301
|
Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol 2015; 35:928-38. [PMID: 25561469 DOI: 10.1128/mcb.01426-14] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) and CDK12 have each been demonstrated to phosphorylate the RNA polymerase II C-terminal domain (CTD) at serine 2 of the heptad repeat, both in vitro and in vivo. CDK9, as part of P-TEFb and the super elongation complex (SEC), is by far the best characterized of CDK9, CDK12, and CDK13. We employed both in vitro and in vivo assays to further investigate the molecular properties of CDK12 and its paralog CDK13. We isolated Flag-tagged CDK12 and CDK13 and found that they associate with numerous RNA processing factors. Although knockdown of CDK12, CDK13, or their cyclin partner CCNK did not affect the bulk CTD phosphorylation levels in HCT116 cells, transcriptome sequencing (RNA-seq) analysis revealed that CDK12 and CDK13 losses in HCT116 cells preferentially affect expression of DNA damage response and snoRNA genes, respectively. CDK12 and CDK13 depletion also leads to a loss of expression of RNA processing factors and to defects in RNA processing. These findings suggest that in addition to implementing CTD phosphorylation, CDK12 and CDK13 may affect RNA processing through direct physical interactions with RNA processing factors and by regulating their expression.
Collapse
|
302
|
de Lorenzo L. Genome-wide analysis of distribution of RNA polymerase II isoforms using ChIP-seq. Methods Mol Biol 2015; 1255:209-21. [PMID: 25487216 DOI: 10.1007/978-1-4939-2175-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a powerful technique for genome-wide profiling of DNA-binding proteins in vivo. ChIP has been used to study diverse nuclear processes such as transcription regulation, at specific loci as well as across the entire genome. In this report, a protocol is described for the application of ChIP to the genome-wide analysis of the distribution of different RNA polymerase II forms. The method makes use of the possibility to crosslink proteins to the DNA, to which they bind in vivo. Specific RNA-Pol II-DNA complexes can then be purified by immunoprecipitation using a specific antibody against the DNA-binding protein of interest, and the associated DNA fragments recovered and analyzed.
Collapse
Affiliation(s)
- Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, 1405 Veterans Drive, Office 301, Lexington, KY, 40506, USA,
| |
Collapse
|
303
|
Meijsing SH. Mechanisms of Glucocorticoid-Regulated Gene Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215990 DOI: 10.1007/978-1-4939-2895-8_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?To answer these questions, this chapter will describe the function of the various "components" and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first "component" is GR itself. The second "component" is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Biology, Ihnestrasse 63-73, Berlin, 14195, Germany,
| |
Collapse
|
304
|
Doamekpor SK, Schwer B, Sanchez AM, Shuman S, Lima CD. Fission yeast RNA triphosphatase reads an Spt5 CTD code. RNA (NEW YORK, N.Y.) 2015; 21:113-123. [PMID: 25414009 PMCID: PMC4274631 DOI: 10.1261/rna.048181.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ana M Sanchez
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
305
|
Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Res 2014; 42:13674-88. [PMID: 25416796 PMCID: PMC4267648 DOI: 10.1093/nar/gku1227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function.
Collapse
Affiliation(s)
- Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Ana I. Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Sergio Alonso-Aguado
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
306
|
Chen Y, Zhang L, Estarás C, Choi SH, Moreno L, Karn J, Moresco JJ, Yates JR, Jones KA. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Genes Dev 2014; 28:2261-75. [PMID: 25319827 PMCID: PMC4201287 DOI: 10.1101/gad.250449.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P-RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P-S2P transition at the integrated HIV-1 promoter.
Collapse
Affiliation(s)
- Yupeng Chen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lirong Zhang
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Conchi Estarás
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Luis Moreno
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - James J Moresco
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
307
|
Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, Siebenlist U, O’Shea JJ, Ozato K. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 2014; 21:1047-57. [PMID: 25383670 PMCID: PMC4720983 DOI: 10.1038/nsmb.2912] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb and has been proposed to release RNA polymerase II (Pol II) from promoter-proximal pausing. We show that BRD4 occupies widespread genomic regions in mouse cells and directly stimulates elongation of both protein-coding transcripts and noncoding enhancer RNAs (eRNAs), in a manner dependent on bromodomain function. BRD4 interacts with elongating Pol II complexes and assists Pol II in progression through hyperacetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonizes BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by facilitating transcript elongation both at enhancers and on gene bodies independently of P-TEFb.
