301
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
302
|
Daiber A, Di Lisa F, Oelze M, Kröller‐Schön S, Steven S, Schulz E, Münzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 2017; 174:1670-1689. [PMID: 26660451 PMCID: PMC5446573 DOI: 10.1111/bph.13403] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are associated with and/or caused by oxidative stress. This concept has been proven by using the approach of genetic deletion of reactive species producing (pro-oxidant) enzymes as well as by the overexpression of reactive species detoxifying (antioxidant) enzymes leading to a marked reduction of reactive oxygen and nitrogen species (RONS) and in parallel to an amelioration of the severity of diseases. Likewise, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of antioxidant RONS detoxifying enzymes. Thus, the consequences of the interaction (redox crosstalk) of superoxide/hydrogen peroxide produced by mitochondria with other ROS producing enzymes such as NADPH oxidases (Nox) are of outstanding importance and will be discussed including the consequences for endothelial nitric oxide synthase (eNOS) uncoupling as well as the redox regulation of the vascular function/tone in general (soluble guanylyl cyclase, endothelin-1, prostanoid synthesis). Pathways and potential mechanisms leading to this crosstalk will be analysed in detail and highlighted by selected examples from the current literature including hypoxia, angiotensin II-induced hypertension, nitrate tolerance, aging and others. The general concept of redox-based activation of RONS sources via "kindling radicals" and enzyme-specific "redox switches" will be discussed providing evidence that mitochondria represent key players and amplifiers of the burden of oxidative stress. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Matthias Oelze
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Swenja Kröller‐Schön
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Sebastian Steven
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Eberhard Schulz
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Thomas Münzel
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| |
Collapse
|
303
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
304
|
Di Lisa F, Giorgio M, Ferdinandy P, Schulz R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 2017; 174:1690-1703. [PMID: 26990284 PMCID: PMC5446581 DOI: 10.1111/bph.13478] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
Although reactive oxygen species (ROS) act as crucial factors in the onset and progression of a wide array of diseases, they are also involved in numerous signalling pathways related to cell metabolism, growth and survival. ROS are produced at various cellular sites, and it is generally agreed that mitochondria generate the largest amount, especially those in cardiomyocytes. However, the identification of the most relevant sites within mitochondria, the interaction among the various sources, and the events responsible for the increase in ROS formation under pathological conditions are still highly debated, and far from being clarified. Here, we review the information linking the adaptor protein p66Shc with cardiac injury induced by ischaemia and reperfusion (I/R), including the contribution of risk factors, such as metabolic syndrome and ageing. In response to several stimuli, p66Shc migrates into mitochondria where it catalyses electron transfer from cytochrome c to oxygen resulting in hydrogen peroxide formation. Deletion of p66Shc has been shown to reduce I/R injury as well as vascular abnormalities associated with diabetes and ageing. However, p66Shc-induced ROS formation is also involved in insulin signalling and might contribute to self-endogenous defenses against mild I/R injury. In addition to its role in physiological and pathological conditions, we discuss compounds and conditions that can modulate the expression and activity of p66Shc. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Fabio Di Lisa
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaPadovaItaly
| | - Marco Giorgio
- Department of Experimental OncologyInstitute of OncologyMilanItaly
| | - Peter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Rainer Schulz
- Institut für PhysiologieJustus‐Liebig Universität GiessenGiessenGermany
| |
Collapse
|
305
|
Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond) 2017; 131:803-822. [PMID: 28424375 DOI: 10.1042/cs20160485] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
It is increasingly acknowledged that a sex and gender specificity affects the occurrence, development, and consequence of a plethora of pathologies. Mitochondria are considered as the powerhouse of the cell because they produce the majority of energy-rich phosphate bonds in the form of adenosine tri-phosphate (ATP) but they also participate in many other functions like steroid hormone synthesis, reactive oxygen species (ROS) production, ionic regulation, and cell death. Adequate cellular energy supply and survival depend on mitochondrial life cycle, a process involving mitochondrial biogenesis, dynamics, and quality control via mitophagy. It appears that mitochondria are the place of marked sexual dimorphism involving mainly oxidative capacities, calcium handling, and resistance to oxidative stress. In turn, sex hormones regulate mitochondrial function and biogenesis. Mutations in genes encoding mitochondrial proteins are the origin of serious mitochondrial genetic diseases. Mitochondrial dysfunction is also an important parameter for a large panel of pathologies including neuromuscular disorders, encephalopathies, cardiovascular diseases (CVDs), metabolic disorders, neuropathies, renal dysfunction etc. Many of these pathologies present sex/gender specificity. Here we review the sexual dimorphism of mitochondria from different tissues and how this dimorphism takes part in the sex specificity of important pathologies mainly CVDs and neurological disorders.
