301
|
McGee MD, Stagljar I, Starr DA. KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. J Cell Sci 2009; 122:2895-905. [PMID: 19638405 DOI: 10.1242/jcs.051607] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klarsicht, ANC-1 and Syne homology (KASH) proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. KASH proteins interact with Sad1-UNC-84 (SUN) proteins to transfer forces across the nuclear envelope to position nuclei or move chromosomes. A new KASH protein, KDP-1, was identified in a membrane yeast two-hybrid screen of a Caenorhabditis elegans library using the SUN protein UNC-84 as bait. KDP-1 also interacted with SUN-1. KDP-1 was enriched at the nuclear envelope in a variety of tissues and required SUN-1 for nuclear envelope localization in the germline. Genetic analyses showed that kdp-1 was essential for embryonic viability, larval growth and germline development. kdp-1(RNAi) delayed the entry into mitosis in embryos, led to a small mitotic zone in the germline, and caused an endomitotic phenotype. Aspects of these phenotypes were similar to those seen in sun-1(RNAi), suggesting that KDP-1 functions with SUN-1 in the germline and early embryo. The data suggest that KDP-1 is a novel KASH protein that functions to ensure the timely progression of the cell cycle between the end of S phase and the entry into mitosis.
Collapse
Affiliation(s)
- Matthew D McGee
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
302
|
SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci U S A 2009; 106:10207-12. [PMID: 19509342 DOI: 10.1073/pnas.0812037106] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How the nuclei in mammalian skeletal muscle fibers properly position themselves relative to the cell body is an interesting and important cell biology question. In the syncytial skeletal muscle cells, more than 100 nuclei are evenly distributed at the periphery of each cell, with 3-8 nuclei anchored beneath the neuromuscular junction (NMJ). Our previous studies revealed that the KASH domain-containing Syne-1/Nesprin-1 protein plays an essential role in anchoring both synaptic and nonsynaptic myonuclei in mice. SUN domain-containing proteins (SUN proteins) have been shown to interact with KASH domain-containing proteins (KASH proteins) at the nuclear envelope (NE), but their roles in nuclear positioning in mice are unknown. Here we show that the synaptic nuclear anchorage is partially perturbed in Sun1, but not in Sun2, knockout mice. Disruption of 3 or all 4 Sun1/2 wild-type alleles revealed a gene dosage effect on synaptic nuclear anchorage. The organization of nonsynaptic nuclei is disrupted in Sun1/2 double-knockout (DKO) mice as well. We further show that the localization of Syne-1 to the NE of muscle cells is disrupted in Sun1/2 DKO mice. These results clearly indicate that SUN1 and SUN2 function critically in skeletal muscle cells for Syne-1 localization at the NE, which is essential for proper myonuclear positioning.
Collapse
|
303
|
Abstract
Positioning the nucleus is essential for the formation of polarized cells, pronuclear migration, cell division, cell migration and the organization of specialized syncytia such as mammalian skeletal muscles. Proteins that are required for nuclear positioning also function during chromosome movement and pairing in meiosis. Defects in these processes lead to human diseases including laminopathies. To properly position the nucleus or move chromosomes within the nucleus, the cell must specify the outer surface of the nucleus and transfer forces across both membranes of the nuclear envelope. KASH proteins are specifically recruited to the outer nuclear membrane by SUN proteins, which reside in the inner nuclear membrane. KASH and SUN proteins physically interact in the perinuclear space, forming a bridge across the two membranes of the nuclear envelope. The divergent N-terminal domains of KASH proteins extend from the surface of the nucleus into the cytoplasm and interact with the cytoskeleton, whereas the N-termini of SUN proteins extend into the nucleoplasm to interact with the lamina or chromatin. The bridge of SUN and KASH across the nuclear envelope functions to transfer forces that are generated in the cytoplasm into the nucleoplasm during nuclear migration, nuclear anchorage, centrosome attachment, intermediate-filament association and telomere clustering.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
304
|
Fridkin A, Penkner A, Jantsch V, Gruenbaum Y. SUN-domain and KASH-domain proteins during development, meiosis and disease. Cell Mol Life Sci 2009; 66:1518-33. [PMID: 19125221 PMCID: PMC6485414 DOI: 10.1007/s00018-008-8713-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUN-domain proteins interact directly with KASH-domain proteins to form protein complexes that connect the nucleus to every major cytoskeleton network. SUN-KASH protein complexes are also required for attaching centrosomes to the nuclear periphery and for alignment of homologous chromosomes, their pairing and recombination in meiosis. Other functions that require SUN-domain proteins include the regulation of apoptosis and maturation and survival of the germline. Laminopathic diseases affect the distribution of the SUN-KASH complexes, and mutations in KASH-domain proteins can cause Emery Dreifuss muscular dystrophy and recessive cerebellar ataxia. This review describes our current knowledge of the role of SUN-KASH domain protein complexes during development, meiosis and disease.
