301
|
Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ. J Biol Chem 2012; 287:12480-90. [PMID: 22351772 DOI: 10.1074/jbc.m111.332577] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (∼10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.
Collapse
|
302
|
Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 2012; 47:222-35. [DOI: 10.3109/10409238.2012.655374] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
303
|
Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 2012; 147:1040-53. [PMID: 22118461 DOI: 10.1016/j.cell.2011.10.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/22/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.
Collapse
Affiliation(s)
- Hans Hombauer
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | | | | | | | |
Collapse
|
304
|
Suyari O, Kawai M, Ida H, Yoshida H, Sakaguchi K, Yamaguchi M. Differential requirement for the N-terminal catalytic domain of the DNA polymerase ε p255 subunit in the mitotic cell cycle and the endocycle. Gene 2012; 495:104-14. [PMID: 22245183 DOI: 10.1016/j.gene.2011.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
Abstract
In Drosophila, the 255kDa catalytic subunit (dpolεp255) and the 58kDa subunit of DNA polymerase ε (dpolεp58) have been identified. The N-terminus of dpolεp255 carries well-conserved six DNA polymerase subdomains and five 3'→5' exonuclease motifs as observed with Polε in other species. We here examined roles of dpolεp255 during Drosophila development using transgenic fly lines expressing double stranded RNA (dsRNA). Expression of dpolεp255 dsRNA in eye discs induced a small eye phenotype and inhibited DNA synthesis, indicating a role in the G1-S transition and/or S-phase progression of the mitotic cycle. Similarly, expression of dpolεp255 dsRNA in the salivary glands resulted in small size and endoreplication defects, demonstrating a critical role in endocycle progression. In the eye disc, defects induced by knockdown of dpolεp255 were rescued by overexpression of the C-terminal region of dpolεp255, indicating that the function of this non-catalytic domain is conserved between yeast and Drosophila. However, this was not the case for the salivary gland, suggesting that the catalytic N-terminal region is crucial for endoreplication and its defect cannot be complemented by other DNA polymerases. In addition, several genetic interactants with dpolεp255 including genes related to DNA replication such as RFC, DNA primase, DNA polη, Mcm10 and Psf2 and chromatin remodeling such as Iswi were also identified.
Collapse
Affiliation(s)
- Osamu Suyari
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
305
|
Abstract
High-fidelity chromosomal DNA replication is vital for maintaining the integrity of the genetic material in all forms of cellular life. In eukaryotic cells, around 40-50 distinct conserved polypeptides are essential for chromosome replication, the majority of which are themselves component parts of a series of elaborate molecular machines that comprise the replication apparatus or replisome. How these complexes are assembled, what structures they adopt, how they perform their functions, and how those functions are regulated, are key questions for understanding how genome duplication occurs. Here I present a brief overview of current knowledge of the composition of the replisome and the dynamic molecular events that underlie chromosomal DNA replication in eukaryotic cells.
Collapse
|
306
|
Abstract
DNA polymerase ε (Pol ε) is one of three replicative DNA polymerases in eukaryotic cells. Pol ε is a multi-subunit DNA polymerase with many functions. For example, recent studies in yeast have suggested that Pol ε is essential during the initiation of DNA replication and also participates during leading strand synthesis. In this chapter, we will discuss the structure of Pol ε, the individual subunits and their function.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | | |
Collapse
|
307
|
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 2011; 7:e1002407. [PMID: 22144917 PMCID: PMC3228825 DOI: 10.1371/journal.pgen.1002407] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved.
Collapse
|
308
|
Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PMJ, Pierik AJ. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 2011; 8:125-32. [PMID: 22119860 PMCID: PMC3241888 DOI: 10.1038/nchembio.721] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/03/2011] [Indexed: 11/09/2022]
Abstract
The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.
Collapse
Affiliation(s)
- Daili J A Netz
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Wang Y, Zhang Q, Chen H, Li X, Mai W, Chen K, Zhang S, Lee EYC, Lee MYWT, Zhou Y. P50, the small subunit of DNA polymerase delta, is required for mediation of the interaction of polymerase delta subassemblies with PCNA. PLoS One 2011; 6:e27092. [PMID: 22073260 PMCID: PMC3206906 DOI: 10.1371/journal.pone.0027092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Mammalian DNA polymerase δ (pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and various DNA repair processes. Its function as a chromosomal DNA polymerase is dependent on the association with proliferating cell nuclear antigen (PCNA) which functions as a molecular sliding clamp. All four of the pol δ subunits (p125, p50, p68, and p12) have been reported to bind to PCNA. However, the identity of the subunit of pol δ that directly interacts with PCNA and is therefore primarily responsible for the processivity of the enzyme still remains controversial. Previous model for the network of protein-protein interactions of the pol δ-PCNA complex showed that pol δ might be able to interact with a single molecule of PCNA homotrimer through its three subunits, p125, p68, and p12 in which the p50 was not included in. Here, we have confirmed that the small subunit p50 of human pol δ truthfully interacts with PCNA by the use of far-Western analysis, quantitative ELISA assay, and subcellular co-localization. P50 is required for mediation of the interaction between pol δ subassemblies and PCNA homotrimer. Thus, pol δ interacts with PCNA via its four subunits.
