301
|
Han HW, Zheng CS, Chu SJ, Sun WX, Han LJ, Yang RW, Qi JL, Lu GH, Wang XM, Yang YH. The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF-1α-mediated apoptosis. Biomed Pharmacother 2017; 97:656-666. [PMID: 29101810 DOI: 10.1016/j.biopha.2017.10.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/30/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022] Open
Abstract
In current study, a series of shikonin derivatives were synthesized and its anticancer activity was evaluated. As a result, PMMB232 showed the best antiproliferation activity with an IC50 value of 3.25±0.35μM. Further, treatment of HeLa cells with a variety of concentrations of target drug resulted in dose-dependent event marked by apoptosis. What's more, the mitochondrial potential (Δym) analysis was consistent with the apoptosis result. In addition, PARP was involved in the progress of apoptosis revealed by western blotting. To identify the detailed role and mechanism of PMMB232 in the progression of human cervical cancer, we detected the expression of HIF-1α and E-cadherin in HeLa cells. Results showed that expression of HIF-1α was downregulated, while E-cadherin protein was upregulated. Meanwhile, glycolysis related protein PDK1 was decreased in HeLa cells. Conversely, the expression of PDH-E1α was upregulated. Docking simulation results further indicate that PMMB232 could be well bound to HIF-1α. Taken together, our data indicate that compound PMMB232 could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Hong-Wei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chao-Sai Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shu-Juan Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Wen-Xue Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Lu-Jing Han
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
302
|
Knap P, Tebaldi T, Di Leva F, Biagioli M, Dalla Serra M, Viero G. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections? Toxins (Basel) 2017; 9:E357. [PMID: 29469820 PMCID: PMC5705972 DOI: 10.3390/toxins9110357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells-i.e., host translation-to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections.
Collapse
Affiliation(s)
- Primoz Knap
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Toma Tebaldi
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Francesca Di Leva
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Marta Biagioli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| |
Collapse
|
303
|
Chen R, Liu Y, Zhuang H, Yang B, Hei K, Xiao M, Hou C, Gao H, Zhang X, Jia C, Li L, Li Y, Zhang N. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res 2017; 45:9947-9959. [PMID: 28973437 PMCID: PMC5622371 DOI: 10.1093/nar/gkx600] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a broadly expressed lncRNA involved in many aspects of cellular processes. To further delineate the underlying molecular mechanism, we employed a high-throughput strategy to characterize the interacting proteins of MALAT1 by combining RNA pull-down, quantitative proteomics, bioinformatics, and experimental validation. Our approach identified 127 potential MALAT1-interacting proteins and established a highly connected MALAT1 interactome network consisting of 788 connections. Gene ontology annotation and network analysis showed that MALAT1 was highly involved in five biological processes: RNA processing; gene transcription; ribosomal proteins; protein degradation; and metabolism regulation. The interaction between MALAT1 and depleted in breast cancer 1 (DBC1) was validated using RNA pull-down and RNA immunoprecipitation. Further mechanistic studies reveal that MALAT1 binding competes with the interaction between sirtuin1 (SIRT1) and DBC1, which then releases SIRT1 and enhances its deacetylation activity. Consequently, the deacetylation of p53 reduces the transcription of a spectrum of its downstream target genes, promotes cell proliferation and inhibits cell apoptosis. Our results uncover a novel mechanism by which MALAT1 regulates the activity of p53 through the lncRNA–protein interaction.
Collapse
Affiliation(s)
- Ruibing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Yun Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Hao Zhuang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Baicai Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Kaiwen Hei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Mingming Xiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Chunyu Hou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Huajun Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Xinran Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
| | - Chenxi Jia
- Chemistry Department & School of Pharmacy, University of Wisconsin at Madison, Madison, WI 53705, USA
- National Center for Protein Sciences-Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingjun Li
- Chemistry Department & School of Pharmacy, University of Wisconsin at Madison, Madison, WI 53705, USA
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yongmei Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
- To whom correspondence should be addressed. Tel: +86 22 83336531; Fax: +86 22 83336560; . Correspondence may also be addressed to Ning Zhang. Tel: +86 22 83336531; Fax: +86 22 83336560;
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Department of Genetics & Department of Medical Microbiology, School of Basic Medical Sciences; Research Center of Basic Medical Sciences; Tianjin Medical University, Tianjin 300070, China
- To whom correspondence should be addressed. Tel: +86 22 83336531; Fax: +86 22 83336560; . Correspondence may also be addressed to Ning Zhang. Tel: +86 22 83336531; Fax: +86 22 83336560;
| |
Collapse
|
304
|
Yang B, Zhang L, Cao Y, Chen S, Cao J, Wu D, Chen J, Xiong H, Pan Z, Qiu F, Chen J, Ling X, Yan M, Huang S, Zhou S, Li T, Yang L, Huang Y, Lu J. Overexpression of lncRNA IGFBP4-1 reprograms energy metabolism to promote lung cancer progression. Mol Cancer 2017; 16:154. [PMID: 28946875 PMCID: PMC5613386 DOI: 10.1186/s12943-017-0722-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Reprogrammed energy metabolism as an emerging hallmark of cancer has recently drawn special attention since it facilitate cell growth and proliferation. Recently, long noncoding RNAs (lncRNAs) have been served as key regulators implicated in tumor development and progression by promoting proliferation, invasion and metastasis. However, the associations of lncRNAs with cellular energy metabolism in lung cancer (LC) need to be clarified. METHODS Here, we conducted bioinformatics analysis and found insulin-like growth factor binding protein 4-1 (IGFBP4-1) as a new candidate lncRNA located in the upstream region of IGFBP4 gene. The expression levels of lnc-IGFBP4-1, mRNA levels of IGFBP4 in 159 paired lung cancer samples and adjacent, histological normal tissues by qRT-PCR. Over-expression and RNA interference (RNAi) approaches were adopted to investigate the biological functions of lnc-IGFBP4-1. The intracellular ATP level was measured using the Cell Titer-Glo Luminescent Cell Viability Assay kit, and changes in metabolic enzymes were examined in cancer cells and normal pulmonary epithelial cells with qRT-PCR. RESULTS Our results showed that lnc-IGFBP4-1 was significantly up-regulated in LC tissues compared with corresponding non-tumor tissues (P < 0.01), and its expression level was significantly correlated with TNM stage (P < 0.01) and lymph node metastasis (P < 0.05). Further investigation showed that overexpression of lnc-IGFBP4-1 significantly promoted LC cell proliferation in vitro and in vivo, while downregulation of endogenous lnc-IGFBP4-1 could inhibited cell proliferation and induce apoptosis. Moreover, we found lnc-IGFBP4-1 could influences ATP production levels and expression of enzymes including HK2, PDK1 and LDHA, in addition, decline in both ATP production and these enzymes in response to 2-DG and 2-DG-combined Rho123, respectively, was observed in lnc-IGFBP4-1-overespressing LC cells, indicative of an enhanced aerobic glycolysis rate. Finally, lnc-IGFBP4-1 was observed to negatively correlate with gene IGFBP4, and lower expression level of IGFPB4 was found after lnc-IGFBP4-1-overexpression was transfected into PC9 cells, higher expression level of IGFPB4 was also found after lnc-IGFBP4-1-downregulation was transfected into GLC-82 cells, which indicates that IGFBP4 may exert its targeting function regulated by lnc-IGFBP4-1. CONCLUSIONS Taken together, these findings provide the first evidence that lnc-IGFBP4-1 is significantly up-regulated in LC tissues and plays a positive role in cell proliferation and metastasis through possible mechanism of reprogramming tumor cell energy metabolism, which suggests that lnc-IGFBP4-1 may be a promising biomarker in LC development and progression and as a potential therapeutic target for LC intervention.
