301
|
Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J 2013; 32:629-44. [PMID: 23299940 PMCID: PMC3590982 DOI: 10.1038/emboj.2012.340] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 12/05/2012] [Indexed: 01/24/2023] Open
Abstract
During mammalian development, a subpopulation of endothelial cells in the cardinal vein (CV) expresses lymphatic-specific genes and subsequently develops into the first lymphatic structures, collectively termed as lymph sacs. Budding, sprouting and ballooning of lymphatic endothelial cells (LECs) have been proposed to underlie the emergence of LECs from the CV, but the exact mechanisms of lymph vessel formation remain poorly understood. Applying selective plane illumination-based ultramicroscopy to entire wholemount-immunostained mouse embryos, we visualized the complete developing vascular system with cellular resolution. Here, we report emergence of the earliest detectable LECs as strings of loosely connected cells between the CV and superficial venous plexus. Subsequent aggregation of LECs resulted in formation of two distinct, previously unidentified lymphatic structures, the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral primordial thoracic duct (pTD), which at later stages formed a direct contact with the CV. Providing new insights into their function, we found vascular endothelial growth factor C (VEGF-C) and the matrix component CCBE1 indispensable for LEC budding and migration. Altogether, we present a significantly more detailed view and novel model of early lymphatic development. Ultramicroscopy of wholemount mouse embryos uncovers the first, previously unknown lymphatic structures in mammals: the dorsal longitudinal lymphatic vessel and the ventral primordial thoracic duct, which eventually connect with the cardinal vein as previously described.
Collapse
Affiliation(s)
- René Hägerling
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Ichise T, Yoshida N, Ichise H. FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFβ signalling via Smad2. J Cell Sci 2013; 127:845-57. [DOI: 10.1242/jcs.137836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial cell (LEC) fate decision program during development has been revealed. However, the mechanism underlying the maintenance of differentiated LEC identity remains largely unknown. Here, we show that fibroblast growth factor 2 (FGF2) plays a fundamental role in maintaining a differentiated LEC trait. In addition to demonstrating the appearance of alpha-smooth muscle actin (αSMA) expressing LECs in mouse lymphedematous skin in vivo, we found that mouse-immortalized LECs lose their characteristics and undergo endothelial-to-mesenchymal transition (EndMT) when cultured in FGF2-depleted medium. FGF2 depletion acted synergistically with transforming growth factor (TGF) β to induce EndMT. We also found that H-Ras-overexpressing LECs were resistant to EndMT. Ras activation not only upregulated FGF2-induced Erk MAPK activation, but also suppressed TGFβ-induced activation of Smad2 by modulating Smad2 phosphorylation via Erk MAPKs. These results suggest that FGF2 may regulate LEC-specific gene expression and suppress TGFβ signalling in LECs via Smad2 in a Ras/Erk MAP kinase-dependent manner. Taken together, our findings provide a new insight into the FGF2/Ras/Erk MAPK-dependent mechanism that maintains and modulates the LEC trait.
Collapse
|
303
|
Kesler CT, Liao S, Munn LL, Padera TP. Lymphatic vessels in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012. [PMID: 23209022 DOI: 10.1002/wsbm.1201] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lymphatic vasculature plays vital roles in tissue fluid balance, immune defense, metabolism, and cancer metastasis. In adults, lymphatic vessel formation and remodeling occur primarily during inflammation, development of the corpus luteum, wound healing, and tumor growth. Unlike the blood circulation, where unidirectional flow is sustained by the pumping actions of the heart, pumping actions intrinsic to the lymphatic vessels themselves are important drivers of lymphatic flow. This review summarizes critical components that control lymphatic physiology.
Collapse
Affiliation(s)
- Cristina T Kesler
- E. L. Steele Laboratory, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
304
|
Abstract
The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these shortcomings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells.