Collapse
|
306
|
Lizano P, Rashed E, Stoll S, Zhou N, Wen H, Hays TT, Qin G, Xie LH, Depre C, Qiu H. The valosin-containing protein is a novel mediator of mitochondrial respiration and cell survival in the heart in vivo. Sci Rep 2017; 7:46324. [PMID: 28425440 PMCID: PMC5397870 DOI: 10.1038/srep46324] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/16/2017] [Indexed: 12/24/2022] Open
Abstract
The valosin-containing protein (VCP) participates in signaling pathways essential for cell homeostasis in multiple tissues, however, its function in the heart in vivo remains unknown. Here we offer the first description of the expression, function and mechanism of action of VCP in the mammalian heart in vivo in both normal and stress conditions. By using a transgenic (TG) mouse with cardiac-specific overexpression (3.5-fold) of VCP, we demonstrate that VCP is a new and powerful mediator of cardiac protection against cell death in vivo, as evidenced by a 50% reduction of infarct size after ischemia/reperfusion versus wild type. We also identify a novel role of VCP in preserving mitochondrial respiration and in preventing the opening of mitochondrial permeability transition pore in cardiac myocytes under stress. In particular, by genetic deletion of inducible isoform of nitric oxide synthase (iNOS) from VCP TG mouse and by pharmacological inhibition of iNOS in isolated cardiac myocytes, we reveal that an increase of expression and activity of iNOS in cardiomyocytes by VCP is an essential mechanistic link of VCP-mediated preservation of mitochondrial function. These data together demonstrate that VCP may represent a novel therapeutic avenue for the prevention of myocardial ischemia.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Eman Rashed
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Ning Zhou
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Tristan T Hays
- Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB),Birmingham, AL, 35294, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Christophe Depre
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Hongyu Qiu
- Department of Cell Biology and Molecular Medicine; New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,Division of Physiology, Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA, 92324, USA
| |
Collapse
|
307
|
Ceron CS, Baligand C, Joshi S, Wanga S, Cowley PM, Walker JP, Song SH, Mahimkar R, Baker AJ, Raffai RL, Wang ZJ, Lovett DH. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F1166-F1183. [PMID: 28331061 PMCID: PMC5495883 DOI: 10.1152/ajprenal.00461.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - Sunil Joshi
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Shaynah Wanga
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Patrick M Cowley
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Joy P Walker
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Sang Heon Song
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Anthony J Baker
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Zhen J Wang
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California;
| |
Collapse
|
308
|
Angiotensin (1–7) facilitates cardioprotection of ischemic preconditioning on ischemia–reperfusion-challenged rat heart. Mol Cell Biochem 2017; 430:99-113. [DOI: 10.1007/s11010-017-2958-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/28/2017] [Indexed: 12/21/2022]
|
309
|
Cui YL, Zhang S, Tian ZT, Lin ZF, Chen DC. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability. Chin Med J (Engl) 2017; 129:1737-43. [PMID: 27411464 PMCID: PMC4960966 DOI: 10.4103/0366-6999.185859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.
Collapse
Affiliation(s)
- Yun-Liang Cui
- Department of Critical Care Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
| | - Sheng Zhang
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhao-Tao Tian
- Department of Critical Care Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
| | - Zhao-Fen Lin
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - De-Chang Chen
- Department of Emergency Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
310
|
Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca 2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents. J Membr Biol 2017; 250:225-236. [PMID: 28251264 DOI: 10.1007/s00232-017-9953-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset.
Collapse
Affiliation(s)
- Nina G Golovach
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Vitali T Cheshchevik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Tatsiana V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus.
| |
Collapse
|
311
|
Fazal L, Laudette M, Paula-Gomes S, Pons S, Conte C, Tortosa F, Sicard P, Sainte-Marie Y, Bisserier M, Lairez O, Lucas A, Roy J, Ghaleh B, Fauconnier J, Mialet-Perez J, Lezoualc’h F. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res 2017; 120:645-657. [DOI: 10.1161/circresaha.116.309859] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022]
Abstract
Rationale:
Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood.
Objective:
To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury.
Methods and Results:
We show that
Epac1
(exchange protein directly activated by cAMP 1) genetic ablation (
Epac1
−/−
) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation–induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of
Epac1
in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation–induced cell death. Mechanistically, Epac1 favors Ca
2+
exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca
2+
overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca
2+
/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte.
Conclusions:
Our results reveal the existence, within mitochondria, of different cAMP–Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.
Collapse
Affiliation(s)
- Loubina Fazal
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Marion Laudette
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Sílvia Paula-Gomes
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Sandrine Pons
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Caroline Conte
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Florence Tortosa
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Pierre Sicard
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Yannis Sainte-Marie
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Malik Bisserier
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Olivier Lairez
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Alexandre Lucas
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jérôme Roy
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Bijan Ghaleh
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jérémy Fauconnier
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jeanne Mialet-Perez
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Frank Lezoualc’h
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| |
Collapse
|
312
|
Liu CW, Yang F, Cheng SZ, Liu Y, Wan LH, Cong HL. Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: The role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore. Cardiovasc Ther 2017; 35:3-9. [PMID: 27580017 DOI: 10.1111/1755-5922.12225] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022] Open
Abstract
AIMS Glycogen synthase kinase-3β (GSK-3β) and mitochondrial permeability transition pore (mPTP) play an important role in myocardial ischemia-reperfusion injury. The aim of this study was to investigate whether postconditioning with rosuvastatin is able to reduce myocardial ischemia-reperfusion injury and clarify the potential mechanisms. METHODS Isolated rat hearts underwent 30 minutes of ischemia and 60 minutes of reperfusion in the presence or absence of rosuvastatin (1-50 nmol/L). The activity of signaling pathway was determined by Western blot analysis, and Ca2+ -induced mPTP opening was assessed by the use of a potentiometric method. RESULTS Rosuvastatin significantly reduced myocardial infarct size and improved cardiac function at 5 and 10 nmol/L. Protection disappeared at higher concentration and reverted to increased damage at 50 nmol/L. At 5 nmol/L, rosuvastatin increased the phosphorylation of protein kinase B (Akt) and GSK-3β, concomitant with a higher Ca2+ load required to open the mPTP. Rosuvastatin postconditioning also significantly increased superoxide dismutase activity and reduced malondialdehyde and radical oxygen species level. LY294002, phosphatidylinositol-3-kinase (PI3K) inhibitors, abolished these protective effects of rosuvastatin postconditioning. CONCLUSION Rosuvastatin prevents myocardial ischemia-reperfusion injury by inducing phosphorylation of PI3K-Akt and GSK-3β, preventing oxidative stress and subsequent inhibition of mPTP opening.