Collapse
Affiliation(s)
- Binyao Yang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
- Department of Central Laboratory, The 5th Affiliated Hospital of Guanzhou Medical University, Guangzhou, 510700 China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Yi Cao
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Shuai Chen
- Yunnan Province Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118 China
| | - Jun Cao
- The First People’s Hospital of Qujing, Qujing, 655000 China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Huali Xiong
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Zihua Pan
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Maosheng Yan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 68 Haikang Road, Guangzhou, 510300 China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055 China
| | - Shiyu Zhou
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Tiegang Li
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| | - Yunchao Huang
- Yunnan Province Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118 China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182 China
| |
Collapse
|
305
|
Yu L, Chen X, Sun X, Wang L, Chen S. The Glycolytic Switch in Tumors: How Many Players Are Involved? J Cancer 2017; 8:3430-3440. [PMID: 29151926 PMCID: PMC5687156 DOI: 10.7150/jca.21125] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular metabolism is a hallmark of cancers. Cancer cells more readily use glycolysis, an inefficient metabolic pathway for energy metabolism, even when sufficient oxygen is available. This reliance on aerobic glycolysis is called the Warburg effect, and promotes tumorigenesis and malignancy progression. The mechanisms of the glycolytic shift in tumors are not fully understood. Growing evidence demonstrates that many signal molecules, including oncogenes and tumor suppressors, are involved in the process, but how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. Here, we summarize the current information on several main mediators and discuss their possible mechanisms for triggering the Warburg effect.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xun Chen
- Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xueqi Sun
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Liantang Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
306
|
Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, Li Z, Chen B, Zhang X, Pan H, Li S, Lin H, Liu L, Yan M, He X, Yao M. MetaLnc9 Facilitates Lung Cancer Metastasis via a PGK1-Activated AKT/mTOR Pathway. Cancer Res 2017; 77:5782-5794. [PMID: 28923857 DOI: 10.1158/0008-5472.can-17-0671] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) participate in carcinogenesis and tumor progression in lung cancer. Here, we report the identification of a lncRNA signature associated with metastasis of non-small cell lung cancer (NSCLC). In particular, elevated expression of LINC00963 (MetaLnc9) in human NSCLC specimens correlated with poor prognosis, promoted migration and invasion of NSCLC cells in vitro, and enhanced lung metastasis formation in vivo Mechanistic investigations showed that MetaLnc9 interacted with the glycolytic kinase PGK1 and prevented its ubiquitination in NSCLC cells, leading to activation of the oncogenic AKT/mTOR signaling pathway. MetaLnc9 also interacted with P54nrb/NonO (NONO) to help mediate the activity of CRTC, a coactivator for the transcription factor CREB, reinforcing a positive feedback loop for metastasis. Taken together, our results establish MetaLnc9 as a driver of metastasis and a candidate therapeutic target for treating advanced NSCLC. Cancer Res; 77(21); 5782-94. ©2017 AACR.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Chu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
307
|
De Paepe B, Lefever S, Mestdagh P. How long noncoding RNAs enforce their will on mitochondrial activity: regulation of mitochondrial respiration, reactive oxygen species production, apoptosis, and metabolic reprogramming in cancer. Curr Genet 2017; 64:163-172. [PMID: 28879612 DOI: 10.1007/s00294-017-0744-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
|
308
|
Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, Pang H, An H, Wang X, Hou H, Li X. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 2017; 16:143. [PMID: 28841829 PMCID: PMC5574139 DOI: 10.1186/s12943-017-0714-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. Methods We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. Results We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Conclusion Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor microenvironment to facilitate tumor growth and development though secreting the oncogenic lncRNA-UCA1-enriched exosomes and exosomal lncRNA-UCA1 in human serum has the possibility as a diagnostic biomarker for bladder cancer. Electronic supplementary material The online version of this article (10.1186/s12943-017-0714-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - An Xiang
- Department of Pharmacology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ruiqi Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jingjing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huan Pang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiang Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huilian Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
309
|
Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46:170-178. [PMID: 28843809 DOI: 10.1016/j.gde.2017.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Pervasive transcription in mammalian genomes produces thousands of long noncoding RNA (lncRNA) transcripts. Although they have been implicated in diverse biological processes, the functional relevance of most lncRNAs remains unknown. Recent studies reveal the prevalence of lncRNA-mediated cis regulation on nearby transcription. In this review, we summarize cis- and trans-acting lncRNAs involved in stem cell pluripotency and reprogramming, highlighting the role of regulatory lncRNAs in providing an additional layer of complexity to the regulation of genes that govern cell fate during development.
Collapse
Affiliation(s)
- Pixi Yan
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Luo
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
310
|
Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci 2017; 24:53. [PMID: 28789687 PMCID: PMC5547530 DOI: 10.1186/s12929-017-0358-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a classic feature of the tumor microenvironment with a profound impact on cancer progression and therapeutic response. Activation of complex hypoxia pathways orchestrated by the transcription factor HIF (hypoxia-inducible factor) contributes to aggressive phenotypes and metastasis in numerous cancers. Over the past few decades, exponentially growing research indicated the importance of the non-coding genome in hypoxic tumor regions. Recently, key roles of long non coding RNAs (lncRNAs) in hypoxia-driven cancer progression have begun to emerge. These hypoxia-responsive lncRNAs (HRLs) play pivotal roles in regulating hypoxic gene expression at chromatic, transcriptional, and post-transcriptional levels by acting as effectors of the indirect response to HIF or direct modulators of the HIF-transcriptional cascade. Notably, the aberrant expression of HRLs significantly correlates with poor outcomes in cancer patients, showing promise for future utility as a tumor marker or therapeutic target. Here we address the latest advances made toward understanding the functional relevance of HRLs, the involvement of these transcripts in hypoxia response and the underlying action mechanisms, highlighting their specific roles in HIF-1 signaling regulation and hypoxia-associated malignant transformation.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 350, Taiwan
| |
Collapse
|
311
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
312
|
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, He Y, Zhou M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 2017; 16:130. [PMID: 28738810 PMCID: PMC5525357 DOI: 10.1186/s12943-017-0699-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex. Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters (GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel diagnostic and prognosis markers for human cancer.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
313
|
Yang Y, Du Y, Liu X, Cho WC. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:19-51. [PMID: 27573893 DOI: 10.1007/978-3-319-42059-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common diagnosed cancers worldwide. The metastasis and development of resistance to anti-cancer treatment are major challenges in the treatment of CRC. Understanding mechanisms underpinning the pathogenesis is therefore critical in developing novel agents for CRC treatments. A large number of evidence has demonstrated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have functional roles in both the physiological and pathological processes by regulating the expression of their target genes. These molecules are engaged in the pathobiology of neoplastic diseases and are targets for the diagnosis, prognosis and therapy of a variety of cancers, including CRC. In this regard, ncRNAs have emerged as one of the hallmarks of CRC pathogenesis and they also play key roles in metastasis, drug resistance and the stemness of CRC stem cell by regulating various signaling networks. Therefore, a better understanding the ncRNAs involved in the signaling pathways of CRC may lead to the development of novel strategy for diagnosis, prognosis and treatment of CRC. In this chapter, we summarize the latest findings on ncRNAs, with a focus on miRNAs and lncRNAs involving in signaling networks and in the regulation of pathogenic signaling pathways in CRC.