Collapse
|
305
|
Pharmacological manipulation of blood and lymphatic vascularization in ex vivo-cultured mouse embryos. Nat Protoc 2012; 7:1970-82. [PMID: 23060242 DOI: 10.1038/nprot.2012.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Formation of new blood and lymphatic vessels is involved in many physiological and pathological processes, including organ and tumor growth, cancer cell metastasis, fluid drainage and lymphedema. Therefore, the ability to manipulate vascularization in a mammalian system is of particular interest to researchers. Here we describe a method for pharmacological manipulation of de novo and sprouting blood and lymphatic vascular development in ex vivo-cultured mouse embryos. The described protocol can also be used to evaluate the properties of pharmacological agents in growing mammalian tissues and to manipulate other developmental processes. The whole procedure, from embryo isolation to image quantification, takes 3-5 d, depending on the analysis and age of the embryos.
Collapse
|
306
|
Blei F. Update September 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Center for Cancer and Blood Disorders of NYU Medical Center, New York, New York
| |
Collapse
|
307
|
Bazigou E, Makinen T. Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci 2012; 70:1055-66. [PMID: 22922986 PMCID: PMC3578722 DOI: 10.1007/s00018-012-1110-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 01/06/2023]
Abstract
The efficient transport of blood and lymph relies on competent intraluminal valves that ensure unidirectional fluid flow through the vessels. In the lymphatic vessels, lack of luminal valves causes reflux of lymph and can lead to lymphedema, while dysfunction of venous valves is associated with venous hypertension, varicose veins, and thrombosis that can lead to edema and ulcerations. Despite their clinical importance, the mechanisms that regulate valve formation are poorly understood and have only recently begun to be characterized. Here, we discuss new findings regarding the development of venous and lymphatic valves that indicate the involvement of common molecular mechanisms in regulating valve formation in different vascular beds.
Collapse
Affiliation(s)
- Eleni Bazigou
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY UK
- Present Address: Cardiovascular Mechanics Lab, Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| | - Taija Makinen
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY UK
| |
Collapse
|
308
|
Li T, Yang J, Zhou Q, He Y. Molecular regulation of lymphangiogenesis in development and tumor microenvironment. CANCER MICROENVIRONMENT 2012; 5:249-60. [PMID: 22864800 DOI: 10.1007/s12307-012-0119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/24/2012] [Indexed: 12/27/2022]
Abstract
A rapid progress has been made in the field of lymphatic research during the last 15 years. This includes better understanding of the cellular events and molecular players involved in the lymphatic vessel formation and remodeling in development. The key players identified in developmental lymphangiogenesis, including vascular endothelial cell growth factor-C (VEGF-C) / VEGFR-3 and angiopoietins (ANGPTs)/ TIE pathways, are also crucial for pathological lymphatic vessel growth. In solid tumor, tumor cells as well as tumor-associated stromal cells, such as tumor-infiltrating leukocytes, contribute to intra- and peri-tumoral lymphangiogenesis via secreting lymphangiogenic growth factors. Tumor-associated lymphatic endothelial cells also interact actively with tumor cells and leukocytes via secreting various chemokines. It has been well established that tumor lymphangiogenesis promotes tumor cell dissemination to regional lymph nodes. Thus manipulation of lymphangiogenic microenvironment could become another valuable approach in the combat of tumor progression.
Collapse
Affiliation(s)
- Taotao Li
- Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Thrombosis and Hemostasis Key Lab of the Ministry of Health, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
309
|
Witte MH, Dellinger MT, Papendieck CM, Boccardo F. Overlapping biomarkers, pathways, processes and syndromes in lymphatic development, growth and neoplasia. Clin Exp Metastasis 2012; 29:707-27. [PMID: 22798218 DOI: 10.1007/s10585-012-9493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 12/19/2022]
Abstract
Recent discoveries in molecular lymphology, developmental biology, and tumor biology in the context of long-standing concepts and observations on development, growth, and neoplasia implicate overlapping pathways, processes, and clinical manifestations in developmental disorders and cancer metastasis. Highlighted in this review are some of what is known (and speculated) about the genes, proteins, and signaling pathways and processes involved in lymphatic/blood vascular development in comparison to those involved in cancer progression and spread. Clues and conundra from clinical disorders that mix these processes and mute them, including embryonic rests, multicentric nests of displaced cells, uncontrolled/invasive "benign" proliferation and lymphogenous/hematogenous "spread", represent a fine line between normal development and growth, dysplasia, benign and malignant neoplasia, and "metastasis". Improved understanding of these normal and pathologic processes and their underlying pathomechanisms, e.g., stem cell origin and bidirectional epithelial-mesenchymal transition, could lead to more successful approaches in classification, treatment, and even prevention of cancer and a whole host of other diseases.