Collapse
Affiliation(s)
- Tomohiko Kanno
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
- Program in Genomics of Differentiation, National Institutes of Child Health and Human Development, Bethesda, MD, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Eric Campos
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Tom D Heightman
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, UK
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - John J O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institutes of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
308
|
Li F, Cheng C, Cui F, de Oliveira MVV, Yu X, Meng X, Intorne AC, Babilonia K, Li M, Li B, Chen S, Ma X, Xiao S, Zheng Y, Fei Z, Metz RP, Johnson CD, Koiwa H, Sun W, Li Z, de Souza Filho GA, Shan L, He P. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe 2014; 16:748-58. [PMID: 25464831 DOI: 10.1016/j.chom.2014.10.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 10/24/2014] [Indexed: 01/03/2023]
Abstract
Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.
Collapse
Affiliation(s)
- Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Cheng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Fuhao Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Marcos V V de Oliveira
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Xiao Yu
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Xiangzong Meng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Aline C Intorne
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Kevin Babilonia
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00680, USA
| | - Maoying Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Xianfeng Ma
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Shunyuan Xiao
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Wenxian Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | | - Libo Shan
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Ping He
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
309
|
Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 14:86-95. [PMID: 25416238 DOI: 10.1128/ec.00106-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation.
Collapse
|
310
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
311
|
Moreira A. Integrating transcription kinetics with alternative polyadenylation and cell cycle control. Nucleus 2014; 2:556-61. [DOI: 10.4161/nucl.2.6.18064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
312
|
Bartkowiak B, Greenleaf AL. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? Transcription 2014; 2:115-119. [PMID: 21826281 DOI: 10.4161/trns.2.3.15004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
The C-terminal domain of RNA polymerase II undergoes a cycle of phosphorylation which allows it to temporally couple transcription with transcription-associated processes. The characterization of hitherto unrecognized metazoan elongation phase CTD kinase activities expands our understanding of this coupling. We discuss the circumstances that delayed the recognition of these kinase activities.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry; Duke Center for RNA Biology; Duke University Medical Center; Durham, NC USA
| | | |
Collapse
|
313
|
Maul RW, Cao Z, Venkataraman L, Giorgetti CA, Press JL, Denizot Y, Du H, Sen R, Gearhart PJ. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells. ACTA ACUST UNITED AC 2014; 211:2297-306. [PMID: 25288395 PMCID: PMC4203944 DOI: 10.1084/jem.20131512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo-activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Zheng Cao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | | | | - Joan L Press
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Yves Denizot
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87025 Limoges, France
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
314
|
Fukudome A, Aksoy E, Wu X, Kumar K, Jeong IS, May K, Russell WK, Koiwa H. Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:27-39. [PMID: 25041272 DOI: 10.1111/tpj.12612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Department of Horticultural Sciences, Vegetable and Fruit Development Center, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
315
|
The 26S proteasome and initiation of gene transcription. Biomolecules 2014; 4:827-47. [PMID: 25211636 PMCID: PMC4192674 DOI: 10.3390/biom4030827] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex.
Collapse
|
316
|
Moquet-Torcy G, Tolza C, Piechaczyk M, Jariel-Encontre I. Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Res 2014; 42:11011-24. [PMID: 25200076 PMCID: PMC4176185 DOI: 10.1093/nar/gku814] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plau codes for the urokinase-type plasminogen activator (uPA), critical in cancer metastasis. While the mechanisms driving its overexpression in tumorigenic processes are unknown, it is regulated by the AP-1 transcriptional complex in diverse situations. The AP-1 component Fra-1 being overexpressed in aggressive breast cancers, we have addressed its role in the overexpression of Plau in the highly metastatic breast cancer model cell line MDA-MB231 using ChIP, pharmacological and RNAi approaches. Plau transcription appears controlled by 2 AP-1 enhancers located -1.9 (ABR-1.9) and -4.1 kb (ABR-4.1) upstream of the transcription start site (TSS) of the uPA-coding mRNA, Plau-001, that bind Fra-1. Surprisingly, RNA Pol II is not recruited only at the Plau-001 TSS but also upstream in the ABR-1.9 and ABR-4.1 region. Most Pol II molecules transcribe short and unstable RNAs while tracking down toward the TSS, where there are converted into Plau-001 mRNA-productive species. Moreover, a minority of Pol II molecules transcribes a low abundance mRNA of unknown function called Plau-004 from the ABR-1.9 domain, whose expression is tempered by Fra-1. Thus, we unveil a heretofore-unsuspected transcriptional complexity at Plau in a reference metastatic breast cancer cell line with pleiotropic effects for Fra-1, providing novel information on AP-1 transcriptional action.