Collapse
Affiliation(s)
- Yinxue Yang
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yong Du
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
314
|
Huang W, Tian Y, Dong S, Cha Y, Li J, Guo X, Yuan X. The long non-coding RNA SNHG3 functions as a competing endogenous RNA to promote malignant development of colorectal cancer. Oncol Rep 2017; 38:1402-1410. [PMID: 28731158 PMCID: PMC5549033 DOI: 10.3892/or.2017.5837] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has revealed that aberrantly expressed long non-coding transcripts are involved in the development and progression of colorectal cancer (CRC). Small nucleolar RNA host gene 3 (SNHG3) is a newly identified lncRNA, and little is known about its clinical significance and biological functions in the development of CRC. In the present study, we found that the expression of SNHG3 was significantly upregulated in CRC, and upregulation of SNHG3 predicted poor prognosis for patients with CRC as determined through analysis of the data obtained from TCGA database. Gain-of function and loss-of function assays revealed that SNHG3 markedly promoted cellular proliferation of CRC cells. Gene Set Enrichment Analysis (GSEA) suggested that high expression of SNHG3 was positively associated with c-Myc and its targets genes. Furthermore, ectopic overexpression of SNHG3 increased the expression of c-Myc and its target genes, whereas inhibition of SNHG3 had opposite effect on the expression of c-Myc and its targets. Mechanistic investigations demonstrated that SNHG3 functioned as a competing endogenous RNA (ceRNA) to ‘sponge’ miR-182-5p, thus leading to the release of c-Myc from miR-182-5p and modulating the expression of c-Myc. In conclusion, SNHG3 promoted CRC progression via sponging miR-182-5p and upregulating c-Myc and its target genes.
Collapse
Affiliation(s)
- Weizhen Huang
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Yunming Tian
- Department of Radiation Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Shaoting Dong
- Department of Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Yinlian Cha
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Jun Li
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xiaohong Guo
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xia Yuan
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| |
Collapse
|
315
|
Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18071514. [PMID: 28703782 PMCID: PMC5536004 DOI: 10.3390/ijms18071514] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.
Collapse
|
316
|
Ye T, Ding W, Wang N, Huang H, Pan Y, Wei A. Long noncoding RNA linc00346 promotes the malignant phenotypes of bladder cancer. Biochem Biophys Res Commun 2017; 491:79-84. [PMID: 28705739 DOI: 10.1016/j.bbrc.2017.07.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND More and more reports have demonstrated that long noncoding RNAs (lncRNAs) play an important role in the development of a variety of carcinomas, including bladder cancer. However, only a small fraction of them have been characterized. Linc00346 have been found to be upregulated in bladder cancer tissues compared to normal tissues in a microarray-based lncRNA profiling study. In this study, we would like to explore the expression pattern and functional role of linc00346 in bladder cancer. METHODS We determined the expression of linc00346 in a cohort of bladder cancer tissues with matched normal tissues as well as human bladder cancer cell lines. We investigated the biological function of linc00346 with CCK-8 assay, colony formation assay, flow cytometry analysis, transwell assay and tumor xenografts mice model. RESULTS We found that linc00346 was upregulated in bladder cancer tissues compared to normal tissues. Knockdown of linc00346 inhibited bladder cancer cell proliferation and migration, induced cell cycle arrest and cell apoptosis. CONCLUSION Our study demonstrates that linc00346 could be a potential oncogene and a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Tingyu Ye
- Department of Urology, Nanfang Hospital of Southern Medical University, Guangzhou, China; Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Ding
- Department of Urology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Nanxiong Wang
- Department of Urology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anyang Wei
- Department of Urology, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
317
|
Down regulation of lincRNA-p21 contributes to gastric cancer development through Hippo-independent activation of YAP. Oncotarget 2017; 8:63813-63824. [PMID: 28969031 PMCID: PMC5609963 DOI: 10.18632/oncotarget.19130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Long intergenic non-coding RNA p21 (lincRNA-p21), known as the direct transcriptional target of p53, was found down-regulated in several human solid tumors. However, little is known about the role of lincRNA-p21 in gastric cancer. The expression levels of lincRNA-p21 in tissue samples and cell lines were detected by qRT-PCR. MGC-803 and MKN-45 cells were transfected with siRNAs targeting lincRNA-p21 or control siRNAs to determine the effect of reduced lincRNA-p21 expression on tumorigenesis. We also overexpressed lincRNA-p21 in MGC-803 cells. Cell proliferation was measured by CCK-8 and Ethynyl-2-deoxyuridine (EdU) incorporation assays. Migration and invasion abilities of cells were measured by wound healing and transwell assay. We demonstrated that lincRNA-p21 was significantly reduced in gastric cancer tissues (p<0.001) compared with that in normal tissues and this lower level of lincRNA-p21 was significantly correlated with higher invasion depth grade (p=0.024), more distant metastasis (p=0.009) and advanced TNM stage (p=0.011). Further study revealed that knock down of lincRNA-p21 could promote malignant behavior of gastric cancer cells and induce epithelial to mesenchymal transition (EMT). Overexpressing lincRNA-p21 showed opposite effects. Moreover, knocking down lincRNA-p21 could elevate the expression of Yes associated protein (YAP), the core effector of Hippo signaling, by elevating mRNA levels and increasing its nucleus translocation instead of the canonical Hippo pathway. Overexpression experiments verified the regulation role of lincRNA-p21 in YAP expression. Collectively, these data suggest that lincRNA-p21 could serve as a potential biomarker and a vital therapeutic target in gastric cancer.
Collapse
|
318
|
Shen Y, Liu Y, Sun T, Yang W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res 2017; 358:188-198. [PMID: 28689810 DOI: 10.1016/j.yexcr.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 02/04/2023]
Abstract
Hypoxic conditions are common in solid tumors and have a significant effect on tumor progression, therapeutic and prognosis. Long noncoding RNAs (lncRNAs) are longer than 200 nucleotides and cannot be translated into proteins, which play important roles in some diseases including cancer. Although previous analysis have showed that long intergenic non-coding RNA (lincRNA)-p21 is hypoxia-responsive and functions as a new regulator of cell cycle, apoptosis and warburg effect in cervical cancer, its biological roles in hypoxic hepatoma and glioma are unknown. In this work, we found that X-ray irradiation or hypoxia treatment elevated lincRNA-p21 expression in SMMC7721 hepatoma and U251MG glioma cells. Knockdown of lincRNA-p21 induced G2/M phase arrest, promoted apoptosis, decreased cell proliferation and motility, and reduced autophagy through HIF-1/Akt/mTOR/P70S6K pathway in hypoxic tumor cells. Our results delineated a novel mechanism of lincRNA-p21 in enhancing hypoxic tumor cell radiosensitivity, which might provide valuable targets for radiation therapy for solid tumors, such as hepatoma and glioma.