Collapse
Affiliation(s)
- Marlys H Witte
- Department of Surgery, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5200, USA.
| | | | | | | |
Collapse
|
310
|
Bouvrée K, Brunet I, Del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V, Miura N, Aigrot MS, Maden CH, Ruhrberg C, Thomas JL, Eichmann A. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res 2012; 111:437-45. [PMID: 22723296 DOI: 10.1161/circresaha.112.269316] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. OBJECTIVE We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. METHODS AND RESULTS We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. CONCLUSIONS Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.
Collapse
Affiliation(s)
- Karine Bouvrée
- CIRB Collège de France/CNRS UMR 7241/INSERM U1050, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Jurisic G, Maby-El Hajjami H, Karaman S, Ochsenbein AM, Alitalo A, Siddiqui SS, Ochoa Pereira C, Petrova TV, Detmar M. An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res 2012; 111:426-36. [PMID: 22723300 DOI: 10.1161/circresaha.112.269399] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Lymphatic vasculature plays important roles in tissue fluid homeostasis maintenance and in the pathology of human diseases. Yet, the molecular mechanisms that control lymphatic vessel maturation remain largely unknown. OBJECTIVE We analyzed the gene expression profiles of ex vivo isolated lymphatic endothelial cells to identify novel lymphatic vessel expressed genes and we investigated the role of semaphorin 3A (Sema3A) and neuropilin-1 (Nrp-1) in lymphatic vessel maturation and function. METHODS AND RESULTS Lymphatic and blood vascular endothelial cells from mouse intestine were isolated using fluorescence-activated cell sorting, and transcriptional profiling was performed. We found that the axonal guidance molecules Sema3A and Sema3D were highly expressed by lymphatic vessels. Importantly, we found that the semaphorin receptor Nrp-1 is expressed on the perivascular cells of the collecting lymphatic vessels. Treatment of mice in utero (E12.5-E16.5) with an antibody that blocks Sema3A binding to Nrp-1 but not with an antibody that blocks VEGF-A binding to Nrp-1 resulted in a complex phenotype of impaired lymphatic vessel function, enhanced perivascular cell coverage, and abnormal lymphatic vessel and valve morphology. CONCLUSIONS Together, these results reveal an unanticipated role of Sema3A-Nrp-1 signaling in the maturation of the lymphatic vascular network likely via regulating the perivascular cell coverage of the vessels thus affecting lymphatic vessel function and lymphatic valve development.
Collapse
Affiliation(s)
- Giorgia Jurisic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Connexins in atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:157-66. [PMID: 22609170 DOI: 10.1016/j.bbamem.2012.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall, involves multiple cell types of different origins, and complex interactions and signaling pathways between them. Autocrine and paracrine communication pathways provided by cytokines, chemokines, growth factors and lipid mediators are central to atherogenesis. However, it is becoming increasingly recognized that a more direct communication through both hemichannels and gap junction channels formed by connexins also plays an important role in atherosclerosis development. Three main connexins are expressed in cells involved in atherosclerosis: Cx37, Cx40 and Cx43. Cx37 is found in endothelial cells, monocytes/macrophages and platelets, Cx40 is predominantly an endothelial connexin, and Cx43 is found in a large variety of cells such as smooth muscle cells, resident and circulating leukocytes (neutrophils, dendritic cells, lymphocytes, activated macrophages, mast cells) and some endothelial cells. Here, we will systematically review the expression and function of connexins in cells and processes underlying atherosclerosis. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
313
|
Abstract
Recently, substantial advances have been made in understanding the formation and remodeling of the lymphatic vasculature. In this issue, Sabine et al. (2012) further define the mechanisms of lymphatic valve formation and implicate oscillatory shear stress in regulating the molecular events that control valve morphogenesis.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|