Collapse
Affiliation(s)
- A. Fridkin
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - A. Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - V. Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - Y. Gruenbaum
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| |
Collapse
|
305
|
Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 2009; 23:912-27. [PMID: 19390086 DOI: 10.1101/gad.1782209] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.
Collapse
Affiliation(s)
- Pranav Oza
- Program in Molecular Medicine, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
306
|
Wijeratne SSK, Camporeale G, Zempleni J. K12-biotinylated histone H4 is enriched in telomeric repeats from human lung IMR-90 fibroblasts. J Nutr Biochem 2009; 21:310-6. [PMID: 19369050 DOI: 10.1016/j.jnutbio.2009.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 10/20/2022]
Abstract
Covalent modifications of histones play a role in regulating telomere attrition and cellular senescence. Biotinylation of lysine (K) residues in histones, mediated by holocarboxylase synthetase (HCS), is a novel diet-dependent mechanism to regulate chromatin structure and gene expression. We have previously shown that biotinylation of K12 in histone H4 (H4K12bio) is a marker for heterochromatin and is enriched in pericentromeric alpha satellite repeats. Here, we hypothesized that H4K12bio is also enriched in telomeres. We used human IMR-90 lung fibroblasts and immortalized IMR-90 cells overexpressing human telomerase (hTERT) in order to examine histone biotinylation in young and senescent cells. Our studies suggest that one out of three histone H4 molecules in telomeres is biotinylated at K12 in hTERT cells. The abundance of H4K12bio in telomeres decreased by 42% during telomere attrition in senescent IMR-90 cells; overexpression of telomerase prevented the loss of H4K12bio. Possible confounders such as decreased expression of HCS and biotin transporters were formally excluded in this study. Collectively, these data suggest that H4K12bio is enriched in telomeric repeats and represents a novel epigenetic mark for cell senescence.
Collapse
Affiliation(s)
- Subhashinee S K Wijeratne
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583-0806, USA
| | | | | |
Collapse
|
307
|
Chi YH, Cheng LI, Myers T, Ward JM, Williams E, Su Q, Faucette L, Wang JY, Jeang KT. Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA. Development 2009; 136:965-73. [PMID: 19211677 DOI: 10.1242/dev.029868] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner nuclear envelope (NE) proteins interact with the nuclear lamina and participate in the architectural compartmentalization of chromosomes. The association of NE proteins with DNA contributes to the spatial rearrangement of chromosomes and their gene expression. Sun1 is an inner nuclear membrane (INM) protein that locates to telomeres and anchors chromosome movement in the prophase of meiosis. Here, we have created Sun1-/- mice and have found that these mice are born and grow normally but are reproductively infertile. Detailed molecular analyses showed that Sun1-/- P14 testes are repressed for the expression of reproductive genes and have no detectable piRNA. These findings raise a heretofore unrecognized role of Sun1 in the selective gene expression of coding and non-coding RNAs needed for gametogenesis.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Méjat A, Decostre V, Li J, Renou L, Kesari A, Hantaï D, Stewart CL, Xiao X, Hoffman E, Bonne G, Misteli T. Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. ACTA ACUST UNITED AC 2009; 184:31-44. [PMID: 19124654 PMCID: PMC2615092 DOI: 10.1083/jcb.200811035] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The LMNA gene encodes lamins A and C, two intermediate filament-type proteins that are important determinants of interphase nuclear architecture. Mutations in LMNA lead to a wide spectrum of human diseases including autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), which affects skeletal and cardiac muscle. The cellular mechanisms by which mutations in LMNA cause disease have been elusive. Here, we demonstrate that defects in neuromuscular junctions (NMJs) are part of the disease mechanism in AD-EDMD. Two AD-EDMD mouse models show innervation defects including misexpression of electrical activity–dependent genes and altered epigenetic chromatin modifications. Synaptic nuclei are not properly recruited to the NMJ because of mislocalization of nuclear envelope components. AD-EDMD patients with LMNA mutations show the same cellular defects as the AD-EDMD mouse models. These results suggest that lamin A/C–mediated NMJ defects contribute to the AD-EDMD disease phenotype and provide insights into the cellular and molecular mechanisms for the muscle-specific phenotype of AD-EDMD.