Collapse
Affiliation(s)
- Yujue Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiao Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Weijun Mai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Ernest Y. C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Marietta Y. W. T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, United States of America
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
310
|
Arana ME, Potapova O, Kunkel TA, Joyce CM. Kinetic analysis of the unique error signature of human DNA polymerase ν. Biochemistry 2011; 50:10126-35. [PMID: 22008035 DOI: 10.1021/bi201197p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
311
|
Kim N, Mudrak SV, Jinks-Robertson S. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair (Amst) 2011; 10:1262-71. [PMID: 22024240 DOI: 10.1016/j.dnarep.2011.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022]
Abstract
The bypass of AP sites in yeast requires the Rev1 protein in addition to the Pol ζ translesion synthesis DNA polymerase. Although Rev1 was originally characterized biochemically as a dCMP transferase during AP-site bypass, the relevance of this activity in vivo is unclear. The current study uses highly sensitive frameshift- and nonsense-reversion assays to monitor the bypass of AP sites created when uracil is excised from chromosomal DNA. In the frameshift-reversion assay, an unselected base substitution frequently accompanies the selected mutation, allowing the relative incorporation of each of the four dNMPs opposite endogenously created AP sites to be inferred. Results with this assay suggest that dCMP is the most frequent dNMP inserted opposite uracil-derived AP sites and demonstrate that dCMP insertion absolutely requires the catalytic activity of Rev1. In the complementary nonsense-reversion assay, dCMP insertion likewise depended on the dCMP transferase activity of Rev1. Because dAMP insertion opposite uracil-derived AP sites does not revert the nonsense allele and hence could not be detected, it also was possible to detect low levels of dGMP or dTMP insertion upon loss of Rev1 catalytic activity. These results demonstrate that the catalytic activity of Rev1 is biologically relevant and is required specifically for dCMP insertion during the bypass of endogenous AP sites.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | | | | |
Collapse
|
312
|
PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc Natl Acad Sci U S A 2011; 108:17927-32. [PMID: 22003126 DOI: 10.1073/pnas.1109981108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase δ (Polδ) plays an essential role in replication from yeast to humans. Polδ in Saccharomyces cerevisiae is comprised of three subunits, the catalytic subunit Pol3 and the accessory subunits Pol31 and Pol32. Yeast Polδ exhibits a very high processivity in synthesizing DNA with the proliferating cell nuclear antigen (PCNA) sliding clamp; however, it has remained unclear how Polδ binds PCNA to achieve its high processivity. Here we show that PCNA interacting protein (PIP) motifs in all three subunits contribute to PCNA-stimulated DNA synthesis by Polδ, and mutational inactivation of all three PIP motifs abrogates its ability to synthesize DNA with PCNA. Genetic analyses of mutations in these PIPs have revealed that in the absence of functional Pol32 PIP domain, PCNA binding by both the Pol3 and Pol31 subunits becomes essential for cell viability. Based on our biochemical and genetic studies we infer that yeast Polδ can simultaneously utilize all three PIP motifs during PCNA-dependent DNA synthesis, and suggest that Polδ binds the PCNA homotrimer via its three subunits. We consider the implications of these observations for Polδ's role in DNA replication.
Collapse
|
313
|
Drug-sensitive DNA polymerase δ reveals a role for mismatch repair in checkpoint activation in yeast. Genetics 2011; 189:1211-24. [PMID: 21926300 DOI: 10.1534/genetics.111.131938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used a novel method to activate the DNA damage S-phase checkpoint response in Saccharomyces cerevisiae to slow lagging-strand DNA replication by exposing cells expressing a drug-sensitive DNA polymerase δ (L612M-DNA pol δ) to the inhibitory drug phosphonoacetic acid (PAA). PAA-treated pol3-L612M cells arrest as large-budded cells with a single nucleus in the bud neck. This arrest requires all of the components of the S-phase DNA damage checkpoint: Mec1, Rad9, the DNA damage clamp Ddc1-Rad17-Mec3, and the Rad24-dependent clamp loader, but does not depend on Mrc1, which acts as the signaling adapter for the replication checkpoint. In addition to the above components, a fully functional mismatch repair system, including Exo1, is required to activate the S-phase damage checkpoint and for cells to survive drug exposure. We propose that mismatch repair activity produces persisting single-stranded DNA gaps in PAA-treated pol3-L612M cells that are required to increase DNA damage above the threshold needed for checkpoint activation. Our studies have important implications for understanding how cells avoid inappropriate checkpoint activation because of normal discontinuities in lagging-strand replication and identify a role for mismatch repair in checkpoint activation that is needed to maintain genome integrity.
Collapse
|
314
|
Hübscher U, Maga G. DNA replication and repair bypass machines. Curr Opin Chem Biol 2011; 15:627-35. [PMID: 21889903 DOI: 10.1016/j.cbpa.2011.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022]
Abstract
Maintenance of genetic stability is of crucial importance for any form of life. Before cell division in each mammalian cell, the process of DNA replication must faithfully duplicate three billion bases with an absolute minimum of mistakes. This is complicated by the fact that DNA itself is highly reactive and is constantly attacked by endogenous and exogenous factors leading to 50,000-100,000 different damages in the DNA of human cells every day. In this mini-review we will focus on lesion bypass by DNA polymerase machines either in replication or repair, with particular focus on the repair of oxidative lesions.
Collapse
Affiliation(s)
- Ulrich Hübscher
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
315
|
G-quadruplex-induced instability during leading-strand replication. EMBO J 2011; 30:4033-46. [PMID: 21873979 DOI: 10.1038/emboj.2011.316] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/09/2011] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures whose biological functions remain poorly understood. In the yeast S. cerevisiae, we report that G-quadruplexes form and, if not properly processed, pose a specific challenge to replication. We show that the G-quadruplex-prone CEB1 tandem array is tolerated when inserted near ARS305 replication origin in wild-type cells but is very frequently destabilized upon treatment with the potent Phen-DC(3) G-quadruplex ligand, or in the absence of the G-quadruplex-unwinding Pif1 helicase, only when the G-rich strand is the template of leading-strand replication. The orientation-dependent instability is associated with the formation of Rad51-Rad52-dependent X-shaped intermediates during replication detected by two-dimensional (2D) gels, and relies on the presence of intact G-quadruplex motifs in CEB1 and on the activity of ARS305. The asymmetrical behaviour of G-quadruplex prone sequences during replication has implications for their evolutionary dynamics within genomes, including the maintenance of G-rich telomeres.