Collapse
Affiliation(s)
- Gabriel Moquet-Torcy
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Claire Tolza
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier cedex 2, France
| |
Collapse
|
317
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
318
|
Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P. Transcriptome Maps of mRNP Biogenesis Factors Define Pre-mRNA Recognition. Mol Cell 2014; 55:745-57. [DOI: 10.1016/j.molcel.2014.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022]
|
319
|
Wani S, Yuda M, Fujiwara Y, Yamamoto M, Harada F, Ohkuma Y, Hirose Y. Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II. PLoS One 2014; 9:e106040. [PMID: 25166011 PMCID: PMC4148344 DOI: 10.1371/journal.pone.0106040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/26/2014] [Indexed: 01/18/2023] Open
Abstract
In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3′-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs. Vertebrate Ssu72 exhibits Ser5- and Ser7-specific CTD phosphatase activity in vitro, but its roles in gene expression and CTD dephosphorylation in vivo remain to be elucidated. To investigate the functions of vertebrate Ssu72 in gene expression, we established chicken DT40 B-cell lines in which Ssu72 expression was conditionally inactivated. Ssu72 depletion in DT40 cells caused defects in 3′-end formation of U2 and U4 snRNAs and GAPDH mRNA. Surprisingly, however, Ssu72 inactivation increased the efficiency of 3′-end formation of non-polyadenylated replication-dependent histone mRNA. Chromatin immunoprecipitation analyses revealed that Ssu72 depletion caused a significant increase in both Ser5 and Ser7 phosphorylation of the Pol II CTD on all genes in which 3′-end formation was affected. These results suggest that vertebrate Ssu72 plays positive roles in 3′-end formation of snRNAs and polyadenylated mRNAs, but negative roles in 3′-end formation of histone mRNAs, through dephosphorylation of both Ser5 and Ser7 of the CTD.
Collapse
Affiliation(s)
- Shotaro Wani
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masamichi Yuda
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Fujiwara
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Masaya Yamamoto
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Fumio Harada
- Department of Molecular and Cellular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- * E-mail:
| |
Collapse
|
320
|
Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE, Mosley AL, Varani G. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J Mol Biol 2014; 426:2970-81. [PMID: 24951832 PMCID: PMC4119023 DOI: 10.1016/j.jmb.2014.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023]
Abstract
The phosphorylation state of heptapeptide repeats within the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (PolII) controls the transcription cycle and is maintained by the competing action of kinases and phosphatases. Rtr1 was recently proposed to be the enzyme responsible for the transition of PolII into the elongation and termination phases of transcription by removing the phosphate marker on serine 5, but this attribution was questioned by the apparent lack of enzymatic activity. Here we demonstrate that Rtr1 is a phosphatase of new structure that is auto-inhibited by its own C-terminus. The enzymatic activity of the protein in vitro is functionally important in vivo as well: a single amino acid mutation that reduces activity leads to the same phenotype in vivo as deletion of the protein-coding gene from yeast. Surprisingly, Rtr1 dephosphorylates not only serine 5 on the CTD but also the newly described anti-termination tyrosine 1 marker, supporting the hypothesis that Rtr1 and its homologs promote the transition from transcription to termination.
Collapse
Affiliation(s)
- Peter L. Hsu
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Jae-Eun Song
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA,Corresponding author. , telephone (206) 543-7113
| |
Collapse
|
321
|
Stasevich TJ, Sato Y, Nozaki N, Kimura H. Quantifying histone and RNA polymerase II post-translational modification dynamics in mother and daughter cells. Methods 2014; 70:77-88. [PMID: 25131722 DOI: 10.1016/j.ymeth.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023] Open
Abstract
Post-translational histone modifications are highly correlated with transcriptional activity, but the relative timing of these marks and their dynamic interplay during gene regulation remains controversial. To shed light on this problem and clarify the connections between histone modifications and transcription, we demonstrate how FabLEM (Fab-based Live Endogenous Modification labeling) can be used to simultaneously track histone H3 Lysine 9 acetylation (H3K9ac) together with RNA polymerase II Serine 2 and Serine 5 phosphorylation (RNAP2 Ser2ph/Ser5ph) in single living cells and their progeny. We provide a detailed description of the FabLEM methodology, including helpful tips for preparing and loading fluorescently conjugated antigen binding fragments (Fab) into cells for optimal results. We also introduce simple procedures for analyzing and visualizing FabLEM data, including color-coded scatterplots to track correlations between modifications through the cell cycle and temporal cross-correlation analysis to dissect modification dynamics. Using these methods, we find significant correlations that span cell generations, with a relatively strong correlation between H3K9ac and Ser5ph that appears to peak a few hours before mitosis and may reflect the bookmarking of genes for efficient re-initiation following mitosis. The techniques we have developed are broadly applicable and should help clarify how histone modifications dynamically contribute to gene regulation.