Collapse
Affiliation(s)
- Chun-Wei Liu
- Department of Cardiology, Tianjin Medical University, Tianjin Chest Hospital, Tianjin, China
| | - Fan Yang
- Department of Diagnostic Ultrasound, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shi-Zhao Cheng
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Medical University, Tianjin Chest Hospital, Tianjin, China
| | - Liang-Hui Wan
- Department of Cardiology, Tianjin Medical University, Tianjin Chest Hospital, Tianjin, China
| | - Hong-Liang Cong
- Department of Cardiology, Tianjin Medical University, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
313
|
Karwi QG, Bornbaum J, Boengler K, Torregrossa R, Whiteman M, Wood ME, Schulz R, Baxter GF. AP39, a mitochondria-targeting hydrogen sulfide (H 2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol 2017; 174:287-301. [PMID: 27930802 DOI: 10.1111/bph.13688] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE H2 S protects myocardium against ischaemia/reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of a mitochondria-specific H2 S donor, AP39, at reperfusion against ischaemia/reperfusion injury. EXPERIMENTAL APPROACH Anaesthetized rats underwent myocardial ischaemia (30 min)/reperfusion (120 min) with randomization to receive interventions before reperfusion: vehicle, AP39 (0.01, 0.1, 1 μmol·kg-1 ), or control compounds AP219 and ADT-OH (1 μmol·kg-1 ). LY294002, L-NAME or ODQ were used to investigate the involvement of the RISK pathway. Myocardial samples harvested 5 min after reperfusion were analysed for RISK protein phosphorylation and isolated cardiac mitochondria were used to examine the direct mitochondrial effects of AP39. KEY RESULTS AP39, dose-dependently, reduced infarct size. Inhibition of either PI3K/Akt, eNOS or sGC did not affect this effect of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK-3β or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Furthermore, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co-incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibitory effect on the PTP. CONCLUSION AND IMPLICATIONS AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. This cardioprotective effect could be mediated by inhibiting PTP via a cyclophilin D-independent mechanism. Thus, selective delivery of H2 S to mitochondria may be therapeutically applicable for employing the cardioprotective utility of H2 S.
Collapse
Affiliation(s)
- Qutuba G Karwi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,College of Medicine, University of Diyala, Diyala, Iraq
| | - Julia Bornbaum
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Roberta Torregrossa
- Medical School, University of Exeter, Exeter, UK.,School of Biosciences, University of Exeter, Exeter, UK
| | | | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Gary F Baxter
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
314
|
Zhang XG, Zhao L, Zhang Y, Li YY, Wang H, Duan GL, Xiao L, Li XR, Chen HP. Extracellular Cl --free-induced cardioprotection against hypoxia/reoxygenation is associated with attenuation of mitochondrial permeability transition pore. Biomed Pharmacother 2016; 86:637-644. [PMID: 28033580 DOI: 10.1016/j.biopha.2016.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
The isotonic substitution of extracellular chloride by gluconate (extracellular Cl--free) has been demonstrated to elicit cardioprotection by attenuating ischaemia/reperfusion-induced elevation of intracellular chloride ion concentration ([Cl-]i). However, the downstream mechanism underlying the cardioprotective effect of extracellular Cl--free is not fully established. Here, it was investigated whether extracellular Cl--free attenuates mitochondrial dysfunction after hypoxia/reoxygenation (H/R) and whether mitochondrial permeability transition pore (mPTP) plays a key role in the extracellular Cl--free cardioprotection. H9c2 cells were incubated with or without Cl--free solution, in which Cl- was replaced with equimolar gluconate, during H/R. The involvement of mPTP was determined with atractyloside (Atr), a specific mPTP opener. The results showed that extracellular Cl--free attenuated H/R-induced the elevation of [Cl-]i, accompanied by increase of cell viability and reduction of lactate dehydrogenase release. Moreover, extracellular Cl--free inhibited mPTP opening, and improved mitochondria function, as indicated by preserved mitochondrial membrane potential and respiratory chain complex activities, decreased mitochondrial reactive oxygen species generation, and increased ATP content. Intriguingly, pharmacologically opening of the mPTP with Atr attenuated all the protective effects caused by extracellular Cl--free, including suppression of mPTP opening, maintenance of mitochondrial membrane potential, and subsequent improvement of mitochondrial function. These results indicated that extracellular Cl--free protects mitochondria from H/R injury in H9c2 cells and inhibition of mPTP opening is a crucial step in mediating the cardioprotection of extracellular Cl--free.
Collapse
Affiliation(s)
- Xian-Gui Zhang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Le Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yi Zhang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yuan-Yuan Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Huan Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Guang-Ling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Xiao-Ran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China.
| |
Collapse
|
315
|
Andrienko T, Pasdois P, Rossbach A, Halestrap AP. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning. PLoS One 2016; 11:e0167300. [PMID: 27907091 PMCID: PMC5131916 DOI: 10.1371/journal.pone.0167300] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2–3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2–3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP may inhibit initial mPTP opening by alternative mechanisms such as prevention of hexokinase 2 dissociation from mitochondria during ischemia.