Collapse
|
316
|
Kunkel TA. Balancing eukaryotic replication asymmetry with replication fidelity. Curr Opin Chem Biol 2011; 15:620-6. [PMID: 21862387 DOI: 10.1016/j.cbpa.2011.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 01/09/2023]
Abstract
Coordinated replication of eukaryotic nuclear genomes is asymmetric, with copying of a leading strand template preceding discontinuous copying of the lagging strand template. Replication is catalyzed by DNA polymerases α, δ and ɛ, enzymes that are related yet differ in physical and biochemical properties, including fidelity. Recent studies suggest that Pol ɛ is normally the primary leading strand replicase, whereas most synthesis by Pol δ occurs during lagging strand replication. New studies show that replication asymmetry can generate strand-specific genome instability resulting from biased deoxynucleotide pools and unrepaired ribonucleotides incorporated into DNA during replication, and that the eukaryotic replication machinery has evolved to most efficiently correct those replication errors that are made at the highest rates.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
317
|
Watt DL, Johansson E, Burgers PM, Kunkel TA. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair (Amst) 2011; 10:897-902. [PMID: 21703943 PMCID: PMC3147116 DOI: 10.1016/j.dnarep.2011.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/24/2011] [Accepted: 05/30/2011] [Indexed: 01/21/2023]
Abstract
The major replicative DNA polymerases of S. cerevisiae (Pols α, δ, and ɛ) incorporate substantial numbers of ribonucleotides into DNA during DNA synthesis. When these ribonucleotides are not removed in vivo, they reside in the template strand used for the next round of replication and could potentially reduce replication efficiency and fidelity. To examine if the presence of ribonucleotides in a DNA template impede DNA synthesis, we determined the efficiency with which Pols α, δ, and ɛ copy DNA templates containing a single ribonucleotide. All three polymerases can replicate past ribonucleotides. Relative to all-DNA templates, bypass of ribo-containing templates is slightly reduced, to extents that depend on the identity of the ribo and the sequence context in which it resides. Bypass efficiencies for Pols δ and ɛ were increased by increasing the dNTP concentrations to those induced by cellular stress, and in the case of Pol ɛ, by inactivating the 3'-exonuclease activity. Overall, ribonucleotide bypass efficiencies are comparable to, and usually exceed, those for the common oxidative stress-induced lesion 8-oxo-guanine.
Collapse
Affiliation(s)
- Danielle L. Watt
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
318
|
Production of recombinant human DNA polymerase delta in a Bombyx mori bioreactor. PLoS One 2011; 6:e22224. [PMID: 21789240 PMCID: PMC3137619 DOI: 10.1371/journal.pone.0022224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/21/2011] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic DNA polymerase δ (pol δ) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol δ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol δ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol δ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol δ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol δ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase δ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol δ, its regulation and the integration of its functions, and how alterations in pol δ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability.
Collapse
|
319
|
Bermudez VP, Farina A, Raghavan V, Tappin I, Hurwitz J. Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication. J Biol Chem 2011; 286:28963-28977. [PMID: 21705323 DOI: 10.1074/jbc.m111.256289] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.
Collapse
Affiliation(s)
- Vladimir P Bermudez
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Andrea Farina
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Vineetha Raghavan
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Inger Tappin
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021.
| |
Collapse
|
320
|
Abstract
Completion of lagging strand DNA synthesis requires processing of up to 50 million Okazaki fragments per cell cycle in mammalian cells. Even in yeast, the Okazaki fragment maturation happens approximately a million times during a single round of DNA replication. Therefore, efficient processing of Okazaki fragments is vital for DNA replication and cell proliferation. During this process, primase-synthesized RNA/DNA primers are removed, and Okazaki fragments are joined into an intact lagging strand DNA. The processing of RNA/DNA primers requires a group of structure-specific nucleases typified by flap endonuclease 1 (FEN1). Here, we summarize the distinct roles of these nucleases in different pathways for removal of RNA/DNA primers. Recent findings reveal that Okazaki fragment maturation is highly coordinated. The dynamic interactions of polymerase δ, FEN1 and DNA ligase I with proliferating cell nuclear antigen allow these enzymes to act sequentially during Okazaki fragment maturation. Such protein-protein interactions may be regulated by post-translational modifications. We also discuss studies using mutant mouse models that suggest two distinct cancer etiological mechanisms arising from defects in different steps of Okazaki fragment maturation. Mutations that affect the efficiency of RNA primer removal may result in accumulation of unligated nicks and DNA double-strand breaks. These DNA strand breaks can cause varying forms of chromosome aberrations, contributing to development of cancer that associates with aneuploidy and gross chromosomal rearrangement. On the other hand, mutations that impair editing out of polymerase α incorporation errors result in cancer displaying a strong mutator phenotype.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | |
Collapse
|
321
|
Vaisica JA, Baryshnikova A, Costanzo M, Boone C, Brown GW. Mms1 and Mms22 stabilize the replisome during replication stress. Mol Biol Cell 2011; 22:2396-408. [PMID: 21593207 PMCID: PMC3128540 DOI: 10.1091/mbc.e10-10-0848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A mechanism is shown by which Mms1 and Mms22 promote DNA replication in the presence of replication stress: they stabilize the replisome at stalled replication forks. Mms1 and Mms22 form a Cul4Ddb1-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101Mms1/Mms22 ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1—Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.