Collapse
Affiliation(s)
- Timothy J Stasevich
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Dept. of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Yuko Sato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
322
|
Doamekpor SK, Sanchez AM, Schwer B, Shuman S, Lima CD. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes. Genes Dev 2014; 28:1323-36. [PMID: 24939935 PMCID: PMC4066402 DOI: 10.1101/gad.242768.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interactions between RNA guanylyltransferase (GTase) and the C-terminal domain (CTD) repeats of RNA polymerase II (Pol2) and elongation factor Spt5 are thought to orchestrate cotranscriptional capping of nascent mRNAs. The crystal structure of a fission yeast GTase•Pol2 CTD complex reveals a unique docking site on the nucleotidyl transferase domain for an 8-amino-acid Pol2 CTD segment, S5PPSYSPTS5P, bracketed by two Ser5-PO4 marks. Analysis of GTase mutations that disrupt the Pol2 CTD interface shows that at least one of the two Ser5-PO4-binding sites is required for cell viability and that each site is important for cell growth at 37°C. Fission yeast GTase binds the Spt5 CTD at a separate docking site in the OB-fold domain that captures the Trp4 residue of the Spt5 nonapeptide repeat T(1)PAW(4)NSGSK. A disruptive mutation in the Spt5 CTD-binding site of GTase is synthetically lethal with mutations in the Pol2 CTD-binding site, signifying that the Spt5 and Pol2 CTDs cooperate to recruit capping enzyme in vivo. CTD phosphorylation has opposite effects on the interaction of GTase with Pol2 (Ser5-PO4 is required for binding) versus Spt5 (Thr1-PO4 inhibits binding). We propose that the state of Thr1 phosphorylation comprises a binary "Spt5 CTD code" that is read by capping enzyme independent of and parallel to its response to the state of the Pol2 CTD.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Ana M Sanchez
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA; Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
323
|
Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol Cell 2014; 55:467-81. [PMID: 25066235 PMCID: PMC4186968 DOI: 10.1016/j.molcel.2014.05.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022]
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex. The Nrd1 CTD interaction domain (CID) recognizes a CTD mimic in Trf4 The CID interacts with RNAPII and Trf4 in a mutually exclusive manner Architecture of the interactions between the NNS complex, the exosome, and TRAMP The interaction of Nrd1 with Trf4 stimulates the polyadenylation activity of TRAMP
Collapse
|
324
|
Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, Wang Y, Feng Y, Liu Z, Chang Z. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem 2014; 289:22589-22599. [PMID: 24982424 DOI: 10.1074/jbc.m114.560979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CREPT (cell cycle-related and expression elevated protein in tumor)/RPRD1B (regulation of nuclear pre-mRNA domain-containing protein 1B), highly expressed during tumorigenesis, was shown to enhance transcription of CCND1 and to promote cell proliferation by interacting with RNA polymerase II. However, which signaling pathway is involved in CREPT-mediated activation of gene transcription remains unclear. In this study, we reveal that CREPT participates in transcription of the Wnt/β-catenin signaling activated genes through the β-catenin and the TCF4 complex. Our results demonstrate that CREPT interacts with both β-catenin and TCF4, and enhances the association of β-catenin with TCF4, in response to Wnt stimulation. Furthermore, CREPT was shown to occupy at TCF4 binding sites (TBS) of the promoters of Wnt-targeted genes under Wnt stimulation. Interestingly, depletion of CREPT resulted in decreased occupancy of β-catenin on TBS, and over-expression of CREPT enhances the activity of the β-catenin·TCF4 complex to initiate transcription of Wnt target genes, which results in up-regulated cell proliferation and invasion. Our study suggests that CREPT acts as an activator to promote transcriptional activity of the β-catenin·TCF4 complex in response to Wnt signaling.
Collapse
Affiliation(s)
- Yanquan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Chunxiao Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Xiaolin Duan
- The Second People's Hospital of Zhuhai, Guangdong 519000, China
| | - Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Shan Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhe Jin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yarui Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Zewen Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| |
Collapse
|
325
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
326
|
Lijsebettens MV, Dürr J, Woloszynska M, Grasser KD. Elongator and SPT4/SPT5 complexes as proxy to study RNA polymerase II transcript elongation control of plant development. Proteomics 2014; 14:2109-14. [DOI: 10.1002/pmic.201400024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology; VIB; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Ghent Belgium
| | - Julius Dürr
- Department of Cell Biology and Plant Biochemistry; Biochemie-Zentrum Regensburg (BZR); University of Regensburg; Regensburg Germany
| | - Magdalena Woloszynska
- Department of Plant Systems Biology; VIB; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Ghent Belgium
| | - Klaus D. Grasser
- Department of Cell Biology and Plant Biochemistry; Biochemie-Zentrum Regensburg (BZR); University of Regensburg; Regensburg Germany
| |
Collapse
|
327
|
Kaminski TP, Siebrasse JP, Kubitscheck U. Transcription regulation during stable elongation by a reversible halt of RNA polymerase II. Mol Biol Cell 2014; 25:2190-8. [PMID: 24850889 PMCID: PMC4091832 DOI: 10.1091/mbc.e14-02-0755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription regulation models focus on initiation or termination. Transcription can also be halted gene specifically during stable elongation by a heat shock, and the transcription halt can be resumed later under permissive conditions. Thus cells have much wider access to control transcription than is covered by existing models. Regulation of RNA polymerase II (RNAPII) during transcription is essential for controlling gene expression. Here we report that the transcriptional activity of RNAPII at the Balbiani ring 2.1 gene could be halted during stable elongation in salivary gland cells of Chironomus tentans larvae for extended time periods in a regulated manner. The transcription halt was triggered by heat shock and affected all RNAPII independently of their position in the gene. During the halt, incomplete transcripts and RNAPII remained at the transcription site, the phosphorylation state of RNAPII was unaltered, and the transcription bubbles remained open. The transcription of halted transcripts was resumed upon relief of the heat shock. The observed mechanism allows cells to interrupt transcription for extended time periods and rapidly reactivate it without the need to reinitiate transcription of the complete gene. Our results suggest a so-far-unknown level of transcriptional control in eukaryotic cells.