Collapse
Affiliation(s)
- Tatyana Andrienko
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Philippe Pasdois
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- INSERM U1045—L'Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Andreas Rossbach
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
316
|
Sasanquasaponin-induced cardioprotection involves inhibition of mPTP opening via attenuating intracellular chloride accumulation. Fitoterapia 2016; 116:1-9. [PMID: 27838499 DOI: 10.1016/j.fitote.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022]
Abstract
Sasanquasaponin (SQS) has been reported to elicit cardioprotection by suppressing hypoxia/reoxygenation (H/R)-induced elevation of intracellular chloride ion concentration ([Cl-]i). Given that the increased [Cl-]i is involved to modulate the mitochondrial permeability transition pore (mPTP), we herein sought to further investigate the role of mPTP in the cardioprotective effect of SQS on H/R injury. H9c2 cells were incubated for 24h with or without 10μM SQS followed by H/R. The involvement of mPTP was determined with a specific mPTP agonist atractyloside (ATR). The results showed that SQS attenuated H/R-induced the elevation of [Cl-]i, accompanied by reduction of lactate dehydrogenase release and increase of cell viability. Moreover, SQS suppressed mPTP opening, and protected mitochondria, as indicated by preserved mitochondrial membrane potential and respiratory chain complex activities, decreased mitochondrial reactive oxygen species generation, and increased ATP content. Interestingly, extracellular Cl--free condition created by replacing Cl- with equimolar gluconate resulted in a decrease in [Cl-]i and induced protective effects similar to SQS preconditioning, whereas pharmacologically opening of the mPTP with ATR abolished all the protective effects induced by SQS or Cl--free, including suppression of mPTP opening, maintenance of mitochondrial membrane potential, and subsequent improvement of mitochondrial function. The above results allow us to conclude that SQS-induced cardioprotection may be mediated by preserving the mitochondrial function through preventing mPTP opening via inhibition of H/R-induced elevation of [Cl-]i.
Collapse
|
317
|
Evans RG. Oxygen signaling: Call for papers. Am J Physiol Regul Integr Comp Physiol 2016. [DOI: 10.1152/ajpregu.00416.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
318
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
319
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
320
|
Trankle C, Thurber CJ, Toldo S, Abbate A. Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction: Still Awaiting Translation. ACTA ACUST UNITED AC 2016; 1:524-535. [PMID: 30167535 PMCID: PMC6113419 DOI: 10.1016/j.jacbts.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Despite therapeutic advances, acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. One potential limitation of the current treatment paradigm is the lack of effective therapies to optimize reperfusion after ischemia and prevent reperfusion-mediated injury. Experimental studies indicate that this process accounts for up to 50% of the final infarct size, lending it importance as a potential target for cardioprotection. However, multiple therapeutic approaches have shown potential in pre-clinical and early phase trials but a paucity of clear clinical benefit when expanded to larger studies. Here we explore this history of trials and errors of the studies of cyclosporine A and other mitochondrial membrane permeability inhibitors, agents that appeared to have a promising pre-clinical record yet provided disappointing results in phase III clinical trials.
Collapse
Affiliation(s)
- Cory Trankle
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Clinton J Thurber
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Stefano Toldo
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Division of Cardiac Surgery, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia.,Department of Medical and Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
321
|
Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111:70. [PMID: 27766474 PMCID: PMC5073120 DOI: 10.1007/s00395-016-0588-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023]
Abstract
To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK. .,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK. .,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
| | - Jose A Barrabes
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, 8200, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, Padua, Italy
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Thomas Engstrom
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Hector A Carbrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Institute for Biochemistry, Medical Faculty Justus-Liebig-University, Giessen, Germany.,Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Efstathios K Iliodromitis
- 2nd University Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Javier Inserte
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | | | - Neena Kalia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Rajesh Kharbanda
- Oxford Heart Centre, The John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Tetsuji Miura
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France.,UMR 1060 (CarMeN), Université Claude Bernard, Lyon 1, France
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hans Michael Piper
- Carl von Ossietzky Universität Oldenburg, Ökologiezentrum, Raum 2-116, Uhlhornsweg 99 b, 26129, Oldenburg, Germany
| | - Karin Przyklenk
- Department of Physiology and Emergency Medicine, Cardiovascular Research Institute, Wayne State University, Detroit, MI, USA
| | - Michael Rahbek Schmidt
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Andrew Redington
- Division of Cardiology, Department of Pediatrics, Heart Institute, Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, IIB-Hospital Sant Pau, c/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, Atlanta, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Barcelona, Spain.
| |
Collapse
|
322
|
Konstantinov YM, Dietrich A, Weber-Lotfi F, Ibrahim N, Klimenko ES, Tarasenko VI, Bolotova TA, Koulintchenko MV. DNA import into mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1044-1056. [DOI: 10.1134/s0006297916100035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
323
|
Abstract
Four premises for rooster sperm preservation were outlined previously. Understanding mitochondrial Ca cycling in terms of whole-cell Ca flux was one premise. The present work tested the hypothesis that sperm mitochondria can be damaged by intracellular as well as extracellular Ca. Sperm were washed by centrifugation through 12% (wt/vol) Sperm were washed by centrifugation through 12%(at/vol) Accudenz to procure sperm at a physiological concentration within a chemically-defined suspension. Five solutions were tested. Each solution contained 30 m glucose, and had an osmolality of 320 mmol/kg and a pH of 7.4. Washed sperm were diluted to 2.0 × 10 sperm/mL. Each replicate sperm suspension was cooled to 10°C. Sperm mobility was measured after 1, 2, 4, 8, 12, and 24 h. Data were plotted as a function of time in each experiment. Function type was confirmed by lack of fit analysis. A parabola with a maximum at 3.7 h was observed when sperm were suspended in 205 m taurine buffered with 50 m-tris[hydroxyl-methyl]methyl-2-amino-ethanesulfonic acid (TES). This effect was attributed to a Ca flux from the nuclear envelope into mitochondria. An exponential decay was observed when TES-buffered taurine contained 2 m Ca. This effect was attributed to mitochondrial Ca overload induced by uptake of extracellular Ca. Exponential decay also was observed when TES-buffered taurine contained a Ca chelator. This effect was attributed to a Ca flux from the nuclear envelope through mitochondria and then into an extracellular Ca sink. This possibility was supported by the response of sperm to thapsigargin. Specifically, inhibition of sarcoendoplasmic reticulum Ca-ATPase compromised sperm mobility relative to a buffer control. Finally, a 60 m phosphate buffer containing 2 m citrate yielded a linear relationship in contrast to the TES-buffered solutions tested. Sperm mobility after 24 h of storage in the phosphate buffer was 92% of that observed for prewashed sperm. The linear response was attributed to weak chelators providing resistance within a Ca circuit and thereby preventing mitochondrial Ca overload. Fertility, however, was compromised when hens were inseminated with mobile sperm recovered after either 8 or 24 h of storage at 10°C. In conclusion, sperm cell Ca homeostasis was proven to be critical for maintaining sperm mobility in vitro, but mitochondrial Ca uptake is not the sole phenomenon that compromises sperm function during in vitro storage.