Collapse
Affiliation(s)
- Jessica A Vaisica
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
322
|
Clark AB, Lujan SA, Kissling GE, Kunkel TA. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε. DNA Repair (Amst) 2011; 10:476-82. [PMID: 21414850 PMCID: PMC3652408 DOI: 10.1016/j.dnarep.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 02/11/2011] [Indexed: 01/11/2023]
Abstract
During DNA synthesis in vitro using dNTP and rNTP concentrations present in vivo, yeast replicative DNA polymerases α, δ and ɛ (Pols α, δ and ɛ) stably incorporate rNTPs into DNA. rNTPs are also incorporated during replication in vivo, and they are repaired in an RNase H2-dependent manner. In strains encoding a mutator allele of Pol ɛ (pol2-M644G), failure to remove rNMPs from DNA due to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2, results in deletion of 2-5 base pairs in short repetitive sequences. Deletion rates depend on the orientation of the reporter gene relative to a nearby replication origin, suggesting that mutations result from rNMPs incorporated during replication. Here we demonstrate that 2-5 base pair deletion mutagenesis also strongly increases in rnh201Δ strains encoding wild type DNA polymerases. As in the pol2-M644G strains, the deletions occur at repetitive sequences and are orientation-dependent, suggesting that mismatches involving misaligned strands arise that could be subject to mismatch repair. Unexpectedly however, 2-5 base pair deletion rates resulting from loss of RNH201 in the pol2-M644G strain are unaffected by concomitant loss of MSH3, MSH6, or both. It could be that the mismatch repair machinery is unable to repair mismatches resulting from unrepaired rNMPs incorporated into DNA by M644G Pol ɛ, but this possibility is belied by the observation that Msh2-Msh6 can bind to a ribonucleotide-containing mismatch. Alternatively, following incorporation of rNMPs by M644G Pol ɛ during replication, the conversion of unrepaired rNMPs into mutations may occur outside the context of replication, e.g., during the repair of nicks resulting from rNMPs in DNA. The results make interesting predictions that can be tested.
Collapse
Affiliation(s)
- Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
323
|
Abdulovic AL, Hile SE, Kunkel TA, Eckert KA. The in vitro fidelity of yeast DNA polymerase δ and polymerase ε holoenzymes during dinucleotide microsatellite DNA synthesis. DNA Repair (Amst) 2011; 10:497-505. [PMID: 21429821 PMCID: PMC3121764 DOI: 10.1016/j.dnarep.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/20/2022]
Abstract
Elucidating the sources of genetic variation within microsatellite alleles has important implications for understanding the etiology of human diseases. Mismatch repair is a well described pathway for the suppression of microsatellite instability. However, the cellular polymerases responsible for generating microsatellite errors have not been fully described. We address this gap in knowledge by measuring the fidelity of recombinant yeast polymerase δ (Pol δ) and ɛ (Pol ɛ) holoenzymes during synthesis of a [GT/CA] microsatellite. The in vitro HSV-tk forward assay was used to measure DNA polymerase errors generated during gap-filling of complementary GT(10) and CA(10)-containing substrates and ∼90 nucleotides of HSV-tk coding sequence surrounding the microsatellites. The observed mutant frequencies within the microsatellites were 4 to 30-fold higher than the observed mutant frequencies within the coding sequence. More specifically, the rate of Pol δ and Pol ɛ misalignment-based insertion/deletion errors within the microsatellites was ∼1000-fold higher than the rate of insertion/deletion errors within the HSV-tk gene. Although the most common microsatellite error was the deletion of a single repeat unit, ∼ 20% of errors were deletions of two or more units for both polymerases. The differences in fidelity for wild type enzymes and their exonuclease-deficient derivatives were ∼2-fold for unit-based microsatellite insertion/deletion errors. Interestingly, the exonucleases preferentially removed potentially stabilizing interruption errors within the microsatellites. Since Pol δ and Pol ɛ perform not only the bulk of DNA replication in eukaryotic cells but also are implicated in performing DNA synthesis associated with repair and recombination, these results indicate that microsatellite errors may be introduced into the genome during multiple DNA metabolic pathways.
Collapse
Affiliation(s)
- Amy L. Abdulovic
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Suzanne E. Hile
- Departments of Pathology and Biochemistry & Molecular Biology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Kristin A. Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
324
|
Zhang W, Qin Z, Zhang X, Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 2011; 585:2786-94. [PMID: 21536034 DOI: 10.1016/j.febslet.2011.04.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
Living organisms not only repair DNA damage induced by environmental agents and endogenous cellular metabolites, but have also developed mechanisms to survive in the presence of otherwise lethal lesions. DNA-damage tolerance (DDT) is considered such a mechanism that resumes DNA synthesis in the presence of replication-blocking lesions. Recent studies revealed that DDT in budding yeast is achieved through sequential ubiquitination of DNA polymerase processivity factor, proliferating cell nuclear antigen (PCNA). It is generally believed that monoubiquitinated PCNA promotes translesion DNA synthesis, whereas polyubiquitinated PCNA mediates an error-free mode of lesion bypass. This review will discuss how ubiquitinated PCNA modulates different means of lesion bypass.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | | | | | | |
Collapse
|
325
|
McHenry CS. Breaking the rules: bacteria that use several DNA polymerase IIIs. EMBO Rep 2011; 12:408-14. [PMID: 21475246 DOI: 10.1038/embor.2011.51] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/16/2011] [Indexed: 02/02/2023] Open
Abstract
Studies using Escherichia coli DNA polymerase (Pol) III as the prototype for bacterial DNA replication have suggested that--in contrast to eukaryotes--one replicase performs all of the main functions at the replication fork. However, recent studies have revealed that replication in other bacteria requires two forms of Pol III, one of which seems to extend RNA primers by only a few nucleotides before transferring the product to the other polymerase--an arrangement analogous to that in eukaryotes. Yet another group of bacteria encode a second Pol III (ImuC), which apparently replaces a Pol Y-type polymerase (Pol V) that is required for induced mutagenesis in E. coli. A complete understanding of complex bacterial replicases will allow the simultaneous biochemical screening of all their components and, thus, the identification of new antibacterial compounds.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Chemistry 76, UCB 215, Boulder, Colorado 80309, USA.