Collapse
Affiliation(s)
- Tim Patrick Kaminski
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| | - Jan Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| |
Collapse
|
328
|
Wu L, Li L, Zhou B, Qin Z, Dou Y. H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 2014; 54:920-931. [PMID: 24837678 DOI: 10.1016/j.molcel.2014.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
Histone H2B ubiquitination plays an important role in transcription regulation. It has been shown that H2B ubiquitination is regulated by multiple upstream events associated with elongating RNA polymerase. Here we demonstrate that H2B K34 ubiquitylation by the MOF-MSL complex is part of the protein networks involved in early steps of transcription elongation. Knocking down MSL2 in the MOF-MSL complex affects not only global H2BK34ub, but also multiple cotranscriptionally regulated histone modifications. More importantly, we show that the MSL, PAF1, and RNF20/40 complexes are recruited and stabilized at active gene promoters by direct binary interactions. The stabilized complexes serve to regulate chromatin association of pTEFb through a positive feedback loop and facilitate Pol II transition during early transcription elongation. Results from our biochemical studies are underscored by genome-wide analyses that show high RNA Pol II processivity and transcription activity at MSL target genes.
Collapse
Affiliation(s)
- Lipeng Wu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
329
|
Descostes N, Heidemann M, Spinelli L, Schüller R, Maqbool MA, Fenouil R, Koch F, Innocenti C, Gut M, Gut I, Eick D, Andrau JC. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. eLife 2014; 3:e02105. [PMID: 24842994 PMCID: PMC4042876 DOI: 10.7554/elife.02105] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.DOI: http://dx.doi.org/10.7554/eLife.02105.001.
Collapse
Affiliation(s)
- Nicolas Descostes
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Lionel Spinelli
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Roland Schüller
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Muhammad Ahmad Maqbool
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| | - Romain Fenouil
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Frederic Koch
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Charlène Innocenti
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Jean-Christophe Andrau
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| |
Collapse
|
330
|
Hsin JP, Li W, Hoque M, Tian B, Manley JL. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. eLife 2014; 3:e02112. [PMID: 24842995 PMCID: PMC4042873 DOI: 10.7554/elife.02112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The RNA polymerase II largest subunit (Rpb1) contains a unique C-terminal domain (CTD) that plays multiple roles during transcription. The CTD is composed of consensus Y1S2P3T4S5P6S7 repeats, in which Ser, Thr and Tyr residues can all be phosphorylated. Here we report analysis of CTD Tyr1 using genetically tractable chicken DT40 cells. Cells expressing an Rpb1 derivative with all Tyr residues mutated to Phe (Rpb1-Y1F) were inviable. Remarkably, Rpb1-Y1F was unstable, degraded to a CTD-less form; however stability, but not cell viability, was fully rescued by restoration of a single C-terminal Tyr (Rpb1-25F+Y). Cytoplasmic and nucleoplasmic Rpb1 was phosphorylated exclusively on Tyr1, and phosphorylation specifically of Tyr1 prevented CTD degradation by the proteasome in vitro. Tyr1 phosphorylation was also detected on chromatin-associated, hyperphosphorylated Rpb1, consistent with a role in transcription. Indeed, we detected accumulation of upstream antisense (ua) RNAs in Rpb1-25F+Y cells, indicating a role for Tyr1 in uaRNA expression. DOI:http://dx.doi.org/10.7554/eLife.02112.001 When a gene is expressed, the DNA is first transcribed to produce an intermediate molecule called a messenger RNA (mRNA), which is then translated to produce a protein. RNA Polymerase II is an enzyme that makes mRNA molecules in organisms as diverse as plants, animals and yeast. RNA Polymerase II is a complex made of a number of proteins. The largest protein in this complex includes a ‘carboxy-terminal domain’ that has multiple repeats of seven amino acids one after the other. The first amino acid in each repeat, a tyrosine, is referred to as tyrosine-1. Adding various chemical tags to the amino acids in these repeats co-ordinates the steps involved in the transcription of genes. In yeast, for example, adding a phosphate groups to tyrosine-1 seems to help the polymerase to proceed to make long mRNA molecules. However, it is not known what these chemical tags do in humans or other animals. Now Hsin et al. (and independently Descostes, Heidemann et al.) have shown that the same phosphate groups on tyrosine-1 perform functions in vertebrates (animals with backbones) that are different to those performed in yeast. These functions include protecting the carboxy-terminal domain from being broken down inside cells, and transcribing the DNA that is upstream of genes. Hsin et al. replaced tyrosine-1 in RNA Polymerase II from chicken cells with a related amino acid that cannot have phosphate groups added to it. This mutant RNA Polymerase II was unstable and degraded by the molecular machinery in cells that breaks down damaged or unneeded proteins back into amino acids. Hsin et al. also compared the mRNA molecules that are made by the wild-type RNA Polymerase II with those produced by a related mutant. This comparison revealed an unexpected accumulation of RNA molecules that are transcribed in the opposite direction from mRNAs. These RNA molecules, known as ‘upstream antisense RNAs’, have been described only recently. And while the function of these RNAs remains mysterious, the results of Hsin et al. suggest that tyrosine-1 helps to ensure that these RNA molecules are rapidly broken down. The results of Hsin et al. raise a number of important questions, and foremost among these questions is: how do these newly discovered properties of tyrosine-1 contribute to the control of gene expression in animals? Further work is needed to answer this question. DOI:http://dx.doi.org/10.7554/eLife.02112.002