Collapse
Affiliation(s)
- Alexandre Méjat
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
Accurate segregation of chromosomes during meiosis requires physical links between homologs. These links are usually established through chromosome pairing, synapsis, and recombination, which occur during meiotic prophase. How chromosomes pair with their homologous partners is one of the outstanding mysteries of meiosis. Surprisingly, experimental evidence indicates that different organisms have found more than one way to accomplish this feat. Whereas some species depend on recombination machinery to achieve homologous pairing, others are able to pair and synapse their homologs in the absence of recombination. To ensure specific pairing between homologous chromosomes, both recombination-dependent and recombination-independent mechanisms must strike the proper balance between forces that promote chromosome interactions and activities that temper the promiscuity of those interactions. The initiation of synapsis is likely to be a tightly regulated step in a process that must be mechanically coupled to homolog pairing.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
310
|
Olins AL, Hoang TV, Zwerger M, Herrmann H, Zentgraf H, Noegel AA, Karakesisoglou I, Hodzic D, Olins DE. The LINC-less granulocyte nucleus. Eur J Cell Biol 2008; 88:203-14. [PMID: 19019491 DOI: 10.1016/j.ejcb.2008.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 01/18/2023] Open
Abstract
The major blood granulocyte (neutrophil) is rapidly recruited to sites of bacterial and fungal infections. It is a highly malleable cell, allowing it to squeeze out of blood vessels and migrate through tight tissue spaces. The human granulocyte nucleus is lobulated and exhibits a paucity of nuclear lamins, increasing its capability for deformation. The present study examined the existence of protein connections between the nuclear envelope and cytoskeletal elements (the LINC complex) in differentiated cell states (i.e. granulocytic, monocytic and macrophage) of the human leukemic cell line HL-60, as well as in human blood leukocytes. HL-60 granulocytes exhibited a deficiency of several LINC complex proteins (i.e. nesprin 1 giant, nesprin 2 giant, SUN1, plectin and vimentin); whereas, the macrophage state revealed nesprin 1 giant, plectin and vimentin. Both states possessed SUN2 in the nuclear envelope. Parallel differences were observed with some of the LINC complex proteins in isolated human blood leukocytes, including macrophage cells derived from blood monocytes. The present study documenting the paucity of LINC complex proteins in granulocytic forms, in combination with previous data on granulocyte nuclear shape and nuclear envelope composition, suggest the hypothesis that these adaptations evolved to facilitate granulocyte cellular malleability.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Kutay U, Hetzer MW. Reorganization of the nuclear envelope during open mitosis. Curr Opin Cell Biol 2008; 20:669-77. [PMID: 18938243 DOI: 10.1016/j.ceb.2008.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 01/08/2023]
Abstract
The nuclear envelope (NE) provides a selective barrier between the nuclear interior and the cytoplasm and constitutes a central component of intracellular architecture. During mitosis in metazoa, the NE breaks down leading to the complete mixing of the nuclear content with the cytosol. Interestingly, many NE components actively participate in mitotic progression. After chromosome segregation, the NE is reassembled around decondensing chromatin and the nuclear compartment is reestablished in the daughter cells. Here, we summarize recent progress in deciphering the molecular mechanisms underlying NE dynamics during cell division.
Collapse
Affiliation(s)
- Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, HPM F11.1, Schafmattstr.18, 8093 Zurich, Switzerland.
| | | |
Collapse
|
312
|
|
313
|
Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112-21. [PMID: 18722388 DOI: 10.1016/j.mrfmmm.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 01/09/2023]
Abstract
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
314
|
Xu M, Cook PR. The role of specialized transcription factories in chromosome pairing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2155-60. [PMID: 18706455 DOI: 10.1016/j.bbamcr.2008.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/03/2008] [Accepted: 07/14/2008] [Indexed: 01/12/2023]
Abstract
Homologous chromosomes can pair in somatic and germ line cells, and many mechanisms have been proposed to explain how they do so. One popular class of models involves base-pairing between DNA strands catalyzed by recombination proteins, but pairing still occurs in mutants lacking the relevant functional proteins. We discuss an alternative based on two observations: transcription occurs in factories that specialize in transcribing specific gene sub-sets, and chromosomes only pair when transcribed. Each chromosome in the haploid set has a unique array of transcription units strung along its length; we suggest each is organized into clouds of loops tethered to specialized factories. Only homologs share similar strings of clouds and factories. Pairing begins when a promoter on one chromosome initiates in the homologous and specialized factory organized mainly by its homologous partner. This transiently ties the two homologs together, to increase the chances that adjacent promoters initiate in their homologous factories and that the two homologs will be zipped together. Then, interactions between promoters and RNA polymerases in the factories mediate pairing.