Collapse
Affiliation(s)
- Yueming Shen
- Department of Radiobiology, School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yingying Liu
- Department of Radiobiology, School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Wei Yang
- Department of Radiobiology, School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
319
|
Zhao R, Sun F, Bei X, Wang X, Zhu Y, Jiang C, Zhao F, Han B, Xia S. Upregulation of the long non-coding RNA FALEC promotes proliferation and migration of prostate cancer cell lines and predicts prognosis of PCa patients. Prostate 2017; 77:1107-1117. [PMID: 28585762 DOI: 10.1002/pros.23367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/21/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND LncRNAs are aberrantly expressed in various cancer types and were found to be a responsible prognosis biomarker and therapeutic target of many human cancers. METHODS In this study, we characterized the expression profile of FALEC in prostate cancer and paired histologically normal tissues. Additionally, biological function of FALEC in prostate cancer cell lines was determined by in vitro and in vivo assays. RESULTS In a total of 85 patients, FALEC expression was significantly increased in clinical PCa tissues compared to adjacent normal tissues, and can be considered as an independent prognostic factor in patients with PCa. Downregulation of FALEC could inhibit cell proliferation, migration and invasion in vitro. In vivo tumorigenesis study and orthotopic bioluminescence image also support the evidence that FALEC may promote the progression of prostate cancer. We also find FALEC is a potential hypoxia induced lncRNA and can be induced by the hypoxia master regulator HIF-1α. CONCLUSIONS These findings suggested that FALEC may be a potential diagnostic and therapeutic target in patients with prostate cancer.
Collapse
Affiliation(s)
- Ruizhe Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Bei
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
320
|
Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:1833-1843. [DOI: 10.1016/j.bbagen.2017.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
|
321
|
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in hypoxia/HIF-1-associated cancer progression through largely unknown mechanisms. Here we identify MIR31HG as a hypoxia-inducible lncRNA and therefore we name it LncHIFCAR (long noncoding HIF-1α co-activating RNA); we describe its oncogenic role as a HIF-1α co-activator that regulates the HIF-1 transcriptional network, crucial for cancer development. Extensive analyses of clinical data indicate LncHIFCAR level is substantially upregulated in oral carcinoma, significantly associated with poor clinical outcomes and representing an independent prognostic predictor. Overexpression of LncHIFCAR induces pseudo-hypoxic gene signature, whereas knockdown of LncHIFCAR impairs the hypoxia-induced HIF-1α transactivation, sphere-forming ability, metabolic shift and metastatic potential in vitro and in vivo. Mechanistically, LncHIFCAR forms a complex with HIF-1α via direct binding and facilitates the recruitment of HIF-1α and p300 cofactor to the target promoters. Our results uncover an lncRNA-mediated mechanism for HIF-1 activation and establish the clinical values of LncHIFCAR in prognosis and potential therapeutic strategy for oral carcinoma. Cancer cells adapt to the changing microenvironment by activating different pathways through multiple mechanisms. Here the authors identify long noncoding RNA MIR31HG as a HIF-1α co-activator required for the induction of the hypoxic response and show its oncogenic role in oral carcinogenesis.
Collapse
|
322
|
Li LJ, Zhao W, Tao SS, Li J, Xu SZ, Wang JB, Leng RX, Fan YG, Pan HF, Ye DQ. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cell Immunol 2017. [PMID: 28622785 DOI: 10.1016/j.cellimm.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs can regulate gene transcription, modulate protein function, and act as competing endogenous RNA. Yet, their roles in systemic lupus erythematosus remain to be elucidated. We determined the expression profiles of lncRNAs in T cells of SLE patients and healthy controls using microarrays. Up to 1935 lncRNAs and 1977 mRNAs were differentially expressed. QRT-PCR showed downregulated uc001ykl.1 and ENST00000448942 in SLE patients. Expression of uc001ykl.1 correlated with erythrocyte sedimentation rate (ESR) and C-reactive protein, whereas ENST00000448942 level correlated with ESR and anti-Sm antibodies. Short time-series expression miner analysis revealed some lncRNAs whose expressions might correlate with disease activity of SLE patients. Coding-non-coding gene coexpression analyses showed differential lncRNAs might operate via modulating expressions of their correlated, relevant mRNAs in SLE. Differential lncRNAs might also function through their ceRNAs. Our study established that the aberrant expression profiles of lncRNAs may play a role in SLE and thus warrant further investigation.
Collapse
Affiliation(s)
- Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Wei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jie-Bing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China.
| |
Collapse
|
323
|
Zhu G, Wang S, Chen J, Wang Z, Liang X, Wang X, Jiang J, Lang J, Li L. Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma. Mol Carcinog 2017; 56:2210-2222. [PMID: 28485478 DOI: 10.1002/mc.22674] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023]
Abstract
A hypoxic microenvironment plays important roles in the progression of solid tumors, including oral squamous cell carcinoma (OSCC). Long noncoding RNAs (lncRNAs) have gained much attention in the past few years. However, it is not clear whether lncRNAs can regulate hypoxia adaptation of OSCC or which lncRNAs participate in this process. Using a lncRNA microarray, we analyzed the aberrant lncRNA expression profiles in OSCC tissues compared with paired normal oral mucosa and in hypoxic OSCC cells compared with normoxic OSCC cells. The top 10 lncRNAs that had more than threefold increase with P-value <0.01 in both microarray data were validated by qRT-PCR. Among the top 10 lncRNAs, hyaluronan synthase 2 antisense 1 (HAS2-AS1) was the only one that has a hypoxia-responsive element (HRE) on its promoter region and has been validated to increase in OSCC tissues and in cells cultured under hypoxia. Tumor HAS2-AS1 levels were closely associated with lymph node metastasis and hypoxic tumor status in patients with OSCC. Moreover, the hypoxia-induced HAS2-AS1 expression is dependent on HIF-1α which directly binds to and activates the transcription of HAS2-AS1. In addition, HAS2-AS1 mediates hypoxia-induced epithelial mesenchymal transition of OSCC cells via stabilizing HAS2. In conclusion, our results suggest that hypoxia would induce an overexpression of HAS2-AS1 in an HIF-1α dependent manner. The increase of HAS2-AS1 plays important roles mediating the hypoxia-regulated EMT and invasiveness of OSCC.