| |
Collapse
|
326
|
Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase ε. PLoS Genet 2011; 7:e1002022. [PMID: 21436894 PMCID: PMC3060063 DOI: 10.1371/journal.pgen.1002022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/20/2011] [Indexed: 12/23/2022] Open
Abstract
Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.
Collapse
|
327
|
The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes. Biochem Soc Trans 2011; 39:70-6. [DOI: 10.1042/bst0390070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5′-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.
Collapse
|
328
|
Nick McElhinny SA, Kissling GE, Kunkel TA. Differential correction of lagging-strand replication errors made by DNA polymerases {alpha} and {delta}. Proc Natl Acad Sci U S A 2010; 107:21070-5. [PMID: 21041657 PMCID: PMC3000245 DOI: 10.1073/pnas.1013048107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mismatch repair (MMR) of replication errors requires DNA ends that can direct repair to the newly synthesized strand containing the error. For all but those organisms that use adenine methylation to generate nicks, the source of these ends in vivo is unknown. One possibility is that MMR may have a "special relation to the replication complex" [Wagner R, Jr., Meselson M (1976) Proc Natl Acad Sci USA 73:4135-4139], perhaps one that allows 5' or 3' DNA ends associated with replication to act as strand discrimination signals. Here we examine this hypothesis, based on the logic that errors made by yeast DNA polymerase α (Pol α), which initiates Okazaki fragments during lagging-strand replication, will always be closer to a 5' end than will be more internal errors generated by DNA polymerase δ (Pol δ), which takes over for Pol α to complete lagging-strand replication. When we compared MMR efficiency for errors made by variant forms of these two polymerases, Msh2-dependent repair efficiencies for mismatches made by Pol α were consistently higher than for those same mismatches when made by Pol δ. Thus, one special relationship between MMR and replication is that MMR is more efficient for the least accurate of the major replicative polymerases, exonuclease-deficient Pol α. This observation is consistent with the close proximity and possible use of 5' ends of Okazaki fragments for strand discrimination, which could increase the probability of Msh2-dependent MMR by 5' excision, by a Msh2-dependent strand displacement mechanism, or both.
Collapse
Affiliation(s)
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology and
| |
Collapse
|
329
|
Crouse GF. An end for mismatch repair. Proc Natl Acad Sci U S A 2010; 107:20851-2. [PMID: 21115816 PMCID: PMC3000264 DOI: 10.1073/pnas.1016039107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Affiliation(s)
- Gray F Crouse
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
330
|
Aksenova A, Volkov K, Maceluch J, Pursell ZF, Rogozin IB, Kunkel TA, Pavlov YI, Johansson E. Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. PLoS Genet 2010; 6:e1001209. [PMID: 21124948 PMCID: PMC2987839 DOI: 10.1371/journal.pgen.1001209] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/15/2010] [Indexed: 01/31/2023] Open
Abstract
Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3' to 5'exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system.
Collapse
Affiliation(s)
- Anna Aksenova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kirill Volkov
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jaroslaw Maceluch
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Zachary F. Pursell
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Heath, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Heath, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Department of Biochemistry and Molecular Biology, and Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
331
|
Vanoli F, Fumasoni M, Szakal B, Maloisel L, Branzei D. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet 2010; 6:e1001205. [PMID: 21085632 PMCID: PMC2978687 DOI: 10.1371/journal.pgen.1001205] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 10/13/2010] [Indexed: 02/06/2023] Open
Abstract
Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.
Collapse
Affiliation(s)
- Fabio Vanoli
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Marco Fumasoni
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Laurent Maloisel
- CEA, DSV, iRCM, SIGRR, LRGM, and CNRS, UMR 217, Fontenay-aux-Roses, France
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
332
|
Narita T, Tsurimoto T, Yamamoto J, Nishihara K, Ogawa K, Ohashi E, Evans T, Iwai S, Takeda S, Hirota K. Human replicative DNA polymerase δ can bypass T-T (6-4) ultraviolet photoproducts on template strands. Genes Cells 2010; 15:1228-39. [PMID: 21070511 DOI: 10.1111/j.1365-2443.2010.01457.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA polymerase δ (Polδ) carries out DNA replication with extremely high accuracy. This great fidelity primarily depends on the efficient exclusion of incorrect base pairs from the active site of the polymerase domain. In addition, the 3'-5' exonuclease activity of Polδ further enhances its accuracy by eliminating misincorporated nucleotides. It is believed that these enzymatic properties also inhibit Polδ from inserting nucleotides opposite damaged templates. To test this widely accepted idea, we examined in vitro DNA synthesis by human Polδ enzymes proficient and deficient in the exonuclease activity. We chose the UV-induced lesions cyclobutyl pyrimidine dimer (CPD) and 6-4 pyrimidone photoproduct (6-4 PP) as damaged templates. 6-4 PP represents the most formidable challenge to DNA replication, and no single eukaryotic DNA polymerase has been shown to bypass 6-4 PP in vitro. Unexpectedly, we found that Polδ can perform DNA synthesis across both 6-4 PP and CPD even with a physiological concentration of deoxyribonucleotide triphosphates (dNTPs). DNA synthesis across 6-4 PP was often accompanied by a nucleotide deletion and was highly mutagenic. This unexpected enzymatic property of Polδ in the bypass of UV photoproducts challenges the received notion that the accuracy of Polδ prevents bypassing damaged templates.