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, United States
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers University New Jersey Medical School, Newark, United States
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers University New Jersey Medical School, Newark, United States
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers University New Jersey Medical School, Newark, United States
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
331
|
Affiliation(s)
- Alexander F. Palazzo
- University of Toronto, Department of Biochemistry, Toronto, Ontario, Canada
- * E-mail: (AP); (TG)
| | - T. Ryan Gregory
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
- * E-mail: (AP); (TG)
| |
Collapse
|
332
|
Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc Natl Acad Sci U S A 2014; 111:7468-73. [PMID: 24799695 DOI: 10.1073/pnas.1406635111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense-antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser(2) phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene.
Collapse
|
333
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
334
|
Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 2014; 111:5920-5. [PMID: 24711388 DOI: 10.1073/pnas.1323616111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In model eukaryotes, the C-terminal domain (CTD) of the largest subunit of DNA-dependent RNA polymerase II (RNAP II) is composed of tandemly repeated heptads with the consensus sequence YSPTSPS. The core motif and tandem structure generally are conserved across model taxa, including animals, yeasts and higher plants. Broader investigations revealed that CTDs of many organisms deviate substantially from this canonical structure; however, limited sampling made it difficult to determine whether disordered sequences reflect the CTD's ancestral state or degeneration from ancestral repetitive structures. Therefore, we undertook, to our knowledge, the broadest investigation to date of the evolution of the RNAP II CTD across eukaryotic diversity. Our results indicate that a tandemly repeated CTD existed in the ancestors of each major taxon, and that degeneration and reinvention of this ordered structure are common features of CTD evolution. Lineage-specific CTD modifications appear to be associated with greater developmental complexity in multicellular organisms, a pattern taken to an extreme in fungi and red algae, in which the CTD has undergone dramatic to complete alteration during the transition from unicellular to developmentally complex forms. Overall, loss and reinvention of repeats have punctuated CTD evolution, occurring independently and sometimes repeatedly in various groups.
Collapse
|
335
|
Dürr J, Lolas IB, Sørensen BB, Schubert V, Houben A, Melzer M, Deutzmann R, Grasser M, Grasser KD. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Nucleic Acids Res 2014; 42:4332-47. [PMID: 24497194 PMCID: PMC3985667 DOI: 10.1093/nar/gku096] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/21/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022] Open
Abstract
The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.
Collapse
Affiliation(s)
- Julius Dürr
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Ihab B. Lolas
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Brian B. Sørensen
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Veit Schubert
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Andreas Houben
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Michael Melzer
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Rainer Deutzmann
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Klaus D. Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany and Institute for Biochemistry I, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
336
|
Napolitano G, Lania L, Majello B. RNA polymerase II CTD modifications: how many tales from a single tail. J Cell Physiol 2014; 229:538-44. [PMID: 24122273 DOI: 10.1002/jcp.24483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Eukaryote's RNA polymerases II (RNAPII) have the feature to contain, at the carbossi-terminal region of their largest subunit Rpb1, a unique CTD domain. Rpb1-CTD is composed of an increasing number of repetitions of the Y1 S2 P3 T4 S5 P6 S7 heptad that goes in parallel with the developmental level of organisms. Because of its composition, the CTD domain has a huge structural plasticity; virtually all the residues can be subjected to post-translational modifications and the two prolines can either be in cis or trans conformations. In light of these features, it is reasonable to think that different specific nuances of CTD modification and interacting factors take place not only on different gene promoters but also during different stages of the transcription cycle and reasonably might have a role even if the polymerase is on or off the DNA template. Rpb1-CTD domain is involved not only in regulating transcriptional rates, but also in all co-transcriptional processes, such as pre-mRNA processing, splicing, cleavage, and export. Moreover, recent studies highlight a role of CTD in DNA replication and in maintenance of genomic stability and specific CTD-modifications have been related to different CTD functions. In this paper, we examine results from the most recent CTD-related literature and give an overview of the general function of Rpb1-CTD in transcription, transcription-related and non transcription-related processes in which it has been recently shown to be involved in.
