301
|
El Mestikawy S, Wallén-Mackenzie A, Fortin GM, Descarries L, Trudeau LE. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 2011; 12:204-16. [PMID: 21415847 DOI: 10.1038/nrn2969] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent data indicate that 'classical' neurotransmitters can also act as co-transmitters. This notion has been strengthened by the demonstration that three vesicular glutamate transporters (vesicular glutamate transporter 1 (VGLUT1), VGLUT2 and VGLUT3) are present in central monoamine, acetylcholine and GABA neurons, as well as in primarily glutamatergic neurons. Thus, intriguing questions are raised about the morphological and functional organization of neuronal systems endowed with such a dual signalling capacity. In addition to glutamate co-release, vesicular synergy - a process leading to enhanced packaging of the 'primary' transmitter - is increasingly recognized as a major property of the glutamatergic co-phenotype. The behavioural relevance of this co-phenotype is presently the focus of considerable interest.
Collapse
Affiliation(s)
- Salah El Mestikawy
- Institut National de Santé et de Recherche Médicale (INSERM), U952, Centre National de Recherche Scientifique (CNRS) UMR 7224, Université Pierre et Marie Curie, Paris 06, Pathophysiology of Central Nervous System Disorders, 9 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
302
|
Soiza-Reilly M, Commons KG. Glutamatergic drive of the dorsal raphe nucleus. J Chem Neuroanat 2011; 41:247-55. [PMID: 21550397 DOI: 10.1016/j.jchemneu.2011.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022]
Abstract
The dorsal raphe nucleus (DR) contains the majority of serotonin (5-hydroxytryptamine, 5-HT) neurons in the brain that regulate neural activity in forebrain regions through their widespread projections. DR function is linked to stress and emotional processing, and is implicated in the pathophysiology of affective disorders. Glutamatergic drive of the DR arises from many different brain areas with the capacity to inform the nucleus of sensory, autonomic, endocrine and metabolic state as well as higher order neural function. Imbalance of glutamatergic neurotransmission could contribute to maladaptive 5-HT neurotransmission and represents a potential target for pharmacotherapy. Within the DR, glutamate-containing axon terminals can be identified by their content of one of three types of vesicular glutamate transporter, VGLUT1, 2 or 3. Each of these transporters is heavily expressed in particular brain areas such that their content within axons correlates with the afferent's source. Cortical sources of innervation to the DR including the medial prefrontal cortex heavily express VGLUT1 whereas subcortical sources primarily express VGLUT2. Within the DR, many local neurons responsive to substance P contain VGLUT3, and these provide a third source of excitatory drive to 5-HT cells. Moreover VGLUT3 is present, with or without 5-HT, in output pathways from the DR. 5-HT and non-5-HT neurons receive and integrate glutamatergic neurotransmission through multiple subtypes of glutamate receptors that have different patterns of expression within the DR. Interestingly, excitatory drive provided by glutamatergic neurotransmission is closely opposed by feedback inhibition mediated by 5-HT1A receptors or local GABAergic circuits. Understanding the intricacies of these local networks and their checks and balances, may help identify how potential imbalances could cause psychopathology and illuminate strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Mariano Soiza-Reilly
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital, Boston, United States
| | | |
Collapse
|
303
|
Conte-Perales L, Rico AJ, Barroso-Chinea P, Gómez-Bautista V, Roda E, Luquin N, Sierra S, Lanciego JL. Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Struct Funct 2011; 216:371-86. [PMID: 21512896 DOI: 10.1007/s00429-011-0319-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
GABAergic neurons within the internal division of the globus pallidus (GPi) are the main source of basal ganglia output reaching the thalamic ventral nuclei in monkeys. Following dopaminergic denervation, pallidothalamic-projecting neurons are known to be hyperactive, whereas a reduction in GPi activity is typically observed in lesioned animals showing levodopa-induced dyskinesia. Besides the mRNAs coding for GABAergic markers (GAD65 and GAD67), we show that all GPi neurons innervating thalamic targets also express transcripts for the isoforms 1 and 2 of the vesicular glutamate transporter (vGlut1 and vGlut2 mRNA). Indeed, dual immunofluorescent detection of GAD67 and vGlut1/2 confirmed the data gathered from in situ hybridization experiments, therefore demonstrating that the detected mRNAs are translated into the related proteins. Furthermore, the dopaminergic lesion resulted in an up-regulation of expression levels for both GAD65 and GAD67 mRNA within identified pallidothalamic-projecting neurons. This was coupled with a down-regulation of GAD65/67 mRNA expression levels in GPi neurons innervating thalamic targets in monkeys showing levodopa-induced dyskinesia. By contrast, the patterns of gene expression for both vGlut1 and vGlut2 mRNAs remained unchanged across GPi projection neurons in control, MPTP-treated and dyskinetic monkeys. In summary, both GABAergic and glutamatergic markers were co-expressed by GPi efferent neurons in primates. Although the status of the dopaminergic system directly modulates the expression levels of GAD65/67 mRNA, the observed expression of vGlut1/2 mRNA is not regulated by either dopaminergic removal or by continuous stimulation with dopaminergic agonists.