Collapse
|
324
|
Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabó C, Papapetropoulos A. Cardioprotection by H2S Donors: Nitric Oxide-Dependent and ‑Independent Mechanisms. J Pharmacol Exp Ther 2016; 358:431-40. [PMID: 27342567 PMCID: PMC6047225 DOI: 10.1124/jpet.116.235119] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.
Collapse
Affiliation(s)
- Athanasia Chatzianastasiou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Sofia-Iris Bibli
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Ioanna Andreadou
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Panagiotis Efentakis
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Nina Kaludercic
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Mark E Wood
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Matthew Whiteman
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Fabio Di Lisa
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Daiber
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Vangelis G Manolopoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Csaba Szabó
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece (A.C., A.P.); Laboratory of Pharmacology, Democritus University of Thrace Medical School, Alexandroupolis, Greece (A.C., V.G.M.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece (S.-I.B., I.A., P.E., A.P.); Neuroscience Institute, CNR, Italy (N.K., F.D.L.); Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom (M.E.W.); University of Exeter Medical School, Exeter, United Kingdom (M.W.); Department of Biomedical Sciences, University of Padova, Padova, Italy (F.D.L.); Center of Cardiology and Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas (C.S.); Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
325
|
King AL, Mantena SK, Andringa KK, Millender-Swain T, Dunham-Snary KJ, Oliva CR, Griguer CE, Bailey SM. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease. Redox Biol 2016; 9:188-197. [PMID: 27566282 PMCID: PMC5007436 DOI: 10.1016/j.redox.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. METHODS For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. RESULTS Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. CONCLUSION Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress.
Collapse
Affiliation(s)
- Adrienne L King
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Sudheer K Mantena
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kelly K Andringa
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Telisha Millender-Swain
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kimberly J Dunham-Snary
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Claudia R Oliva
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Corinne E Griguer
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Shannon M Bailey
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
326
|
Ischämische Fernkonditionierung zur Kardioprotektion. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2016. [DOI: 10.1007/s00398-016-0089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
327
|
Sun J, Jacobs KM. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury. Front Syst Neurosci 2016; 10:63. [PMID: 27489538 PMCID: PMC4951523 DOI: 10.3389/fnsys.2016.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the CypDKO likely has a direct effect on membrane properties, rather than producing a selective reduction of the effects of mTBI. These results suggest that inhibiting CypD after TBI is an effective strategy to reduce synaptic hyperexcitation, making it a continued target for potential treatment of network abnormalities.
Collapse
Affiliation(s)
- Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
328
|
Scruggs SB, Wang D, Ping P. PRKCE gene encoding protein kinase C-epsilon-Dual roles at sarcomeres and mitochondria in cardiomyocytes. Gene 2016; 590:90-6. [PMID: 27312950 DOI: 10.1016/j.gene.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022]
Abstract
Protein kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by targeting cardiac mitochondria. The importance of PKCε action is described within the context of intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in physiological and pathological states has been documented in both cardioprotection and cardiac hypertrophy.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ding Wang
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
329
|
Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V, Lombardi M, Costalunga A, Mollichelli N, Santarelli A, De Cesare N, Sganzerla P, Boi A, Maggioni AP, Limbruno U. Cyclosporine A in Reperfused Myocardial Infarction: The Multicenter, Controlled, Open-Label CYCLE Trial. J Am Coll Cardiol 2016; 67:365-374. [PMID: 26821623 DOI: 10.1016/j.jacc.2015.10.081] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Whether cyclosporine A (CsA) has beneficial effects in reperfused myocardial infarction (MI) is debated. OBJECTIVES This study investigated whether CsA improved ST-segment resolution in a randomized, multicenter phase II study. METHODS The authors randomly assigned 410 patients from 31 cardiac care units, age 63 ± 12 years, with large ST-segment elevation MI within 6 h of symptom onset, Thrombolysis In Myocardial Infarction (TIMI) flow grade 0 to 1 in the infarct-related artery, and committed to primary percutaneous coronary intervention, to 2.5 mg/kg intravenous CsA (n = 207) or control (n = 203) groups. The primary endpoint was incidence of ≥70% ST-segment resolution 60 min after TIMI flow grade 3. Secondary endpoints included high-sensitivity cardiac troponin T (hs-cTnT) on day 4, left ventricular (LV) remodeling, and clinical events at 6-month follow-up. RESULTS Time from symptom onset to first antegrade flow was 180 ± 67 min; a median of 5 electrocardiography leads showed ST-segment deviation (quartile [Q]1 to Q3: 4 to 6); 49.8% of MIs were anterior. ST-segment resolution ≥70% was found in 52.0% of CsA patients and 49.0% of controls (p = 0.55). Median hs-cTnT on day 4 was 2,160 (Q1 to Q3: 1,087 to 3,274) ng/l in CsA and 2,068 (1,117 to 3,690) ng/l in controls (p = 0.85). The 2 groups did not differ in LV ejection fraction on day 4 and at 6 months. Infarct site did not influence CsA efficacy. There were no acute allergic reactions or nonsignificant excesses of 6-month mortality (5.7% CsA vs. 3.2% controls, p = 0.17) or cardiogenic shock (2.4% CsA vs. 1.5% controls, p = 0.33). CONCLUSIONS In the CYCLE (CYCLosporinE A in Reperfused Acute Myocardial Infarction) trial, a single intravenous CsA bolus just before primary percutaneous coronary intervention had no effect on ST-segment resolution or hs-cTnT, and did not improve clinical outcomes or LV remodeling up to 6 months. (CYCLosporinE A in Reperfused Acute Myocardial Infarction [CYCLE]; NCT01650662; EudraCT number 2011-002876-18).