Collapse
|
337
|
Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, Anand K, Fisher RP, Eick D, Geyer M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun 2014; 5:3505. [PMID: 24662513 PMCID: PMC3973122 DOI: 10.1038/ncomms4505] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases. Cyclin-dependent kinase 12 (Cdk12) phosphorylates the C-terminal domain (CTD) of RNA polymerase II to regulate transcription. Here, the authors solve the crystal structure of the Cdk12 kinase domain and show that Cdk12 has its highest activity on a CTD substrate that carries a serine 7 phosphorylation.
Collapse
Affiliation(s)
- Christian A Bösken
- 1] Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany [2] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Lucas Farnung
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science (CIPSM), Marchioninistrasse 25, München 81377, Germany
| | - Miriam Merzel Schachter
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Karin Vogel-Bachmayr
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Kanchan Anand
- Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - Robert P Fisher
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science (CIPSM), Marchioninistrasse 25, München 81377, Germany
| | - Matthias Geyer
- 1] Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany [2] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| |
Collapse
|
338
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
339
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
340
|
Abstract
Eukaryotic gene expression is dependent on the modification of the first transcribed nucleotide of pre-mRNA by the addition of the 7-methylguanosine cap. The cap protects transcripts from exonucleases and recruits complexes which mediate transcription elongation, processing and translation initiation. The cap is synthesized by a series of reactions which link 7-methylguanosine to the first transcribed nucleotide via a 5′ to 5′ triphosphate bridge. In mammals, cap synthesis is catalysed by the sequential action of RNGTT (RNA guanylyltransferase and 5′-phosphatase) and RNMT (RNA guanine-7 methyltransferase), enzymes recruited to RNA pol II (polymerase II) during the early stages of transcription. We recently discovered that the mammalian cap methyltransferase is a heterodimer consisting of RNMT and the RNMT-activating subunit RAM (RNMT-activating mini-protein). RAM activates and stabilizes RNMT and thus is critical for cellular cap methylation and cell viability. In the present study we report that RNMT interacts with the N-terminal 45 amino acids of RAM, a domain necessary and sufficient for maximal RNMT activation. In contrast, smaller components of this RAM domain are sufficient to stabilize RNMT. RAM functions in the nucleus and we report that nuclear import of RAM is dependent on PY nuclear localization signals and Kapβ2 (karyopherin β2) nuclear transport protein. 7-Methylguanosine cap formation in mammals is catalysed by RNGTT and RNMT-RAM. RAM activates the cap methyltransferase, RNMT. We define the domains of RAM required for RNMT activation and demonstrate that nuclear localization is dependent on Kapβ2 interaction with RAM PY-NLSs.
Collapse
|
341
|
Variable induction of PRDM1 and differentiation in chronic lymphocytic leukemia is associated with anergy. Blood 2014; 123:3277-85. [PMID: 24637363 DOI: 10.1182/blood-2013-11-539049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite antigen engagement and intact B-cell-receptor (BCR) signaling, chronic lymphocytic leukemia (CLL) cells fail to undergo terminal differentiation. We hypothesized that such failure may be due to anergy, as CLL cells exhibit variable levels of nonresponsiveness to surface IgM stimulation that is reversible in vitro. Moreover, anergy is associated with reduced differentiation capacity in normal B cells. We investigated responses of CLL cells to two potent differentiation-promoting agents, IL-21 and cytosine guanine dinucleotide-enriched oligo-deoxynucleotides. The induction of PR domain-containing protein 1 (PRDM1; also known as Blimp-1), a critical regulator of plasmacytic differentiation, by these agents was closely correlated but varied between individual cases, despite functionally intact IL-21 receptor- and Toll-like receptor 9-mediated signal transducer and activator of transcription 3, and nuclear factor-κB pathways. PRDM1 induction was inversely correlated with the extent of anergy as measured by the ability to mobilize intracellular Ca(2+) following BCR crosslinking. PRDM1 responsiveness was associated with other markers of differentiation and proliferation but not with differences in apoptosis. The ability to induce PRDM1 did correlate with differential transcriptional and epigenetic regulation of the PRDM1 gene. These studies extend our understanding of CLL pathobiology, demonstrating that reduced differentiation capacity may be a consequence of anergy. Epigenetic drugs may offer possibilities to reactivate PRDM1 expression as part of novel differentiation therapy approaches.
