DNA sequences and genes. We argue transcriptional control over distance can be understood when considering action in the context of the folded genome. Genome topology is expected to differ between individual cells, and this may cause variegated expression. High-resolution three-dimensional genome topology maps, ultimately of single cells, are required to understand the cis-regulatory networks that underlie cellular transcriptomes.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Insitute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
311
|
Abstract
Polycomb group proteins have long been linked to the occurrence of different forms of cancer. Polycomb proteins form at least two distinct complexes, the Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2). Some of the PRC complex subunits have been found to be overexpressed in a variety of different tumors. Epigenetic perturbations are likely to be the cause for transcriptional misregulation of tumor suppressor genes and of certain cell fates. It is especially critical for stem cells that their potential to self-renewal and to differentiate is tightly controlled and properly orchestrated. Misregulation of Polycomb protein levels often leads to either a block or unscheduled activation of developmental pathways, thereby enhancing the proliferation capability of a cell. The consequences of this misregulation have been linked to the establishment of cancer stem cells, which can produce tumors through a combination of increased self-renewal and the lack of complete cellular differentiation. Cancer stem cells are believed to persist within tumors and to elicit relapse and metastasis. In this review, we recapitulate the roles of Polycomb proteins in stem cell biology, and the impact their misregulation can have on cancer.
Collapse
Affiliation(s)
- H Richly
- Department of Differentiation and Cancer, Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
312
|
Orkin SH, Hochedlinger K. Chromatin connections to pluripotency and cellular reprogramming. Cell 2011; 145:835-50. [PMID: 21663790 DOI: 10.1016/j.cell.2011.05.019] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 12/15/2022]
Abstract
The pluripotent state of embryonic stem cells (ESCs) provides a unique perspective on regulatory programs that govern self-renewal and differentiation and somatic cell reprogramming. Here, we review the highly connected protein and transcriptional networks that maintain pluripotency and how they are intertwined with factors that affect chromatin structure and function. The complex interrelationships between pluripotency and chromatin factors are illustrated by X chromosome inactivation, regulatory control by noncoding RNAs, and environmental influences on cell states. Manipulation of cell state through the process of transdifferentiation suggests that environmental cues may direct transcriptional programs as cells enter a transiently "plastic" state during reprogramming.
Collapse
Affiliation(s)
- Stuart H Orkin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
313
|
Integrated Gene Regulatory Circuits: Celebrating the 50th Anniversary of the Operon Model. Mol Cell 2011; 43:505-14. [DOI: 10.1016/j.molcel.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022]
|
314
|
Bantignies F, Cavalli G. Polycomb group proteins: repression in 3D. Trends Genet 2011; 27:454-64. [PMID: 21794944 DOI: 10.1016/j.tig.2011.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Polycomb group (PcG) proteins are well-conserved chromatin factors that repress the transcription of their target genes. They bind to the genome at specific sites and act on chromatin through the regulation of both post-translational histone modifications and higher-order chromatin structure. Recent work has revealed that PcG-bound regulatory regions can interact with promoters and modulate their activity via mechanisms involving looping between regulatory elements and also long-distance interactions in cis or in trans (on different chromosomes). This indicates that the 3D organization of PcG proteins contributes significantly to their function. Moreover, because long-range chromosomal contacts have been shown to involve many genomic loci in addition to Polycomb target genes, their regulatory impact could extend beyond the function of Polycomb proteins.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS) Unité Propre de Recherche 1142, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | | |
Collapse
|
315
|
Hampoelz B, Azou-Gros Y, Fabre R, Markova O, Puech PH, Lecuit T. Microtubule-induced nuclear envelope fluctuations control chromatin dynamics in Drosophila embryos. Development 2011; 138:3377-86. [PMID: 21752932 DOI: 10.1242/dev.065706] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear shape is different in stem cells and differentiated cells and reflects important changes in the mechanics of the nuclear envelope (NE). The current framework emphasizes the key role of the nuclear lamina in nuclear mechanics and its alterations in disease. Whether active stress controls nuclear deformations and how this stress interplays with properties of the NE to control NE dynamics is unclear. We address this in the early Drosophila embryo, in which profound changes in NE shape parallel the transcriptional activation of