301
|
Baran P, Nitz R, Grötzinger J, Scheller J, Garbers C. Minimal interleukin 6 (IL-6) receptor stalk composition for IL-6 receptor shedding and IL-6 classic signaling. J Biol Chem 2013; 288:14756-68. [PMID: 23564454 DOI: 10.1074/jbc.m113.466169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ~96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.
Collapse
Affiliation(s)
- Paul Baran
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
302
|
Cytokines and the skin barrier. Int J Mol Sci 2013; 14:6720-45. [PMID: 23531535 PMCID: PMC3645662 DOI: 10.3390/ijms14046720] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022] Open
Abstract
The skin is the largest organ of the human body and builds a barrier to protect us from the harmful environment and also from unregulated loss of water. Keratinocytes form the skin barrier by undergoing a highly complex differentiation process that involves changing their morphology and structural integrity, a process referred to as cornification. Alterations in the epidermal cornification process affect the formation of the skin barrier. Typically, this results in a disturbed barrier, which allows the entry of substances into the skin that are immunologically reactive. This contributes to and promotes inflammatory processes in the skin but also affects other organs. In many common skin diseases, including atopic dermatitis and psoriasis, a defect in the formation of the skin barrier is observed. In these diseases the cytokine composition within the skin is different compared to normal human skin. This is the result of resident skin cells that produce cytokines, but also because additional immune cells are recruited. Many of the cytokines found in defective skin are able to influence various processes of differentiation and cornification. Here we summarize the current knowledge on cytokines and their functions in healthy skin and their contributions to inflammatory skin diseases.
Collapse
|
303
|
Tanaka T, Ogata A, Narazaki M. Tocilizumab: An Updated Review of Its Use in the Treatment of Rheumatoid Arthritis and Its Application for Other Immune-Mediated Diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.4137/cmt.s9282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interleukin-6 (IL-6), produced by a variety of cells, is a typical cytokine featuring redundancy and pleiotropic activity. IL-6 is promptly and transiently synthesized in response to infections or injuries, and participates in host defense by inducing immune responses, hematopoiesis, and acute-phase reactions. However, since its abnormal persistent production of mostly unknown etiology plays an important pathological role in the development of various immune-mediated diseases, a humanized anti-IL-6 receptor monoclonal antibody, tocilizumab, was developed and is now used as an innovative biologic for rheumatoid arthritis in more than 90 countries. Several factors strongly suggest that a IL-6 blockade strategy may have a broad application for the treatment of various immune-mediated diseases. These factors include favorable results of pilot or case studies with off-label use of tocilizumab, pathological analyses of the contribution of IL-6 to the development of immune-mediated diseases, and the potential capability of tocilizumab to both repair an imbalance of effector T cell subsets and to suppress pathologic autoantibody production. However, clinical trials to evaluate the efficacy and safety of tocilizumab for these diseases are essential. Furthermore, clarification of the cell source of IL-6 production and of the mechanisms through which dysregulated continuous IL-6 synthesis is induced constitutes an important issue for future studies into the pathogenesis of diseases.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Clinical Application of Biologics, Osaka University of Graduate School of Medicine, Osaka University
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University
| | - Atsushi Ogata
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
304
|
Böttger E, Grangeiro de Carvalho E, Meese S, Kun JF, Esen M. Expression of Interleukin-6 Family Receptors in NK92 Cells Is Regulated by Cytokines and Not Through Direct Interaction withPlasmodium falciparum-Infected Erythrocytes. J Interferon Cytokine Res 2013; 33:65-71. [DOI: 10.1089/jir.2012.0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evelyn Böttger
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | | | - Stefanie Meese
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | - Jürgen F.J. Kun
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | - Meral Esen
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| |
Collapse
|
305
|
Hals IK, Rokstad AM, Strand BL, Oberholzer J, Grill V. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. J Diabetes Res 2013; 2013:374925. [PMID: 24364039 PMCID: PMC3864170 DOI: 10.1155/2013/374925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023] Open
Abstract
Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1-0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P < 0.2). Nonencapsulated islets released 37.7% (median) more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P < 0.001). Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0 ± 6.1% versus 24.8 ± 5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.