Collapse
Affiliation(s)
- Lorena Conte-Perales
- Neurosciences Division, Center for Applied Medical Research (CIMA & CIBERNED), Pio XII Ave 55, Edificio CIMA, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
304
|
Cucchiaroni ML, Freestone PS, Berretta N, Viscomi MT, Bisicchia E, Okano H, Molinari M, Bernardi G, Lipski J, Mercuri NB, Guatteo E. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures - evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors. Eur J Neurosci 2011; 33:1622-36. [DOI: 10.1111/j.1460-9568.2011.07659.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
305
|
Chocyk A, Przyborowska A, Dudys D, Majcher I, Maćkowiak M, Wędzony K. The impact of maternal separation on the number of tyrosine hydroxylase-expressing midbrain neurons during different stages of ontogenesis. Neuroscience 2011; 182:43-61. [PMID: 21396433 DOI: 10.1016/j.neuroscience.2011.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 12/19/2022]
Abstract
Early life stressors have life-long functional and anatomical consequences. Though many neurotransmitters are involved in the functional impact of early life stress, dopamine seems to be important because of its roles in motor control, adaptation to stressful conditions, mood, cognition, attention and reward. Thus, in the present study, we investigated the way that early life stress, in the form of maternal separation (MS), affects the populations of tyrosine hydroxylase-immunoreactive (TH-IR) dopaminergic neurons in rat midbrain structures during ontogenesis. We included in the study the sub-regions of the substantia nigra (SN) and the ventral tegmental area (VTA). In both the control and MS rats, we found that the estimated total number of TH-expressing neurons fluctuated during ontogenesis. Moreover, MS influenced the number of TH-IR cells, especially in the SN pars reticulata (SNr) and VTA. Shortly after the termination of MS, on postnatal day (PND) 15, a decrease in the estimated total number of TH-IR neurons was observed in the SNr and VTA (in both males and females). On PND 35, MS caused a transient increase in the number of TH-IR cells only in the SNr of female rats. On PND 70, MS affected the number of TH-IR neurons in the VTA of females; specifically, an increase in the number of these cells was observed. Additionally, MS did not alter TH-IR cell sizes or the total levels of TH (measured by Western blot analysis) in the SN and VTA for all stages of ontogenesis in both males and females. The results from the study herein indicate that early life stress has enduring effects on the populations of midbrain TH-expressing dopaminergic neurons (especially in female rats), which are critically important for dopamine-regulated brain function throughout ontogenesis.