Collapse
Affiliation(s)
- Meng Xu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | | |
Collapse
|
315
|
Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 2008; 133:1175-87. [PMID: 18585352 DOI: 10.1016/j.cell.2008.04.047] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Haploidization of the genome in meiosis requires that chromosomes be sorted exclusively into pairs stabilized by synaptonemal complexes (SCs) and crossovers. This sorting and pairing is accompanied by active chromosome positioning in meiotic prophase in which telomeres cluster near the spindle pole to form the bouquet before dispersing around the nuclear envelope. We now describe telomere-led rapid prophase movements (RPMs) that frequently exceed 1 microm/s and persist throughout meiotic prophase. Bouquet formation and RPMs depend on NDJ1, MPS3, and a new member of this pathway, CSM4, which encodes a meiosis-specific nuclear envelope protein required specifically for telomere mobility. RPMs initiate independently of recombination but differ quantitatively in mutants that fail to complete recombination, suggesting that RPMs respond to recombination status. Together with recombination defects described for ndj1, our observations suggest that RPMs and SCs balance the disruption and stabilization of recombinational interactions, respectively, to regulate crossing over.
Collapse
Affiliation(s)
- Michael N Conrad
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
316
|
The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett 2008; 582:2023-32. [PMID: 18474238 DOI: 10.1016/j.febslet.2008.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.
Collapse
|
317
|
Mason JM, Frydrychova RC, Biessmann H. Drosophila telomeres: an exception providing new insights. Bioessays 2008; 30:25-37. [PMID: 18081009 DOI: 10.1002/bies.20688] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Drosophila telomeres comprise DNA sequences that differ dramatically from those of other eukaryotes. Telomere functions, however, are similar to those found in telomerase-based telomeres, even though the underlying mechanisms may differ. Drosophila telomeres use arrays of retrotransposons to maintain chromosome length, while nearly all other eukaryotes rely on telomerase-generated short repeats. Regardless of the DNA sequence, several end-binding proteins are evolutionarily conserved. Away from the end, the Drosophila telomeric and subtelomeric DNA sequences are complexed with unique combinations of proteins that also modulate chromatin structure elsewhere in the genome. Maintaining and regulating the transcriptional activity of the telomeric retrotransposons in Drosophila requires specific chromatin structures and, while telomeric silencing spreads from the terminal repeats in yeast, the source of telomeric silencing in Drosophila is the subterminal arrays. However, the subterminal arrays in both species may be involved in telomere-telomere associations and/or communication.
Collapse
Affiliation(s)
- James M Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
318
|
Xiong H, Rivero F, Euteneuer U, Mondal S, Mana-Capelli S, Larochelle D, Vogel A, Gassen B, Noegel AA. Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 2008; 9:708-24. [PMID: 18266910 DOI: 10.1111/j.1600-0854.2008.00721.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The centrosome-nucleus attachment is a prerequisite for faithful chromosome segregation during mitosis. We addressed the function of the nuclear envelope (NE) protein Sun-1 in centrosome-nucleus connection and the maintenance of genome stability in Dictyostelium discoideum. We provide evidence that Sun-1 requires direct chromatin binding for its inner nuclear membrane targeting. Truncation of the cryptic N-terminal chromatin-binding domain of Sun-1 induces dramatic separation of the inner from the outer nuclear membrane and deformations in nuclear morphology, which are also observed using a Sun-1 RNAi construct. Thus, chromatin binding of Sun-1 defines the integrity of the nuclear architecture. In addition to its role as a NE scaffold, we find that abrogation of the chromatin binding of Sun-1 dissociates the centrosome-nucleus connection, demonstrating that Sun-1 provides an essential link between the chromatin and the centrosome. Moreover, loss of the centrosome-nucleus connection causes severe centrosome hyperamplification and defective spindle formation, which enhances aneuploidy and cell death significantly. We highlight an important new aspect for Sun-1 in coupling the centrosome and nuclear division during mitosis to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Huajiang Xiong
- Center for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
320
|