Collapse
Affiliation(s)
- I. K. Hals
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- *I. K. Hals:
| | - A. M. Rokstad
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
| | - B. L. Strand
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - J. Oberholzer
- Department of Surgery, University of Illinois, IL at Chicago, Chicago, IL 60612, USA
| | - V. Grill
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Postbox 3250, 7006 Trondheim, Norway
| |
Collapse
|
306
|
Linke R, Pries R, Könnecke M, Bruchhage KL, Böscke R, Gebhard M, Wollenberg B. Glycogen synthase kinase 3 in chronic rhinosinusitis: two faces of a single enzyme in one disease. Ann Allergy Asthma Immunol 2012; 110:101-6. [PMID: 23352529 DOI: 10.1016/j.anai.2012.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/01/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND The origin and pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) remain unclear. Glycogen synthase kinase 3 (GSK-3) is a unique multitasking kinase involved in the regulation of inflammation and apoptosis and is an important messenger in the downstream signaling of interleukin 6. OBJECTIVE To analyze the possible role of GSK-3 in the pathogenesis of CRSwNP. METHODS We examined tissue samples of nasal polyps and the inferior turbinate of patients with CRSwNP and the inferior turbinate of individuals without chronic sinusitis (healthy mucosa). Expression levels of GSK-3 and its inactivated form phosphorylated GSK-3 (pGSK-3) were analyzed using DNA microarray, protein array, Western hybridization, and immunohistochemical analysis. RESULTS We found increased expression of GSK-3 in both the nasal polyps and the inferior turbinate of patients with CRSwNP compared with those with healthy mucosa (P < .01). We did not observe a difference between nasal polyps and the inferior turbinate of patients with CRSwNP, but a highly significant increase in the phosphorylation rate of GSK-3 was detected in the tissue of nasal polyps compared with the turbinates of patients with CRSwNP (P < .01). CONCLUSION GSK-3 may play a crucial role in the inflammatory process in CRSwNP. Nasal polyps originate mainly in the mucosa of the middle meatus of the nose and rarely occur in the region of the inferior turbinate. The inhibition of GSK-3 by phosphorylation in nasal polyps, in contrast to the inferior turbinate, is a possible explanation for the different behavior of the mucosa of the middle meatus and the inferior turbinate.
Collapse
Affiliation(s)
- Robert Linke
- Department of Otorhinolaryngology and Facial Plastic Surgery, University of Luebeck, Luebeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
307
|
Garbers C, Spudy B, Aparicio-Siegmund S, Waetzig GH, Sommer J, Hölscher C, Rose-John S, Grötzinger J, Lorenzen I, Scheller J. An interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 protein receptor homodimer. J Biol Chem 2012; 288:4346-54. [PMID: 23209286 DOI: 10.1074/jbc.m112.432955] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IL-27 consists of the cytokine subunit p28 and the non-signaling α-receptor EBI3. p28 was shown to additionally act via the non-signaling membrane-bound IL-6 α-receptor (IL-6R) as an agonistic cytokine but also as a gp130 β-receptor antagonist, leading to inhibition of IL-6 signaling. Here, we developed a strategy for bacterial expression, purification, and refolding of murine p28. We show that p28 did not interfere with IL-6- or IL-27-induced signaling, indicating that p28 has no antagonistic properties. Moreover, we demonstrate that murine p28 acts as an agonistic cytokine via the murine and human IL-6R, indicating that p28 exhibits no species specificity. p28 was able to induce p28-trans-signaling via the soluble IL-6R (sIL-6R), a characteristic property that was initially described for trans-signaling of IL-6 via the sIL-6R. Of notice, p28/sIL-6R trans-signaling was inhibited by the IL-6 trans-signaling antagonist, soluble gp130. At higher concentrations, p28 but not IL-6 was able to induce signaling even in the absence of IL-6R or EBI3. Although IL-27 signals via a heterodimer of the β-receptor chains gp130 and Wsx-1, p28/IL-6R specifically recruits two gp130 β-receptor chains for signal transduction. The binding of p28 to a gp130/Wsx-1 heterodimer or a gp130 homodimer is highly selective and controlled by a novel molecular switch induced by EBI3 or IL-6R, respectively.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 2012; 24:163-73. [PMID: 23107589 DOI: 10.1016/j.cytogfr.2012.09.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that produces multifunctional effects. Deregulated IL-6 production and signaling are associated with chronic inflammatory diseases, auto-immunity and cancer. On this basis, inhibition of IL-6 production, its receptors or the signaling pathways are strategies currently being widely pursued to develop novel therapies for a wide range of diseases. This survey aims to provide an updated account of why IL-6 inhibitors are shaping up to become an important class of drugs potentially useful in the treatment of ailments and in particular in inflammation and cancer. In addition we discuss the role of different agents in modulating IL-6 and also recent clinical studies targeting IL-6 in inflammation-mediated diseases and cancer.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia.
| | | | | |
Collapse
|