Collapse
Affiliation(s)
- Filippo Ottani
- Unità Operativa di Cardiologia, Ospedale GB Morgagni, Forlì, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | - Lidia Staszewsky
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | - Marco Sicuro
- Cardiologia e UTIC, Ospedale Regionale Umberto Parini, Aosta, Italy
| | - Serge Masson
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Simona Barlera
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valentina Milani
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Mario Lombardi
- Unità Operativa di Cardiologia, Ospedali Riuniti Villa Sofia, Palermo, Italy
| | | | | | | | | | - Paolo Sganzerla
- Cardiologia, Ospedale Treviglio-Caravaggio, Treviglio, Italy
| | - Alberto Boi
- Struttura Complessa di Emodinamica, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | | | - Ugo Limbruno
- Cardiologia, Ospedale delle Misericordie, Grosseto, Italy
| | | |
Collapse
|
330
|
Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat Protoc 2016; 11:1067-80. [DOI: 10.1038/nprot.2016.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
331
|
Bai F, Fink BD, Yu L, Sivitz WI. Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux. PLoS One 2016; 11:e0154982. [PMID: 27153112 PMCID: PMC4859540 DOI: 10.1371/journal.pone.0154982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/23/2016] [Indexed: 01/04/2023] Open
Abstract
Oxygen consumption by isolated mitochondria is generally measured during state 4 respiration (no ATP production) or state 3 (maximal ATP production at high ADP availability). However, mitochondria in vivo do not function at either extreme. Here we used ADP recycling methodology to assess muscle mitochondrial function over intermediate clamped ADP concentrations. In so doing, we uncovered a previously unrecognized biphasic respiratory pattern wherein O2 flux on the complex II substrate, succinate, initially increased and peaked over low clamped ADP concentrations then decreased markedly at higher clamped concentrations. Mechanistic studies revealed no evidence that the observed changes in O2 flux were due to altered opening or function of the mitochondrial permeability transition pore or to changes in reactive oxygen. Based on metabolite and functional metabolic data, we propose a multifactorial mechanism that consists of coordinate changes that follow from reduced membrane potential (as the ADP concentration in increased). These changes include altered directional electron flow, altered NADH/NAD+ redox cycling, metabolite exit, and OAA inhibition of succinate dehydrogenase. In summary, we report a previously unrecognized pattern for complex II energized O2 flux. Moreover, our findings suggest that the ADP recycling approach might be more widely adapted for mitochondrial studies.
Collapse
Affiliation(s)
- Fan Bai
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, United States of America
| | - Brian D. Fink
- Department of Internal Medicine / Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA, 52242, United States of America
| | - Liping Yu
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, United States of America
- NMR Core Facility, University of Iowa, Iowa City, IA, 52242, United States of America
| | - William I. Sivitz
- Department of Internal Medicine / Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA, 52242, United States of America
- * E-mail:
| |
Collapse
|
332
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
333
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|
334
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. J Membr Biol 2016; 249:11-21. [PMID: 26621635 DOI: 10.1007/s00232-015-9860-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H(+) or Na(+)) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the "molecular currency unit" of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
335
|
Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 2016; 473:1129-40. [PMID: 26920024 PMCID: PMC4845862 DOI: 10.1042/bcj20160070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
Abstract
The molecular identity of the mitochondrial permeability transition pore (MPTP), a key player in cell death, remains controversial. Here we use a novel MPTP inhibitor to demonstrate that formation of the pore involves native mitochondrial membrane proteins adopting novel conformations. Inhibition of the mitochondrial permeability transition pore (MPTP) by the novel inhibitor GNX-4975 was characterized. Titration of MPTP activity in de-energized rat liver mitochondria allowed determination of the number of GNX-4975-binding sites and their dissociation constant (Ki). Binding sites increased in number when MPTP opening was activated by increasing [Ca2+], phenylarsine oxide (PAO) or KSCN, and decreased when MPTP opening was inhibited with bongkrekic acid (BKA) or ADP. Values ranged between 9 and 50 pmol/mg of mitochondrial protein, but the Ki remained unchanged at ∼1.8 nM when the inhibitor was added before Ca2+. However, when GNX-4975 was added after Ca2+ it was much less potent with a Ki of ∼140 nM. These data imply that a protein conformational change is required to form the MPTP complex and generate the GNX-4975-binding site. Occupation of the latter with GNX-4975 prevents the Ca2+ binding that triggers pore opening. We also demonstrated that GNX-4975 stabilizes an interaction between the adenine nucleotide translocase (ANT), held in its ‘c’ conformation with carboxyatractyloside (CAT), and the phosphate carrier (PiC) bound to immobilized PAO. No components of the F1Fo-ATP synthase bound significantly to immobilized PAO. Our data are consistent with our previous proposal that the MPTP may form at an interface between the PiC and ANT (or other similar mitochondrial carrier proteins) when they adopt novel conformations induced by factors that sensitize the MPTP to [Ca2+]. We propose that GNX-4975 binds to this interface preventing a calcium-triggered event that opens the interface into a pore.