Collapse
Affiliation(s)
| | - Shaoxin Wang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Chen
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohui Wang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
324
|
Tu X, Zhang Y, Zheng X, Deng J, Li H, Kang Z, Cao Z, Huang Z, Ding Z, Dong L, Chen J, Zang Y, Zhang J. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep 2017; 7:2957. [PMID: 28592847 PMCID: PMC5462818 DOI: 10.1038/s41598-017-03175-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte death, as well as the following inflammatory and fibrogenic signaling cascades, is the key trigger of liver fibrosis. Here, we isolated hepatocytes from CCl4-induced fibrotic liver and found that hepatocyte lincRNA-p21 significantly increased during liver fibrosis. The increase of hepatocyte lincRNA-p21 was associated with the loss of miR-30, which can inhibit TGF-β signaling by targeting KLF11. We revealed that lincRNA-p21 modulated miR-30 availability by acting as a competing endogenous RNA (ceRNA). The physiological significance of this interaction is highlighted by the feedback loop, in which lincRNA-p21 works as a downstream effector of the TGF-β signaling to strengthen TGF-β signaling and mediate its role in promoting liver fibrosis by interacting with miR-30. In vivo results showed that knockdown of hepatocyte lincRNA-p21 greatly reduced CCl4-induced liver fibrosis and inflammation, whereas ectopic expression of miR-30 in hepatocyte exhibited the similar results. Mechanistic studies further revealed that inhibition of miR-30 impaired the effects of lincRNA-p21 on liver fibrosis. Additionally, lincRNA-p21 promoted hepatocyte apoptosis in vitro and in vivo, whereas the proliferation rate of hepatocyte was suppressed by lincRNA-p21. The pleiotropic roles of hepatocyte lincRNA-p21 suggest that it may represent an unknown paradigm in liver fibrosis and serve as a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolong Tu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Xiuxiu Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jia Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Huanan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhipeng Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China. .,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, 210093, P.R. China.
| |
Collapse
|
325
|
Sheng SR, Wu JS, Tang YL, Liang XH. Long noncoding RNAs: emerging regulators of tumor angiogenesis. Future Oncol 2017; 13:1551-1562. [PMID: 28513194 DOI: 10.2217/fon-2017-0149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in multiple biological processes especially human diseases, of which, tumor seems to be one of the most significant. Angiogenesis has been deemed to have a pivotal role in a series of tumor biological behaviors in tumorigenesis, progression and prognosis. Emerging evidences suggested that lncRNAs are involved in tumor angiogenesis and lncRNAs have already been verified to be potential biomarkers and promising therapeutic targets. This review summarized emerging angiogenesis-related lncRNAs, discussed their mechanisms interacting with cytokines, cancer stem cells, miRNAs and tumor hypoxia microenvironment, and demonstrated if lncRNAs could be new candidate targets of antiangiogenesis therapy.
Collapse
Affiliation(s)
- Su-Rui Sheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
326
|
Morriss GR, Cooper TA. Protein sequestration as a normal function of long noncoding RNAs and a pathogenic mechanism of RNAs containing nucleotide repeat expansions. Hum Genet 2017; 136:1247-1263. [PMID: 28484853 DOI: 10.1007/s00439-017-1807-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
An emerging class of long noncoding RNAs (lncRNAs) function as decoy molecules that bind and sequester proteins thereby inhibiting their normal functions. Titration of proteins by lncRNAs has wide-ranging effects affecting nearly all steps in gene expression. While decoy lncRNAs play a role in normal physiology, RNAs expressed from alleles containing nucleotide repeat expansions can be pathogenic due to protein sequestration resulting in disruption of normal functions. This review focuses on commonalities between decoy lncRNAs that regulate gene expression by competitive inhibition of protein function through sequestration and specific examples of nucleotide repeat expansion disorders mediated by toxic RNA that sequesters RNA-binding proteins and impedes their normal functions. Understanding how noncoding RNAs compete with various RNA and DNA molecules for binding of regulatory proteins will provide insight into how similar mechanisms contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
327
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
328
|
LincRNa-p21: function and mechanism in cancer. Med Oncol 2017; 34:98. [PMID: 28425074 DOI: 10.1007/s12032-017-0959-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022]
Abstract
In view of the rapid development of gene chips and high-throughput sequencing technology, noncoding RNAs (ncRNas) form a high percentage of the mammalian genome. Two major subgroups of ncRNAs that have been identified are the long ncRNAs (lncRNas) and the microRNAs. A number of studies in the past few years have showed crucial functions for lncRNas in cancer. LincRNa-p21 as a p53-dependent transcriptional target gene and a potential diagnostic marker is involved in proliferation, cell cycle, metabolism and reprogramming. In addition, more researches revealed that lincRNa-p21 is associated with cancer progression and contributed to the treatment and prognosis of cancer. In this review, we briefly summarize the function and molecular mechanisms of lincRNa-p21 in cancer and its regulation for the genes expression .
Collapse
|
329
|
Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett 2017; 407:106-112. [PMID: 28400335 DOI: 10.1016/j.canlet.2017.03.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs have emerged as highly versatile players in the regulation of gene expression in development and human disease, particularly cancer. Hundreds of lncRNAs become dysregulated across tumor types, and multiple lncRNAs have demonstrated functions as tumor-suppressors or oncogenes. Furthermore, studies have demonstrated that dysregulation of lncRNAs results in alterations of the epigenome in cancer cells, potentially providing a novel mechanism for the massive epigenomic alterations observed in many tumors. Here, we highlight and provide some illustrious examples of lncRNAs in various epigenetic regulatory processes, including coordination of chromatin dynamics, regulation of DNA methylation, modulation of other non-coding RNAs and mRNA stability, and control of epigenetic substrate availability through altered tumor metabolism. In light of all these known and emerging functions in epigenetic regulation of tumorigenesis and cancer progression, lncRNAs represent attractive targets for future therapeutic strategies in cancer.
Collapse
|
330
|
Vendramin R, Marine JC, Leucci E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO J 2017; 36:1123-1133. [PMID: 28314780 DOI: 10.15252/embj.201695546] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/26/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical hubs for the integration of several key metabolic processes implicated in cell growth and survival. They originated from bacterial ancestors through endosymbiosis, following the transfer of more than 90% of their endosymbiont genome to the host cell nucleus. Over time, a mutually beneficial symbiotic relationship has been established, which relies on continuous and elaborate signaling mechanisms between this life-essential organelle and its host. The ability of mitochondria to signal their functional state and trigger compensatory and adaptive cellular responses has long been recognized, but the underlying molecular mechanisms involved have remained poorly understood. Recent evidence indicates that non-coding RNAs (ncRNAs) may contribute to the synchronization of a series of essential cellular and mitochondrial biological processes, acting as "messengers" between the nucleus and the mitochondria. Here, we discuss the emerging putative roles of ncRNAs in various bidirectional signaling pathways established between the host cell and its mitochondria, and how the dysregulation of these pathways may lead to aging-related diseases, including cancer, and offer new promising therapeutic avenues.
Collapse
Affiliation(s)
- Roberto Vendramin
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium .,RNA Molecular Biology, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
331
|
Liao M, Li B, Zhang S, Liu Q, Liao W, Xie W, Zhang Y. Relationship between LINC00341 expression and cancer prognosis. Oncotarget 2017; 8:15283-15293. [PMID: 28146429 PMCID: PMC5362486 DOI: 10.18632/oncotarget.14843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
LINC00341 is a novel long intergenic non-protein coding RNA with unknown functions. In our report, we investigated LINC00341 expression and its prognostic value in cancer patients. DNA over-methylation triggered low expression of LINC00341 and that was associated with poor prognosis in cancers. A meta-analysis further confirmed that high expression of LINC00341 was associated with a better prognosis in cancer patients. Both gene set enrichment analysis and meta-analysis showed that LINC00341 inhibited cancer metastasis. Finally, a large-scale multicentre analysis supported a prognostic value of LINC00341 in cancers.