Collapse
Affiliation(s)
- Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies. Proc Natl Acad Sci U S A 2010; 107:19736-41. [PMID: 21041673 DOI: 10.1073/pnas.1014139107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In ensemble and single-molecule experiments using the yeast proliferating cell nuclear antigen (PCNA, clamp) and replication factor C (RFC, clamp loader), we have examined the assembly of the RFC·PCNA·DNA complex and its progression to holoenzyme upon addition of polymerase δ (polδ). We obtained data that indicate (i) PCNA loading on DNA proceeds through multiple conformational intermediates and is successful after several failed attempts; (ii) RFC does not act catalytically on a primed 45-mer templated fork; (iii) the RFC·PCNA·DNA complex formed in the presence of ATP is derived from at least two kinetically distinguishable species; (iv) these species disassemble through either unloading of RFC·PCNA from DNA or dissociation of PCNA into its component subunits; and (v) in the presence of polδ only one species converts to the RFC·PCNA·DNA·polδ holoenzyme. These findings redefine and deepen our understanding of the clamp-loading process and reveal that it is surprisingly one of trial and error to arrive at a heuristic solution.
Collapse
|
334
|
Korona DA, Lecompte KG, Pursell ZF. The high fidelity and unique error signature of human DNA polymerase epsilon. Nucleic Acids Res 2010; 39:1763-73. [PMID: 21036870 PMCID: PMC3061053 DOI: 10.1093/nar/gkq1034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3′→5′ exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4–5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.
Collapse
Affiliation(s)
- Dagmara A Korona
- Department of Biochemistry and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | |
Collapse
|
335
|
Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 2010; 39:1360-71. [PMID: 20961955 PMCID: PMC3045583 DOI: 10.1093/nar/gkq829] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mechanisms by which imbalanced dNTPs induce mutations have been well characterized within a test tube, but not in vivo. We have examined mechanisms by which dNTP imbalances induce genome instability in strains of Saccharomyces cerevisiae with different amino acid substitutions in Rnr1, the large subunit of ribonucleotide reductase. These strains have different dNTP imbalances that correlate with elevated CAN1 mutation rates, with both substitution and insertion–deletion rates increasing by 10- to 300-fold. The locations of the mutations in a strain with elevated dTTP and dCTP are completely different from those in a strain with elevated dATP and dGTP. Thus, imbalanced dNTPs reduce genome stability in a manner that is highly dependent on the nature and degree of the imbalance. Mutagenesis is enhanced despite the availability of proofreading and mismatch repair. The mutations can be explained by imbalanced dNTP-induced increases in misinsertion, strand misalignment and mismatch extension at the expense of proofreading. This implies that the relative dNTP concentrations measured in extracts are truly available to a replication fork in vivo. An interesting mutational strand bias is observed in one rnr1 strain, suggesting that the S-phase checkpoint selectively prevents replication errors during leading strand replication.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
336
|
Larrea AA, Lujan SA, McElhinny SAN, Mieczkowski PA, Resnick MA, Gordenin DA, Kunkel TA. Genome-wide model for the normal eukaryotic DNA replication fork. Proc Natl Acad Sci U S A 2010; 107:17674-9. [PMID: 20876092 PMCID: PMC2955150 DOI: 10.1073/pnas.1010178107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate DNA replication enzymology across the nuclear genome of budding yeast, deep sequencing was used to establish the pattern of uncorrected replication errors generated by an asymmetric mutator variant of DNA polymerase δ (Pol δ). Sequencing of 16 genomes identified 1,206-bp substitutions generated over 33 generations by L612M Pol δ in a mismatch repair defective strain. Alignment of sequences flanking these substitutions identified "hotspot" motifs for Pol δ replication errors. The substitutions were distributed evenly across all 16 chromosomes. The vast majority were transitions that occurred with a strand bias that varied in a predictable manner relative to known functional origins of replication. This strand bias strongly supports the idea that Pol δ is primarily a lagging strand polymerase during replication across the entire nuclear genome.
Collapse
Affiliation(s)
- Andres A. Larrea
- Laboratory of Molecular Genetics and
- Laboratory of Structural Biology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and
- Laboratory of Structural Biology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Stephanie A. Nick McElhinny
- Laboratory of Molecular Genetics and
- Laboratory of Structural Biology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Piotr A. Mieczkowski
- Department of Genetics, Carolina Center for Genome Science, University of North Carolina, Chapel Hill, NC 27599
| | | | | | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and
- Laboratory of Structural Biology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| |
Collapse
|
337
|
Hoffmann JS, Cazaux C. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer. Semin Cancer Biol 2010; 20:312-9. [PMID: 20934518 DOI: 10.1016/j.semcancer.2010.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Collapse
Affiliation(s)
- Jean-Sébastien Hoffmann
- CNRS, IPBS (Institute of Pharmacology and Structural Biology), 205, route de Narbonne, University of Toulouse, UPS, 31077 Toulouse, France.
| | | |
Collapse
|
338
|
Preston BD, Albertson TM, Herr AJ. DNA replication fidelity and cancer. Semin Cancer Biol 2010; 20:281-93. [PMID: 20951805 PMCID: PMC2993855 DOI: 10.1016/j.semcancer.2010.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/07/2010] [Indexed: 12/14/2022]
Abstract
Cancer is fueled by mutations and driven by adaptive selection. Normal cells avoid deleterious mutations by replicating their genomes with extraordinary accuracy. Here we review the pathways governing DNA replication fidelity and discuss evidence implicating replication errors (point mutation instability or PIN) in carcinogenesis.