Cohen TV, Stewart CL. Fraying at the edge mouse models of diseases resulting from defects at the nuclear periphery. Curr Top Dev Biol 2008; 84:351-84. [PMID: 19186248 DOI: 10.1016/s0070-2153(08)00607-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells compartmentalize their genetic material within the nucleus. The boundary separating the genetic material from the cytoplasm is the nuclear envelope (NE) and lamina. Historically, the NE was perceived as functioning primarily as a barrier regulating the entry and exit of macromolecules between the nucleus and cytoplasm via the nuclear pore complexes (NPCs) that traverse the nuclear membranes. However, recent findings have caused a fundamental reassessment with regard to NE and lamina functions. Evidence now points to the NE and lamina functioning as a "hub" in regulating and perhaps integrating critical cellular functions that include chromatin organization, transcriptional regulation, mechanical integrity of the cell, signaling pathways, as well as acting as a key component of the cytoskeleton. Such an integral role for the nuclear boundary has emerged from increased interest into the functions of the NE/lamina, which has been largely stimulated by the discovery that some 24 different diseases and anomalies are caused by defects in proteins of the NE and lamina.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Center for Genetic Medicine, Children's National Medical Center, N.W. Washington, DC 20010, USA
| | | |
Collapse
|
321
|
Bupp JM, Martin AE, Stensrud ES, Jaspersen SL. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. ACTA ACUST UNITED AC 2007; 179:845-54. [PMID: 18039933 PMCID: PMC2099192 DOI: 10.1083/jcb.200706040] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Positioning of telomeres at the nuclear periphery can have dramatic effects on gene expression by establishment of heritable, transcriptionally repressive subdomains. However, little is known about the integral membrane proteins that mediate telomere tethering at the nuclear envelope. Here, we find a previously unrecognized function for the Saccharomyces cerevisiae Sad1-UNC-84 domain protein Mps3 in regulating telomere positioning in mitotic cells. Our data demonstrate that the nucleoplasmic N-terminal acidic domain of Mps3 is not essential for viability. However, this acidic domain is necessary and sufficient for telomere tethering during S phase and the silencing of reporter constructs integrated at telomeres. We show that this is caused by the role of the Mps3 acidic domain in binding and localization of the silent information regulator protein Sir4 to the nuclear periphery. Thus, Mps3 functions as an integral membrane anchor for telomeres and is a novel nuclear receptor for the Sir4 pathway of telomere tethering and gene inactivation.
Collapse
Affiliation(s)
- Jennifer M Bupp
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
322
|
Tsuchiya Y. Till Disassembly Do Us Part: A Happy Marriage of Nuclear Envelope and Chromatin. J Biochem 2007; 143:155-61. [DOI: 10.1093/jb/mvm219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
323
|
Abstract
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.
Collapse
|
324
|
Chikashige Y, Haraguchi T, Hiraoka Y. Another way to move chromosomes. Chromosoma 2007; 116:497-505. [PMID: 17639451 DOI: 10.1007/s00412-007-0114-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/20/2007] [Accepted: 05/22/2007] [Indexed: 01/11/2023]
Abstract
A typical way of moving chromosomes is exemplified by mitotic segregation, in which the centromere is directly captured by spindle microtubules. In this study, we highlight another way of moving chromosomes remotely from outside the nucleus, which involves SUN and KASH domain nuclear envelope proteins. SUN and KASH domain protein families are known to connect the nucleus to cytoskeletal networks and play a role in migration and positioning of the nucleus. Recent studies in the fission yeast Schizossacharomyces pombe demonstrated an additional role for the SUN-KASH protein complex in chromosome movements. During meiotic prophase, telomeres are moved to rearrange chromosomes within the nucleus. The SUN-KASH protein complex located in the nuclear envelope is involved in this process. Telomeres are connected to the SUN protein on the nucleoplasmic side, and the dynein motor complex binds to the KASH protein on the cytoplasmic side. Telomeres are then moved along the nuclear envelope using cytoplasmic microtubules. These findings illustrate a general mechanism for transmitting a cytoskeletal driving force to chromosomes across the nuclear envelope.
Collapse
Affiliation(s)
- Yuji Chikashige
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | | | | |
Collapse
|
325
|
Helping homologues to find their partners. Nat Rev Genet 2007. [DOI: 10.1038/nrg2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|