Collapse
Affiliation(s)
- Meijian Liao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Bing Li
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Shikuan Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Qing Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Weijie Liao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Weidong Xie
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, P.R. China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, P.R. China
| |
Collapse
|
332
|
Li X, Deng SJ, Zhu S, Jin Y, Cui SP, Chen JY, Xiang C, Li QY, He C, Zhao SF, Chen HY, Niu Y, Liu Y, Deng SC, Wang CY, Zhao G. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget 2017; 7:6000-14. [PMID: 26755660 PMCID: PMC4868736 DOI: 10.18632/oncotarget.6830] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/26/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies indicate that long non-coding RNAs (lncRNAs) play crucial roles in numerous cancers, while their function in pancreatic cancer is rarely elucidated. The present study identifies a functional lncRNA and its potential role in tumorigenesis of pancreatic cancer. Microarray co-assay for lncRNAs and mRNAs demonstrates that lncRNA-NUTF2P3-001 is remarkably overexpressed in pancreatic cancer and chronic pancreatitis tissues, which positively correlates with KRAS mRNA expression. After downregulating lncRNA-NUTF2P3-001, the proliferation and invasion of pancreatic cancer cell are significantly inhibited both in vitro and vivo, accompanying with decreased KRAS expression. The dual-luciferase reporter assay further validates that lncRNA-NUTF2P3-001 and 3′UTR of KRAS mRNA competitively bind with miR-3923. Furthermore, miR-3923 overexpression simulates the inhibiting effects of lncRNA-NUTF2P3-001-siRNA on pancreatic cancer cell, which is rescued by miR-3923 inhibitor. Specifically, the present study further reveals that lncRNA-NUTF2P3-001 is upregulated in pancreatic cancer cells under hypoxia and CoCl2 treatment, which is attributed to the binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the upstream of KRAS promoter. Data from pancreatic cancer patients show a positive correlation between lncRNA-NUTF2P3-001 and KRAS, which is associated with advanced tumor stage and worse prognosis. Hence, our data provide a new lncRNA-mediated regulatory mechanism for the tumor oncogene KRAS and implicate that lncRNA-NUTF2P3-001 and miR-3923 can be applied as novel predictors and therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Xiang Li
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-jiang Deng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-peng Cui
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-yuan Chen
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xiang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun-ying Li
- Department of Medical Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-feng Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-yu Chen
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-chang Deng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-you Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
333
|
Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18010197. [PMID: 28106826 PMCID: PMC5297828 DOI: 10.3390/ijms18010197] [Citation(s) in RCA: 886] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%–5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.
Collapse
|
334
|
Abstract
Glioma is the most common type of brain tumors and malignant glioma is extremely lethal, with patients' 5-year survival rate less than 10%. Treatment of gliomas poses remarkable clinical challenges, not only because of their particular localization but also because glioma cells possess several malignant biological features, including highly proliferative, highly invasive, highly angiogenic, and highly metabolic aberrant. All these features make gliomas highly recurrent and drug resistant. Finding new and effective molecular drug targets for glioma is an urgent and critical task for both basic and clinical research. Recent studies have proposed a type of non-voltage-gated calcium channels, namely, canonical transient receptor potential (TRPC) channels, to be newly emerged potential drug targets for glioma. They are heavily involved in the proliferation, migration, invasion, angiogenesis, and metabolism of glioma cells. Abundant evidence from both cell models and preclinical mouse models has demonstrated that inhibition of TRPC channels shows promising anti-glioma effect. In this chapter, we will give a comprehensive review on the current progress in the studies on TRPC channels and glioma and discuss their potential clinical implication in glioma therapy.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, 77030, TX, USA.
| | - Xia Ding
- Mouse Cancer Genetics Program, National Cancer Institute, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
335
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
336
|
Abstract
Plants must adapt to multiple biotic and abiotic stresses ; thus, sensing and responding to environmental signals is imperative for their survival. Moreover, understanding these responses is imperative for efforts to improve plant yield and consistency. Regulation of transcript levels is a key aspect of the plant response to environmental signals. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years with the advance of high-throughput sequencing technologies. As important biological regulators, lncRNAs have been implicated in a wide range of developmental processes and diseases in animals. However, knowledge of the role that lncRNAs play in plant stress tolerance remains limited. Here, we review recent studies on the identification, characteristics, classification, and biological functions of lncRNAs in response to various stresses, including bacterial pathogens, excess light, drought, salinity, hypoxia, extreme temperatures, and nitrogen/phosphate deficiency. We also discuss possible directions for future research.
Collapse
|
337
|
Chaudhary R, Lal A. Long noncoding RNAs in the p53 network. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27990773 DOI: 10.1002/wrna.1410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
The tumor-suppressor protein p53 is activated in response to numerous cellular stresses including DNA damage. p53 functions primarily as a sequence-specific transcription factor that controls the expression of hundreds of protein-coding genes and noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). While the role of protein-coding genes and miRNAs in mediating the effects of p53 has been extensively studied, the physiological function and molecular mechanisms by which p53-regulated lncRNAs act is beginning to be understood. In this review, we discuss recent studies on lncRNAs that are directly or indirectly regulated by p53 and how they contribute to the biological outcomes of p53 activation. WIREs RNA 2017, 8:e1410. doi: 10.1002/wrna.1410 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
338
|
Luo F, Sun B, Li H, Xu Y, Liu Y, Liu X, Lu L, Li J, Wang Q, Wei S, Shi L, Lu X, Liu Q, Zhang A. A MALAT1/HIF-2α feedback loop contributes to arsenite carcinogenesis. Oncotarget 2016; 7:5769-87. [PMID: 26735578 PMCID: PMC4868720 DOI: 10.18632/oncotarget.6806] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023] Open
Abstract