Collapse
Affiliation(s)
- Bradley D Preston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
339
|
Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010; 20:304-11. [PMID: 20934516 PMCID: PMC3087159 DOI: 10.1016/j.semcancer.2010.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular nature of the defect.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
340
|
Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundström EB, Johansson E, Chabes A, Kunkel TA. Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 2010; 6:774-81. [PMID: 20729855 PMCID: PMC2942972 DOI: 10.1038/nchembio.424] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/15/2010] [Indexed: 11/16/2022]
Abstract
Maintaining the chemical identity of DNA depends on ribonucleotide exclusion by DNA polymerases. However, ribonucleotide exclusion during DNA synthesis in vitro is imperfect. To determine whether ribonucleotides are incorporated during DNA replication in vivo, we substituted leucine or glycine for an active-site methionine in yeast DNA polymerase ϵ (Pol ϵ). Ribonucleotide incorporation in vitro was three-fold lower for M644L and 11-fold higher for M644G Pol ϵ compared to wild-type Pol ϵ. This hierarchy was recapitulated in vivo in yeast strains lacking RNase H2. Moreover, the pol2-M644G rnh201Δ strain progressed more slowly through S phase, had elevated dNTP pools and generated 2-5-base-pair deletions in repetitive sequences at a high rate and in a gene orientation-dependent manner. The data indicate that ribonucleotides are incorporated during replication in vivo, that they are removed by RNase H2-dependent repair and that defective repair results in replicative stress and genome instability via DNA strand misalignment.
Collapse
Affiliation(s)
- Stephanie A. Nick McElhinny
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Dinesh Kumar
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Danielle L. Watt
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Brian E. Watts
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Else-Britt Lundström
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
341
|
Brocas C, Charbonnier JB, Dhérin C, Gangloff S, Maloisel L. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair. DNA Repair (Amst) 2010; 9:1098-111. [PMID: 20813592 DOI: 10.1016/j.dnarep.2010.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.
Collapse
Affiliation(s)
- Clémentine Brocas
- CEA, DSV, iRCM, Bâtiment 05/BP6, Fontenay-aux-Roses, F-92265, France
| | | | | | | | | |
Collapse
|
342
|
Dieckman LM, Johnson RE, Prakash S, Washington MT. Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. Biochemistry 2010; 49:7344-50. [PMID: 20666462 PMCID: PMC2941984 DOI: 10.1021/bi100556m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic DNA polymerase delta (pol delta) is a member of the B family of polymerases and synthesizes most of the lagging strand during DNA replication. Yeast pol delta is a heterotrimer comprised of three subunits: the catalytic subunit (Pol3) and two accessory subunits (Pol31 and Pol32). Although pol delta is one of the major eukaryotic replicative polymerase, the mechanism by which it incorporates nucleotides is unknown. Here we report both steady state and pre-steady state kinetic studies of the fidelity of pol delta. We found that pol delta incorporates nucleotides with an error frequency of 10(-4) to 10(-5). Furthermore, we showed that for correct versus incorrect nucleotide incorporation, there are significant differences between both pre-steady state kinetic parameters (apparent K(d)(dNTP) and k(pol)). Somewhat surprisingly, we found that pol delta synthesizes DNA at a slow rate with a k(pol) of approximately 1 s(-1). We suggest that, unlike its prokaryotic counterparts, pol delta requires replication accessory factors like proliferating cell nuclear antigen to achieve rapid rates of nucleotide incorporation.
Collapse
Affiliation(s)
- Lynne M. Dieckman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| | - Robert E. Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| |
Collapse
|
343
|
Araki H. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol 2010; 22:766-71. [PMID: 20728327 DOI: 10.1016/j.ceb.2010.07.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 01/16/2023]
Abstract
Cyclin-dependent kinase (CDK) is essential for the initiation of chromosomal DNA replication. CDK phosphorylates two yeast replication proteins, Sld2 and Sld3, both of which bind to another replication protein, Dpb11 when phosphorylated. These interactions are essential and are the minimal requirements for CDK activation of chromosomal DNA replication. This review discusses how these phosphorylation-dependent interactions initiate DNA replication through the formation of the pre-loading complex (pre-LC) and its interaction with phosphorylated Sld3 on replication origins. These steps are further regulated by multisite phosphorylation of Sld2. Sld3, on the other hand, must be turned over to reassociate with origins. Pol ɛ functions as a component of the pre-LC as well as a replicative DNA polymerase at replication forks.