Collapse
Affiliation(s)
- A Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
306
|
Moss J, Ungless MA, Bolam JP. Dopaminergic axons in different divisions of the adult rat striatal complex do not express vesicular glutamate transporters. Eur J Neurosci 2011; 33:1205-11. [PMID: 21375596 DOI: 10.1111/j.1460-9568.2011.07594.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Midbrain dopamine neurons signal rapid information about rewards and reward-related events. It has been suggested that this fast signal may, in fact, be conveyed by co-released glutamate. Evidence that dopamine neurons co-release glutamate comes largely from studies involving cultured neurons or tissue from young animals. Recently, however, it has been shown that this dual glutamatergic/dopaminergic phenotype declines with age, and can be induced by injury, suggesting that it is not a key feature of adult dopamine neurons. Here, we provide further support for this view by showing that dopaminergic axons and terminals in subregions of the adult striatum do not express vesicular glutamate transporters (VGluT1, VGluT2 or VGluT3). Striatal tissue from the adult rat was immunolabelled to reveal tyrosine hydroxylase (TH; biosynthetic enzyme of dopamine) and one of the three known VGluTs. Importantly, we compared the immunogold labelling for each of the VGluTs associated with TH-positive structures with background labelling at the electron microscopic level. In addition, we carried out a subregional analysis of the core and shell of the nucleus accumbens. We found that dopaminergic axons and terminals in the dorsolateral striatum and ventral striatum (nucleus accumbens core and shell) do not express VGluT1, VGluT2 or VGluT3. We conclude, therefore, that in the normal, adult rat striatum, dopaminergic axons do not co-release glutamate.
Collapse
Affiliation(s)
- Jonathan Moss
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
307
|
Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat Neurosci 2011; 14:487-94. [PMID: 21378974 PMCID: PMC3072292 DOI: 10.1038/nn.2775] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/02/2011] [Indexed: 11/21/2022]
Abstract
The absence of the chloride channel CLC-3 in Clcn3−/− mice results in hippocampal degeneration with a distinct temporal-spatial sequence reminiscent of neuronal loss in temporal lobe epilepsy. We examined how the loss of CLC-3 might impact GABAergic synaptic transmission in the hippocampus. An electrophysiological study of synaptic function in Clcn3+/+ and Clcn3-−/− mice in hippocampal slices before the onset of neurodegeneration, revealed a significant decrease in the amplitude and frequency of mIPSCs. We found that CLC-3 colocalizes with the vesicular GABA transporter VGAT in the CA1 region of the hippocampus. Cl−-induced acidification of inhibitory synaptic vesicles showed a significant dependence on CLC-3 expression. The decrement in inhibitory transmission in the Clcn3−/− animals suggests a decrease in neurotransmitter loading of synaptic vesicles which we attributed to defective vesicular acidification. Our observations extend the role of Cl− in inhibitory transmission from that of a postsynaptic permeant species to a presynaptic regulatory element.
Collapse
|
308
|
Abstract
Calcium-dependent electrical activity plays a significant role in neurotransmitter specification at early stages of development. To test the hypothesis that activity-dependent differentiation depends on molecular context, we investigated the development of dopaminergic neurons in the CNS of larval Xenopus laevis. We find that different dopaminergic nuclei respond to manipulation of this early electrical activity by ion channel misexpression with different increases and decreases in numbers of dopaminergic neurons. Focusing on the ventral suprachiasmatic nucleus and the spinal cord to gain insight into these differences, we identify distinct subpopulations of neurons that express characteristic combinations of GABA and neuropeptide Y as cotransmitters and Lim1,2 and Nurr1 transcription factors. We demonstrate that the developmental state of neurons identified by their spatial location and expression of these molecular markers is correlated with characteristic spontaneous calcium spike activity. Different subpopulations of dopaminergic neurons respond differently to manipulation of this early electrical activity. Moreover, retinohypothalamic circuit activation of the ventral suprachiasmatic nucleus recruits expression of dopamine selectively in reserve pool neurons that already express GABA and neuropeptide Y. The results are consistent with the hypothesis that spontaneously active neurons expressing GABA are most susceptible to activity-dependent expression of dopamine in both the spinal cord and brain. Because loss of dopaminergic neurons plays a role in neurological disorders such as Parkinson's disease, understanding how subpopulations of neurons become dopaminergic may lead to protocols for differentiation of neurons in vitro to replace those that have been lost in vivo.