Collapse
|
336
|
Walters JW, Amos D, Ray K, Santanam N. Mitochondrial redox status as a target for cardiovascular disease. Curr Opin Pharmacol 2016; 27:50-5. [PMID: 26894468 DOI: 10.1016/j.coph.2016.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are major players in cellular energetics, oxidative stress and programmed cell death. Mitochondrial dynamics regulate and integrate these functions. Mitochondrial dysfunction is involved in cardiac hypertrophy, hypertension and myocardial ischemia/reperfusion injury. Reactive oxygen species generation is modulated by the fusion-fission pathway as well as key proteins such as sirtuins that act as metabolic sensors of cellular energetics. Mitochondrial redox status has thus become a good target for therapy against cardiovascular diseases. Recently, there is an influx of studies garnered towards assessing the beneficial effects of mitochondrial targeted antioxidants, drugs modulating the fusion-fission proteins, sirtuins, and other mitochondrial processes as potential cardio-protecting agents.
Collapse
Affiliation(s)
- James W Walters
- School of Arts & Sciences, Bluefield State College, Basic Science Building B213, 219 Rock Street, Bluefield, WV 24701, USA
| | - Deborah Amos
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Kristeena Ray
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA.
| |
Collapse
|
337
|
Bandyopadhaya A, Constantinou C, Psychogios N, Ueki R, Yasuhara S, Martyn JAJ, Wilhelmy J, Mindrinos M, Rahme LG, Tzika AA. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle. Int J Mol Med 2016; 37:867-78. [PMID: 26935176 PMCID: PMC4790710 DOI: 10.3892/ijmm.2016.2487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while also compromising muscle function and dampens the pathogen-induced innate immune response, promoting host tolerance to infection. In this study, murine whole-genome expression data have demonstrated that 2-AA affects the expression of genes involved in reactive oxygen species (ROS) homeostasis, thus producing an oxidative stress signature in skeletal muscle. The results of the present study demonstrated that the expression levels of genes involved in apoptosis signaling pathways were upregulated in the skeletal muscle of 2-AA-treated mice. To confirm the results of our transcriptome analysis, we used a novel high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) method and observed increased levels of bisallylic methylene fatty acyl protons and vinyl protons, suggesting that 2-AA induces skeletal muscle cell apoptosis. This effect was corroborated by our results demonstrating the downregulation of mitochondrial membrane potential in vivo in response to 2-AA. The findings of the present study indicate that the bacterial infochemical, 2-AA, disrupts mitochondrial functions by inducing oxidative stress and apoptosis signaling and likely promotes skeletal muscle dysfunction, which may favor chronic/persistent infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Caterina Constantinou
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Ryusuke Ueki
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shingo Yasuhara
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Julie Wilhelmy
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurence G Rahme
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
338
|
Couturier K, Hininger I, Poulet L, Anderson RA, Roussel AM, Canini F, Batandier C. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria. J Nutr Biochem 2016; 28:183-90. [DOI: 10.1016/j.jnutbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022]
|
339
|
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11-22. [DOI: 10.1016/j.yjmcc.2015.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
340
|
Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, Trejo M, Adame A, Spencer B, Rockenstein E, Murphy AN, Ellis RJ, Letendre S, Grant I, Masliah E. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis 2016; 86:154-69. [PMID: 26611103 PMCID: PMC4713337 DOI: 10.1016/j.nbd.2015.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Elisabeth Serger
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Sofia Campos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Changyoun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kendall Smith
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Margarita Trejo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
341
|
Monassier L, Ayme-Dietrich E, Aubertin-Kirch G, Pathak A. Targeting myocardial reperfusion injuries with cyclosporine in the CIRCUS Trial - pharmacological reasons for failure. Fundam Clin Pharmacol 2016; 30:191-3. [DOI: 10.1111/fcp.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Gaëlle Aubertin-Kirch
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Atul Pathak
- Clinique Pasteur; Centre de Recherche Clinique Cardiovasculaire Pasteur; 45 avenue de Lombez 31000 Toulouse Toulouse France
| |
Collapse
|
342
|
|
343
|
Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 2015; 412:147-54. [PMID: 26715132 DOI: 10.1007/s11010-015-2619-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components-cyclophilin D (CypD) and ATP synthase-can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.