the zygotic genome. We show that microtubule (MT) polymerization events produce the elementary forces necessary for NE dynamics. Moreover, large-scale NE deformations associated with groove formation require concentration of MT polymerization in bundles organized by Dynein. However, MT bundles cannot produce grooves when the farnesylated inner nuclear membrane protein Kugelkern (Kuk) is absent. Although it increases stiffness of the NE, Kuk also stabilizes NE deformations emerging from the collective effect of MT polymerization forces concentrated in bundles. Finally, we report that MT-induced NE deformations control the dynamics of chromatin and its organization at steady state. Thus, the NE is a dynamic organelle, fluctuations of which increase chromatin dynamics. We propose that such mechanical regulation of chromatin dynamics by MTs might be important for gene regulation.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
316
|
Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG, Zhu Y, Kaaij LJT, van Ijcken W, Gribnau J, Heard E, de Laat W. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011; 25:1371-83. [PMID: 21690198 DOI: 10.1101/gad.633311] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet 2011; 27:295-306. [PMID: 21680045 DOI: 10.1016/j.tig.2011.05.006] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 12/17/2022]
Abstract
Nuclear bodies including nucleoli, Cajal bodies, nuclear speckles, Polycomb bodies, and paraspeckles are membraneless subnuclear organelles. They are present at steady-state and dynamically respond to basic physiological processes as well as to various forms of stress, altered metabolic conditions and alterations in cellular signaling. The formation of a specific nuclear body has been suggested to follow a stochastic or ordered assembly model. In addition, a seeding mechanism has been proposed to assemble, maintain, and regulate particular nuclear bodies. In coordination with noncoding RNAs, chromatin modifiers and other machineries, various nuclear bodies have been shown to sequester and modify proteins, process RNAs and assemble ribonucleoprotein complexes, as well as epigenetically regulate gene expression. Understanding the functional relationships between the 3D organization of the genome and nuclear bodies is essential to fully uncover the regulation of gene expression and its implications for human disease.
Collapse
Affiliation(s)
- Yuntao S Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
318
|
From Linear Genes to Epigenetic Inheritance of Three-dimensional Epigenomes. J Mol Biol 2011; 409:54-61. [DOI: 10.1016/j.jmb.2011.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023]
|
319
|
Chromatin: constructing the big picture. EMBO J 2011; 30:1885-95. [PMID: 21527910 DOI: 10.1038/emboj.2011.135] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023] Open
Abstract
Chromatin is the ensemble of genomic DNA and a large number of proteins. Various genome-wide mapping techniques have begun to reveal that, despite the tremendous complexity, chromatin organization is governed by simple principles. This review discusses the principles that drive the spatial architecture of chromatin, as well as genome-wide-binding patterns of chromatin proteins.
Collapse
|
320
|
Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol 2011; 23:325-31. [PMID: 21489772 DOI: 10.1016/j.ceb.2011.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/09/2011] [Accepted: 03/13/2011] [Indexed: 11/22/2022]
Abstract
Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.
Collapse
|
321
|
Geyer PK, Vitalini MW, Wallrath LL. Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol 2011; 23:354-9. [PMID: 21450447 DOI: 10.1016/j.ceb.2011.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Eukaryotic genomes are divided into chromosomes that occupy defined regions or territories within the nucleus. These chromosome territories (CTs) are arranged based on the transcriptional activity and chromatin landscape of domains. In general, transcriptionally silent domains reside at the nuclear periphery, whereas active domains locate within the interior. Changes in nuclear position are observed for stress-induced and developmentally regulated tissue-specific genes. Upon activation, these genes move away from a CT to inter-chromosomal space containing nuclear bodies enriched in gene expression machinery. Gene activation is not always accompanied by movement, as positioning is dictated by many determinants, including gene structure and the local genomic environment. Collectively, tissue-specific nuclear organization results from a culmination of inputs that result in proper transcriptional regulation.
Collapse
|
322
|
|
323
|
Casci T. Grouped in silence. Nat Rev Genet 2011; 12:154. [DOI: 10.1038/nrg2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
324
|
Abstract
Polycomb group (PcG) proteins mediate long-range associations between Hox genes, which correlate with gene repression in vivo. Bantignies et al. (2011) identify a physiological role for the nuclear localization of Hox genes in PcG-mediated gene silencing, strengthening the evidence that nuclear positioning regulates gene expression.
Collapse
Affiliation(s)
- Jacob W Hodgson
- Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | | |
Collapse
|