Arsenic is well established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is also not known if lncRNAs are involved in arsenic-induced liver carcinogenesis. We have found that MALAT1, a non-coding RNA, is over-expressed in the sera of people exposed to arsenite and in hepatocellular carcinomas (HCCs), and MALAT1 has a close relation with the clinicopathological characteristics of HCC. In addition, hypoxia-inducible factor (HIF)-2α is up-regulated in HCCs, and MALAT1 and HIF-2α have a positive correlation in HCC tissues. During the malignant transformation of human hepatic epithelial (L-02) cells induced by a low concentration (2.0 μM) of arsenite, MALAT1 and HIF-2α are increased. In addition, arsenite-induced MALAT1 causes disassociation of the von Hippel-Lindau (VHL) protein from HIF-2α, therefore, alleviating VHL-mediated HIF-2α ubiquitination, which causes HIF-2α accumulation. In turn, HIF-2α transcriptionally regulates MALAT1, thus forming a positive feedback loop to ensure expression of arsenite-induced MALAT1 and HIF-2α, which are involved in malignant transformation. Moreover, MALAT1 and HIF-2α promote the invasive and metastatic capacities of arsenite-induced transformed L-02 cells and in HCC-LM3 cells. The capacities of MALAT1 and HIF-2α to promote tumor growth are validated in mouse xenograft models. In mice, arsenite induces an inflammatory response, and MALAT1 and HIF-2α are over-expressed. Together, these findings suggest that the MALAT1/HIF-2α feedback loop is involved in regulation of arsenite-induced malignant transformation. Our results not only confirm a novel mechanism involving reciprocal regulation between MALAT1 and HIF-2α, but also expand the understanding of the carcinogenic potential of arsenite.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| |
Collapse
|
339
|
Wang X, Ruan Y, Wang X, Zhao W, Jiang Q, Jiang C, Zhao Y, Xu Y, Sun F, Zhu Y, Xia S, Xu D. Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif 2016; 50. [PMID: 27976428 DOI: 10.1111/cpr.12318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Prostate cancer is one of the most frequent malignancies in men, worldwide, although its underlying mechanisms are not fully understood. Long non-coding RNAs participate in development of human cancers. In this invetsigation, we aimed to study the roles of lincRNA-p21 in development of human prostate cancer. MATERIALS AND METHODS Expression of lincRNA-p21 was assessed by real-time PCR in cell lines and in human tissues. Lentivirus carrying sh-lincRNA-p21, lincRNA-p21 or control constructs were used to determine their effects on cell proliferation and apoptosis. A mouse xenograft model was employed to explore the functions of lincRNA-p21 on cancer cell population growth in vivo. Relationships between p53 downstream genes and lincRNA-p21 levels were explored by real-time PCR, western blotting and chromatin immunoprecipitation. RESULTS LincRNA-p21 was found to be down-regulated in human prostate cancer, and low levels of lincRNA-p21 correlated with high disease stage and prediction of poor survival. We further showed that lincRNA-p21 inhibited prostate cancer cell proliferation and colony formation in vitro and reduced rate of prostate cancer cell population growth in vivo. Study of mechanisms involved revealed that lincRNA-p21 promoted apoptosis and induced expression of p53 downstream genes by regulating p53 binding to their promoters. Finally, we showed that expression of p53 downstream genes was reduced in the malignant prostate tissues, which correlated with lincRNA-p21 level. CONCLUSIONS Our findings indicated that lincRNA-p21 inhibited development of human prostate cancer partly by regulating p53 downstream gene expression and partly by apoptotic activation.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyang Zhao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Xu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
340
|
Shang RZ, Qu SB, Wang DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol 2016; 22:9933-9943. [PMID: 28018100 PMCID: PMC5143760 DOI: 10.3748/wjg.v22.i45.9933] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/30/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers, and its rate of incidence is rising annually. Despite the progress in diagnosis and treatment, the overall prognoses of HCC patients remain dismal due to the difficulties in early diagnosis and the high level of tumor invasion, metastasis and recurrence. It is urgent to explore the underlying mechanism of HCC carcinogenesis and progression to find out the specific biomarkers for HCC early diagnosis and the promising target for HCC chemotherapy. Recently, the reprogramming of cancer metabolism has been identified as a hallmark of cancer. The shift from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in HCC meets the demands of rapid cell proliferation and offers a favorable microenvironment for tumor progression. Such metabolic reprogramming could be considered as a critical link between the different HCC genotypes and phenotypes. The regulation of metabolic reprogramming in cancer is complex and may occur via genetic mutations and epigenetic modulations including oncogenes, tumor suppressor genes, signaling pathways, noncoding RNAs, and glycolytic enzymes etc. Understanding the regulatory mechanisms of glycolysis in HCC may enrich our knowledge of hepatocellular carcinogenesis and provide important foundations in the search for novel diagnostic biomarkers and promising therapeutic targets for HCC.
Collapse
|
341
|
LincRNA-p21 Impacts Prognosis in Resected Non–Small Cell Lung Cancer Patients through Angiogenesis Regulation. J Thorac Oncol 2016; 11:2173-2182. [DOI: 10.1016/j.jtho.2016.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
|
342
|
LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 2016; 7:13608. [PMID: 27905400 PMCID: PMC5146280 DOI: 10.1038/ncomms13608] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence and heterogeneity of hepatocellular carcinoma (HCC). However, the biology of hepatic CSCs remains largely undefined. Through analysis of transcriptome microarray data, we identify a long noncoding RNA (lncRNA) called lncBRM, which is highly expressed in liver CSCs and HCC tumours. LncBRM is required for the self-renewal maintenance of liver CSCs and tumour initiation. In liver CSCs, lncBRM associates with BRM to initiate the BRG1/BRM switch and the BRG1-embedded BAF complex triggers activation of YAP1 signalling. Moreover, expression levels of lncBRM together with YAP1 signalling targets are positively correlated with tumour severity of HCC patients. Therefore, lncBRM and YAP1 signalling may serve as biomarkers for diagnosis and potential drug targets for HCC. Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence of hepatocellular carcinoma. Here, the authors show that the long coding RNA, LcnBRM, regulates the self-renewal of liver CSCs and tumour initiation through binding to BAF complex thereby activating YAP1.
Collapse
|
343
|
Liu T, Yin H. PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncol Rep 2016; 37:193-200. [PMID: 27878287 DOI: 10.3892/or.2016.5253] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
Tumor cells prefer glycolysis (Warburg effect) during the proliferation and metastasis. The precise mechanism remains largely unknown. Here, we demonstrated that pyruvate dehydrogenase kinase 1 (PDK1) was a critical enzyme that functioned as an oncogene to promote non-small cell lung cancer (NSCLC) growth and metastasis. We discovered that PDK1 expression was significantly upregulated in NSCLC tissues and correlated with advanced T stage. Moreover, high expression of PDK1 was an independent prognostic factor of NSCLC. Ectopic overexpression of PDK1 promoted cell proliferation and inhibited apoptosis. Also it was shown that PDK1 increased the cell mobility when Transwell assay was performed. Further experiments indicated that PDK1 had a central role in metabolic reprogramming by phosphorylating pyruvate dehydrogenase, leading to enhanced Warburg effect. Collectively, our data reveal a new function for PDK1, which could be used to indicate the prognosis of NSCLC, and provide targeted therapeutic strategy for clinical treatment.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pneumology, Heilongjiang Province Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Honglei Yin
- Department of Pneumology, Heilongjiang Province Hospital, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
344
|
Chillón I, Pyle AM. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res 2016; 44:9462-9471. [PMID: 27378782 PMCID: PMC5100600 DOI: 10.1093/nar/gkw599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response.