Collapse
|
309
|
Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes. Neuron 2011; 69:445-52. [DOI: 10.1016/j.neuron.2010.12.038] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2010] [Indexed: 11/19/2022]
|
310
|
Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2011; 68:815-34. [PMID: 21144997 DOI: 10.1016/j.neuron.2010.11.022] [Citation(s) in RCA: 1549] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2010] [Indexed: 01/18/2023]
Abstract
Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but nonrewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and nonreward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior.
Collapse
Affiliation(s)
- Ethan S Bromberg-Martin
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
311
|
Robinson DL, Zitzman DL, Williams SK. Mesolimbic dopamine transients in motivated behaviors: focus on maternal behavior. Front Psychiatry 2011; 2:23. [PMID: 21629844 PMCID: PMC3098725 DOI: 10.3389/fpsyt.2011.00023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/23/2011] [Indexed: 11/13/2022] Open
Abstract
Phasic activity of the mesolimbic dopamine pathway - burst-firing of dopamine neurons and the resulting dopamine release events at striatal targets - have been associated with a variety of motivational events, such as novelty, salient stimuli, social interaction, and reward prediction. Over the past decade, advances in electrochemical techniques have allowed measurement of naturally occurring dopamine release events, or dopamine transients, in awake animals during ongoing behavior. Thus, a growing body of studies has revealed dynamic dopamine input to ventral striatum during motivated behavior in a variety of experimental paradigms. We propose that dopamine transients may be important neural signals in pup-directed aspects of maternal behavior, as preliminary data suggest that dopamine transients in dams are associated with pup cues. Measurements of dopamine transients may be useful to investigate not only typical maternal behavior but also maternal inattention induced by drug exposure or stress.
Collapse
Affiliation(s)
- Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, NC, USA
| | | | | |
Collapse
|
312
|
VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proc Natl Acad Sci U S A 2010; 107:22296-301. [PMID: 21135246 DOI: 10.1073/pnas.1013413108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutamate transporter 2 (VGLUT2) is ablated selectively from DRG neurons. We report that conditional knockout (cKO) of the Slc17a6 gene encoding VGLUT2 from the great majority of nociceptors profoundly decreased VGLUT2 mRNA and protein in these neurons, and reduced firing of lamina I spinal cord neurons in response to noxious heat and mechanical stimulation. In behavioral assays, cKO mice showed decreased responsiveness to acute noxious heat, mechanical, and chemical (capsaicin) stimuli, but responded normally to cold stimulation and in the formalin test. Strikingly, although tissue injury-induced heat hyperalgesia was lost in the cKO mice, mechanical hypersensitivity developed normally. In a model of nerve injury-induced neuropathic pain, the magnitude of heat hypersensitivity was diminished in cKO mice, but both the mechanical allodynia and the microgliosis generated by nerve injury were intact. These findings suggest that VGLUT2 expression in nociceptors is essential for normal perception of acute pain and heat hyperalgesia, and that heat and mechanical hypersensitivity induced by peripheral injury rely on distinct (VGLUT2 dependent and VGLUT2 independent, respectively) primary afferent mechanisms and pathways.
Collapse
|
313
|
Deciphering the corelease of glutamate from dopaminergic terminals derived from the ventral tegmental area. J Neurosci 2010; 30:13549-51. [PMID: 20943895 DOI: 10.1523/jneurosci.3802-10.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
314
|
Vesicular monoamine and glutamate transporters select distinct synaptic vesicle recycling pathways. J Neurosci 2010; 30:7917-27. [PMID: 20534840 DOI: 10.1523/jneurosci.5298-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous work has characterized the properties of neurotransmitter release at excitatory and inhibitory synapses, but we know remarkably little about the properties of monoamine release, because these neuromodulators do not generally produce a fast ionotropic response. Since dopamine and serotonin neurons can also release glutamate in vitro and in vivo, we have used the vesicular monoamine transporter VMAT2 and the vesicular glutamate transporter VGLUT1 to compare the localization and recycling of synaptic vesicles that store, respectively, monoamines and glutamate. First, VMAT2 segregates partially from VGLUT1 in the boutons of midbrain dopamine neurons, indicating the potential for distinct release sites. Second, endocytosis after stimulation is slower for VMAT2 than VGLUT1. During the stimulus, however, the endocytosis of VMAT2 (but not VGLUT1) accelerates dramatically in midbrain dopamine but not hippocampal neurons, indicating a novel, cell-specific mechanism to sustain high rates of release. On the other hand, we find that in both midbrain dopamine and hippocampal neurons, a substantially smaller proportion of VMAT2 than VGLUT1 is available for evoked release, and VMAT2 shows considerably more dispersion along the axon after exocytosis than VGLUT1. Even when expressed in the same neuron, the two vesicular transporters thus target to distinct populations of synaptic vesicles, presumably due to their selection of distinct recycling pathways.