Collapse
Affiliation(s)
- Hiroyuki Araki
- Department of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Japan.
| |
Collapse
|
344
|
Haworth J, Alver RC, Anderson M, Bielinsky AK. Ubc4 and Not4 regulate steady-state levels of DNA polymerase-α to promote efficient and accurate DNA replication. Mol Biol Cell 2010; 21:3205-19. [PMID: 20660159 PMCID: PMC2938386 DOI: 10.1091/mbc.e09-06-0452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA polymerase-alpha (pol-alpha) is essential for eukaryotic replication but lacks proofreading activity. Its turnover is regulated by the E2 Ubc4 and the E3 Not4, which are known transcriptional regulators. This pathway likely prevents accumulation of the potential mutator pol-alpha to promote genome stability. The accurate duplication of chromosomal DNA is required to maintain genomic integrity. However, from an evolutionary point of view, a low mutation rate during DNA replication is desirable. One way to strike the right balance between accuracy and limited mutagenesis is to use a DNA polymerase that lacks proofreading activity but contributes to DNA replication in a very restricted manner. DNA polymerase-α fits this purpose exactly, but little is known about its regulation at the replication fork. Minichromosome maintenance protein (Mcm) 10 regulates the stability of the catalytic subunit of pol-α in budding yeast and human cells. Cdc17, the catalytic subunit of pol-α in yeast, is rapidly degraded after depletion of Mcm10. Here we show that Ubc4 and Not4 are required for Cdc17 destabilization. Disruption of Cdc17 turnover resulted in sensitivity to hydroxyurea, suggesting that this pathway is important for DNA replication. Furthermore, overexpression of Cdc17 in ubc4 and not4 mutants caused slow growth and synthetic dosage lethality, respectively. Our data suggest that Cdc17 levels are very tightly regulated through the opposing forces of Ubc4 and Not4 (destabilization) and Mcm10 (stabilization). We conclude that regular turnover of Cdc17 via Ubc4 and Not4 is required for proper cell proliferation.
Collapse
Affiliation(s)
- Justin Haworth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
345
|
Mason AC, Roy R, Simmons DT, Wold MS. Functions of alternative replication protein A in initiation and elongation. Biochemistry 2010; 49:5919-28. [PMID: 20545304 PMCID: PMC2912413 DOI: 10.1021/bi100380n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair, and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative replication protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to those of the canonical RPA complex but does not support DNA replication. We describe studies that aimed to identify what properties of aRPA prevent it from functioning in DNA replication. We show aRPA has weakened interaction with DNA polymerase alpha (pol alpha) and that aRPA is not able to efficiently stimulate DNA synthesis by pol alpha on aRPA-coated DNA. Additionally, we show that aRPA is unable to support de novo priming by pol alpha. Because pol alpha activity is essential for both initiation and Okazaki strand synthesis, we conclude that the inability of aRPA to support pol alpha loading causes aRPA to be defective in DNA replication. We also show that aRPA stimulates synthesis by DNA polymerase alpha in the presence of PCNA and RFC. This indicates that aRPA can support extension of DNA strands by DNA polymerase partial differential. This finding along with the previous observation that aRPA supports early steps of nucleotide excision repair and recombination indicates that aRPA can support DNA repair synthesis that requires polymerase delta, PCNA, and RFC and support a role for aRPA in DNA repair.
Collapse
Affiliation(s)
- Aaron C. Mason
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Rupa Roy
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Daniel T. Simmons
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Marc S. Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
346
|
Abstract
Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleus and how this spatial organization is linked to temporal regulation. We focus on DNA replication in budding yeast and fission yeast and, where applicable, compare yeast DNA replication with that in bacteria and metazoans.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
347
|
Svejstrup JQ. The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 2010; 35:333-8. [PMID: 20194025 DOI: 10.1016/j.tibs.2010.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/27/2022]
Abstract
Maintaining genome integrity is crucial for correctly regulated gene expression. Conversely, the process of transcription fundamentally impinges on genome stability, necessitating cellular mechanisms that lessen the genome destabilizing effect of reading genes. This review provides an overview of our present knowledge of how eukaryotic RNA polymerase II transcription affects, and is affected by, other DNA-related processes such as chromatin remodeling, DNA repair, recombination and replication.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
348
|
Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 2010; 141:255-67. [PMID: 20403322 DOI: 10.1016/j.cell.2010.02.028] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/26/2009] [Accepted: 02/03/2010] [Indexed: 12/26/2022]
Abstract
Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both branches of this pathway are believed to occur in S phase in order to ensure replication completion. However, we found that limiting TLS or the error-free pathway to the G2/M phase of the cell-cycle efficiently promote lesion tolerance. Thus, our findings indicate that both branches of the DNA damage tolerance pathway operate effectively after chromosomal replication, outside S phase. We therefore propose that the RAD6 pathway acts on single-stranded gaps left behind newly restarted replication forks.
Collapse
Affiliation(s)
- Georgios I Karras
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
349
|
Reha-Krantz LJ. DNA polymerase proofreading: Multiple roles maintain genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1049-63. [DOI: 10.1016/j.bbapap.2009.06.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
|
350
|
Perumal SK, Yue H, Hu Z, Spiering MM, Benkovic SJ. Single-molecule studies of DNA replisome function. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1094-112. [PMID: 19665592 PMCID: PMC3020669 DOI: 10.1016/j.bbapap.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
Abstract
Fast and accurate replication of DNA is accomplished by the interactions of multiple proteins in the dynamic DNA replisome. The DNA replisome effectively coordinates the leading and lagging strand synthesis of DNA. These complex, yet elegantly organized, molecular machines have been studied extensively by kinetic and structural methods to provide an in-depth understanding of the mechanism of DNA replication. Owing to averaging of observables, unique dynamic information of the biochemical pathways and reactions is concealed in conventional ensemble methods. However, recent advances in the rapidly expanding field of single-molecule analyses to study single biomolecules offer opportunities to probe and understand the dynamic processes involved in large biomolecular complexes such as replisomes. This review will focus on the recent developments in the biochemistry and biophysics of DNA replication employing single-molecule techniques and the insights provided by these methods towards a better understanding of the intricate mechanisms of DNA replication.
Collapse
Affiliation(s)
- Senthil K. Perumal
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongjun Yue
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhenxin Hu
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle M. Spiering
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Benkovic
- 414 Wartik Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|