Collapse
|
344
|
Lu X, Kwong JQ, Molkentin JD, Bers DM. Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circ Res 2015; 118:834-41. [PMID: 26712344 DOI: 10.1161/circresaha.115.308093] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 01/23/2023]
Abstract
RATIONALE Mitochondria produce ATP, especially critical for survival of highly aerobic cells, such as cardiac myocytes. Conversely, opening of mitochondrial high-conductance and long-lasting permeability transition pores (mPTP) causes respiratory uncoupling, mitochondrial injury, and cell death. However, low conductance and transient mPTP openings (tPTP) might limit mitochondrial Ca(2+) load and be cardioprotective, but direct evidence for tPTP in cells is limited. OBJECTIVE To directly characterize tPTP occurrence during sarcoplasmic reticulum Ca(2+) release in adult cardiac myocytes. METHODS AND RESULTS Here, we measured tPTP directly as transient drops in mitochondrial [Ca(2+)] ([Ca(2+)]mito) and membrane potential (ΔΨm) in adult cardiac myocytes during cyclic sarcoplasmic reticulum Ca release, by simultaneous live imaging of 500 to 1000 individual mitochondria. The frequency of tPTPs rose at higher [Ca(2+)]mito, [Ca(2+)]i, with 1 μmol/L peroxide exposure and in myocyte from failing hearts. The tPTPs were suppressed by preventing mitochondrial Ca(2+) influx, by mPTP inhibitor cyclosporine A, sanglifehrin, and in cyclophilin D knockout mice. These tPTP events were 57±5 s in duration, but were rare (occurring in <0.1% of myocyte mitochondria at any moment) such that the overall energetic cost to the cell is minimal. The tPTP pore size is much smaller than for permanent mPTP, as neither Rhod-2 nor calcein (600 Da) were lost. Thus, proteins and even molecules the size of NADH (663 Da) will be retained during these tPTP. CONCLUSIONS We conclude that tPTP openings (MitoWinks) may be molecularly related to pathological mPTP, but are likely to be normal physiological manifestation that benefits mitochondrial (and cell) survival by allowing individual mitochondria to reset themselves with little overall energetic cost.
Collapse
Affiliation(s)
- Xiyuan Lu
- From the Department of Pharmacology, University of California, Davis (X.L., D.M.B.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.Q.K., J.D.M.)
| | - Jennifer Q Kwong
- From the Department of Pharmacology, University of California, Davis (X.L., D.M.B.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.Q.K., J.D.M.)
| | - Jeffery D Molkentin
- From the Department of Pharmacology, University of California, Davis (X.L., D.M.B.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.Q.K., J.D.M.)
| | - Donald M Bers
- From the Department of Pharmacology, University of California, Davis (X.L., D.M.B.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.Q.K., J.D.M.).
| |
Collapse
|
345
|
Valls-Lacalle L, Barba I, Miró-Casas E, Alburquerque-Béjar JJ, Ruiz-Meana M, Fuertes-Agudo M, Rodríguez-Sinovas A, García-Dorado D. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 2015; 109:374-84. [DOI: 10.1093/cvr/cvv279] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023] Open
|
346
|
Colareda GA, Ragone MI, Consolini AE. Sex differences in the mechano-energetic effects of genistein on stunned rat and guinea pig hearts. Clin Exp Pharmacol Physiol 2015; 43:102-15. [PMID: 26452245 DOI: 10.1111/1440-1681.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Germán A Colareda
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| | - María I Ragone
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
- National Council of Scientific and Technical Research (CONICET); La Plata Argentina
| | - Alicia E Consolini
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| |
Collapse
|
347
|
Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B. Mitochondrial translocator protein (TSPO): From physiology to cardioprotection. Biochem Pharmacol 2015; 105:1-13. [PMID: 26688086 DOI: 10.1016/j.bcp.2015.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/04/2015] [Indexed: 01/08/2023]
Abstract
The mitochondrial translocator protein (TSPO) is a high affinity cholesterol binding protein which is primarily located in the outer mitochondrial membrane where it has been shown to interact with proteins implicated in mitochondrial permeability transition pore (mPTP) formation. TSPO is found in different species and is expressed at high levels in tissues that synthesize steroids but is also present in other peripheral tissues especially in the heart. TSPO has been involved in the import of cholesterol into mitochondria, a key step in steroidogenesis. This constitutes the main established function of the protein which was recently challenged by genetic studies. TSPO has also been associated directly or indirectly with a wide range of cellular functions such as apoptosis, cell proliferation, differentiation, regulation of mitochondrial function or porphyrin transport. In the heart the role of TSPO remains undefined but a growing body of evidence suggests that TSPO plays a critical role in regulating physiological cardiac function and that TSPO ligands may represent interesting drugs to protect the heart under pathological conditions. This article briefly reviews current knowledge regarding TSPO and discusses its role in the cardiovascular system under physiological and pathologic conditions. More particularly, it provides evidence that TSPO can represent an alternative strategy to develop new pharmacological agents to protect the myocardium against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Didier Morin
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Julien Musman
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Sandrine Pons
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Alain Berdeaux
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Bijan Ghaleh
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| |
Collapse
|
348
|
Nucleic acid import into mitochondria: New insights into the translocation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3165-81. [DOI: 10.1016/j.bbamcr.2015.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022]
|
349
|
Novgorodov SA, Riley CL, Keffler JA, Yu J, Kindy MS, Macklin WB, Lombard DB, Gudz TI. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 2015; 291:1957-1973. [PMID: 26620563 DOI: 10.1074/jbc.m115.668228] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD(+)-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher L Riley
- From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Jarryd A Keffler
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jin Yu
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark S Kindy
- From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Wendy B Macklin
- the Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado 80045, and
| | - David B Lombard
- the Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109
| | - Tatyana I Gudz
- the Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425,; From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401,.
| |
Collapse
|
350
|
Low T3 State Is Correlated with Cardiac Mitochondrial Impairments after Ischemia Reperfusion Injury: Evidence from a Proteomic Approach. Int J Mol Sci 2015; 16:26687-705. [PMID: 26561807 PMCID: PMC4661832 DOI: 10.3390/ijms161125973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR) and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S) is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.
Collapse
|