Collapse
|
342
|
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
|
343
|
A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol Cell 2014; 53:779-90. [PMID: 24560925 PMCID: PMC3988880 DOI: 10.1016/j.molcel.2014.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/26/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
There is good evidence for functional interactions between splicing and transcription in eukaryotes, but how and why these processes are coupled remain unknown. Prp5 protein (Prp5p) is an RNA-stimulated adenosine triphosphatase (ATPase) required for prespliceosome formation in yeast. We demonstrate through in vivo RNA labeling that, in addition to a splicing defect, the prp5-1 mutation causes a defect in the transcription of intron-containing genes. We present chromatin immunoprecipitation evidence for a transcriptional elongation defect in which RNA polymerase that is phosphorylated at Ser5 of the largest subunit’s heptad repeat accumulates over introns and that this defect requires Cus2 protein. A similar accumulation of polymerase was observed when prespliceosome formation was blocked by a mutation in U2 snRNA. These results indicate the existence of a transcriptional elongation checkpoint that is associated with prespliceosome formation during cotranscriptional spliceosome assembly. We propose a role for Cus2p as a potential checkpoint factor in transcription. Transcriptional elongation is inhibited when prespliceosome formation is blocked The defect is characterized by RNA polymerase accumulation on introns This checkpoint can be triggered by mutations in either PRP5 or U2 snRNA The U2-associated Cus2 protein is a candidate checkpoint factor
Collapse
|
344
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|
345
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
346
|
Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014; 15:163-75. [PMID: 24514444 DOI: 10.1038/nrg3662] [Citation(s) in RCA: 584] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3' end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, MS8101, PO BOX 6511, Aurora, Colorado 80045, USA
| |
Collapse
|
347
|
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie S, Corden JL, McKnight SL. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2014; 155:1049-1060. [PMID: 24267890 DOI: 10.1016/j.cell.2013.10.033] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 12/29/2022]
Abstract
The low-complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS), and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here, we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state and released for elongation following phosphorylation of the CTD.
Collapse
Affiliation(s)
- Ilmin Kwon
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Masato Kato
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Siheng Xiang
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Leeju Wu
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Pano Theodoropoulos
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Hamid Mirzaei
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Tina Han
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Shanhai Xie
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| | - Jeffry L Corden
- Department of Molecular Biology and Genetics The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Steven L McKnight
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas, TX 75390-9152
| |
Collapse
|
348
|
Yu S, Waldholm J, Böhm S, Visa N. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol 2014; 11:134-45. [PMID: 24526065 DOI: 10.4161/rna.27866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity.
Collapse
Affiliation(s)
- Simei Yu
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Johan Waldholm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| |
Collapse
|
349
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
350
|
Davidson L, Muniz L, West S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 2014; 28:342-56. [PMID: 24478330 PMCID: PMC3937513 DOI: 10.1101/gad.231274.113] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-mRNA 3′ end formation is coupled to transcription via the RNA Pol II C-terminal domain (CTD). However, how transcription and pre-mRNA maturation are coordinated in humans is poorly understood. Here, West and colleagues show that Pol II pausing promotes Ser2p by Cdk12, which recruits CPA factor CstF77 and is required for optimal 3′ end processing. This study delineates a reciprocal relationship between early steps in poly(A) site processing and Pol II Ser2p that ensures efficient pre-mRNA 3′ end formation in human cells. 3′ end formation of pre-mRNAs is coupled to their transcription via the C-terminal domain (CTD) of RNA polymerase II (Pol II). Nearly all protein-coding transcripts are matured by cleavage and polyadenylation (CPA), which is frequently misregulated in disease. Understanding how transcription is coordinated with CPA in human cells is therefore very important. We found that the CTD is heavily phosphorylated on Ser2 (Ser2p) at poly(A) (pA) signals coincident with recruitment of the CstF77 CPA factor. Depletion of the Ser2 kinase Cdk12 impairs Ser2p, CstF77 recruitment, and CPA, strongly suggesting that the processes are linked, as they are in budding yeast. Importantly, we additionally show that the high Ser2p signals at the 3′ end depend on pA signal function. Down-regulation of CPA results in the loss of a 3′ Ser2p peak, whereas a new peak is formed when CPA is induced de novo. Finally, high Ser2p signals are generated by Pol II pausing, which is a well-known feature of pA site recognition. Thus, a reciprocal relationship between early steps in pA site processing and Ser2p ensures efficient 3′ end formation.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|