Collapse
|
315
|
Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 2010; 30:8229-33. [PMID: 20554874 DOI: 10.1523/jneurosci.1754-10.2010] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coincident signaling by dopamine and glutamate is thought to be crucial for a variety of motivated behaviors. Previous work has suggested that some midbrain dopamine neurons are themselves capable of glutamate corelease, but this phenomenon remains poorly understood. Here, we expressed the light-activated cation channel Channelrhodopsin-2 (ChR2) in genetically defined midbrain dopamine neurons to stimulate exocytosis specifically from dopaminergic terminals in both the nucleus accumbens (NAc) shell and dorsal striatum of brain slices from adult mice. Optical activation resulted in robust glutamate-mediated EPSCs in all medium spiny neurons examined in the NAc shell. In contrast, optically evoked glutamatergic currents were nearly undetectable in the dorsal striatum. Further, we used a conditional knock-out mouse lacking vesicular glutamate transporter 2 (VGLUT2) specifically in dopamine neurons to determine whether VGLUT2 is required for the exocytotic release of glutamate from dopamine neurons. Our data show that conditional knock-out completely abolished all optically evoked glutamate release. These results provide definitive physiological evidence for VGLUT2-mediated glutamate release by mature dopamine neurons projecting to the NAc shell, but not to the dorsal striatum. Thus, the unique ability of NAc-projecting dopamine neurons to synchronously activate both dopamine and glutamate receptors may have crucial implications for the ability to respond to motivationally significant stimuli.
Collapse
|
316
|
A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol Cell Neurosci 2010; 45:245-57. [PMID: 20600924 DOI: 10.1016/j.mcn.2010.06.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022] Open
Abstract
Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.
Collapse
|
317
|
Zhang TA, Placzek AN, Dani JA. In vitro identification and electrophysiological characterization of dopamine neurons in the ventral tegmental area. Neuropharmacology 2010; 59:431-6. [PMID: 20600174 DOI: 10.1016/j.neuropharm.2010.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/21/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) have been implicated in brain mechanisms related to motivation, reward, and drug addiction. Successful identification of these neurons in vitro has historically depended upon the expression of a hyperpolarization-activated current (I(h)) and immunohistochemical demonstration of the presence of tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis. Recent findings suggest that electrophysiological criteria may be insufficient for distinguishing DA neurons from non-DA neurons in the VTA. In this study, we sought to determine factors that could potentially account for the apparent discrepancies in the literature regarding DA neuron identification in the rodent brain slice preparation. We found that confirmed DA neurons from the lateral VTA generally displayed a larger amplitude I(h) relative to DA neurons located in the medial VTA. Measurement of a large amplitude I(h) (>100 pA) consistently indicated a dopaminergic phenotype, but non-dopamine neurons also can have I(h) current. The data also showed that immunohistochemical TH labeling of DA neurons can render false negative results after relatively long duration (>15 min) whole-cell patch clamp recordings. We conclude that whole-cell patch clamp recording in combination with immunohistochemical detection of TH expression can guarantee positive but not negative DA identification in the VTA.
Collapse
Affiliation(s)
- Tao A Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | | | |
Collapse
|