Collapse
Affiliation(s)
- Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
345
|
Xing YH, Bai Z, Liu CX, Hu SB, Ruan M, Chen LL. Research progress of long noncoding RNA in China. IUBMB Life 2016; 68:887-893. [DOI: 10.1002/iub.1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yu-Hang Xing
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Zhiqiang Bai
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Shi-Bin Hu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Meihua Ruan
- Shanghai Information Center for Life Sciences; Chinese Academy of Sciences; Shanghai China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- School of Life Science; ShanghaiTech University; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
346
|
Li Z, Hou P, Fan D, Dong M, Ma M, Li H, Yao R, Li Y, Wang G, Geng P, Mihretab A, Liu D, Zhang Y, Huang B, Lu J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ 2016; 24:59-71. [PMID: 27716745 DOI: 10.1038/cdd.2016.95] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
EZH2 (the Enhancer of Zeste Homolog 2), as a key epigenetic regulator and EMT inducer, participates in a variety of cancer metastasis. EZH2 stability is regulated by several types of post-translational modifications (PTMs).The long non-coding RNAs (lncRNA) have been implicated to have critical roles in multiple carcinogenesis through a wide range of mechanisms, including modulating the stability of proteins. To date, whether the stability of EZH2 protein is regulated by lncRNAs remains unexplored. Here we report the discovery of ANCR modulating the stability of EZH2, and hence in the invasion and metastasis of breast cancer cells. We determined that ANCR potentiated the CDK1-EZH2 interaction, which then increased the intensity of phosphorylation at Thr-345 and Thr-487 sites of EZH2, facilitating EZH2 ubiquitination and hence its degradation. Moreover, we also uncover ANCR is an important player in breast cancer progression and metastasis mainly through decreasing EZH2 stability. More specifically, we initially found that ANCR level was lower in breast cancer tissues and breast cancer cell lines, in contrast to their normal counterparts. We then demonstrated that knockdown of ANCR induced an EMT program and promoted cell migration and invasion in MCF10A (epithelial cells), whereas ectopic expression of ANCR repressed breast cancer cells migration and invasion. Furthermore, we validated in a nude mouse model that overexpression of ANCR in highly malignant and invasive MDA-MB-231 breast cancer cells significantly reduced the ability of the cells to form tumors and prevented the lung metastasis in vivo. Based on these data, our findings define a new mechanism underlying modulation of EZH2 stability by linking ANCR interaction with EZH2 to promote its phosphorylation that facilitates EZH2 degradation and suppresses breast cancer progression.
Collapse
Affiliation(s)
- Zhongwei Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Pingfu Hou
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Dongmei Fan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Meichen Dong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Musong Ma
- The Breast Surgery, The Tumor Hospital of Jilin Province, Changchun, China
| | - Hongyuan Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruosi Yao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Pengyu Geng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Adhanom Mihretab
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Dongxu Liu
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
347
|
Kong XZ, Hu SS, Sun Z, Zuo LH, Kang J, Zhu ZF, Tian X, Zhang XJ. Regulation of aerobic glycolysis by long non-coding RNAs in cancer. Biochem Biophys Res Commun 2016; 479:28-32. [DOI: 10.1016/j.bbrc.2016.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
|
348
|
Jia M, Jiang L, Wang YD, Huang JZ, Yu M, Xue HZ. lincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition. Hepatol Res 2016; 46:1137-1144. [PMID: 27391793 DOI: 10.1111/hepr.12659] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
AIM Emerging evidence has showed that long non-coding RNA (lncRNA) play an important role in the occurrence and development of various cancers. In the present study, the expression level of lincRNA-p21 was investigated in hepatocellular carcinoma (HCC), and its role in invasion of HCC was also explored. METHODS The lincRNA-p21 levels in human HCC tumor tissue and cell lines HepG2 and SMMC-7721 were determined by real-time polymerase chain reaction. Transfected HCC cells with pcDNA-lincRNA-p21 or si-lincRNA-p21 for overexpression or downregulation of lincRNA-p21, the Notch signaling and epithelial-mesenchymal transition (EMT)-related proteins and cell invasion were measured by western blot and Transwell assay, respectively. A tumor xenotransplant mouse model was also established to investigate the role of lincRNA-p21 in tumor metastasis in vivo. RESULTS The lincRNA-p21 expression was downregulated in HCC tissue and cells. Overexpression of lincRNA-p21 inhibited Notch singling and EMT, while its downregulation led to the reverse result. The invasion of HCC cell was also inhibited by pcDNA-lincRNA-p21, and activation of Notch signaling reversed this effect. In vivo, overexpression of lincRNA-p21 decreased the tumor metastasis, as well. CONCLUSION lincRNA-p21 was downregulated in HCC and lincRNA-p21 overexpression contributed to the inhibition of tumor invasion through mediating Notch signaling induced EMT.
Collapse
Affiliation(s)
- Meng Jia
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Li Jiang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Ya-Dong Wang
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Jin-Zhao Huang
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Miao Yu
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Huan-Zhou Xue
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China.
| |
Collapse
|
349
|
Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 2016; 17:135-143. [PMID: 27681237 DOI: 10.1007/s10142-016-0524-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) are defined as RNA transcripts that are longer than 200 nucleotides. By definition, these RNAs must not have open reading frames that encode proteins. Many of these transcripts are encoded by RNA polymerase II, are spliced, and are poly-adenylated. This final fact indicates that there is a trove of information about lincRNAs in databases such as the Gene Expression Omnibus (GEO), which is a repository for RNAseq and microarray data. Recent experiments indicate that there are upwards of 15,000 lincRNAs encoded by the human genome. The term "intergenic" refers to the identification of these transcripts from regions of the genome that do not contain protein-encoding genes. These regions coincide with what was once labeled as the "junk DNA" portions of our genomes, which, upon careful examination by whole genome RNA sequencing experiments, clearly encode RNA transcripts. LincRNAs also contain promoter- or enhancer-associated RNAs that are gene proximal and can be either in the sense or antisense orientation, relative to the protein-coding gene with which they are associated. In this review, we describe the functions of lincRNAs playing roles in biological processes such as gene expression control, scaffold formation, and epigenetic control.
Collapse
Affiliation(s)
- Emre Deniz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey.
| |
Collapse
|
350
|
Diermeier SD, Chang KC, Freier SM, Song J, El Demerdash O, Krasnitz A, Rigo F, Bennett CF, Spector DL. Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration. Cell Rep 2016; 17:261-274. [PMID: 27681436 PMCID: PMC5079290 DOI: 10.1016/j.celrep.2016.08.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent the largest and most diverse class of non-coding RNAs, comprising almost 16,000 currently annotated transcripts in human and 10,000 in mouse. Here, we investigated the role of lncRNAs in mammary tumors by performing RNA-seq on tumor sections and organoids derived from MMTV-PyMT and MMTV-Neu-NDL mice. We identified several hundred lncRNAs that were overexpressed compared to normal mammary epithelium. Among these potentially oncogenic lncRNAs we prioritized a subset as Mammary Tumor Associated RNAs (MaTARs) and determined their human counterparts, hMaTARs. To functionally validate the role of MaTARs, we performed antisense knockdown and observed reduced cell proliferation, invasion, and/or organoid branching in a cancer-specific context. Assessing the expression of hMaTARs in human breast tumors revealed that 19 hMaTARs are significantly upregulated and many of these correlate with breast cancer subtype and/or hormone receptor status, indicating potential clinical relevance.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Survival
- Female
- Humans
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/therapy
- Mice
- Mice, Transgenic
- Oligoribonucleotides, Antisense/genetics
- Oligoribonucleotides, Antisense/metabolism
- Oligoribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcriptome
Collapse
Affiliation(s)
| | - Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Junyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|