301
|
Zhu J, Petersen S, Tessarollo L, Nussenzweig A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 2001; 11:105-9. [PMID: 11231126 DOI: 10.1016/s0960-9822(01)00019-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive human disease whose clinical features include growth retardation, immunodeficiency, and increased susceptibility to lymphoid malignancies. Cells from NBS patients exhibit gamma-irradiation sensitivity, S-phase checkpoint defects, and genomic instability. Recently, it was demonstrated that this chromosomal breakage syndrome is caused by mutations in the NBS1 gene that result in a total loss of full-length NBS1 expression. Here we report that in contrast to the viability of NBS patients, targeted inactivation of NBS1 in mice leads to early embryonic lethality in utero and is associated with poorly developed embryonic and extraembryonic tissues. Mutant blastocysts showed greatly diminished expansion of the inner cell mass in culture, and this finding suggests that NBS1 mediates essential functions during proliferation in the absence of externally induced damage. Together, our results indicate that the complex phenotypes observed in NBS patients and cell lines may not result from a complete inactivation of NBS1 but may instead result from hypomorphic truncation mutations compatible with cell viability.
Collapse
Affiliation(s)
- J Zhu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
302
|
Krutilina RI, Oei S, Buchlow G, Yau PM, Zalensky AO, Zalenskaya IA, Bradbury EM, Tomilin NV. A negative regulator of telomere-length protein trf1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells. Biochem Biophys Res Commun 2001; 280:471-5. [PMID: 11162541 DOI: 10.1006/bbrc.2000.4143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.
Collapse
Affiliation(s)
- R I Krutilina
- Institute of Cytology, Russian Academy of Sciences, Tikchoretskii Av. 4, St. Petersburg, 194064, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 2001; 98:473-8. [PMID: 11149936 PMCID: PMC14611 DOI: 10.1073/pnas.98.2.473] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has generally been considered that important biological effects of ionizing radiation arise as a direct consequence of DNA damage occurring in irradiated cells. We have examined this hypothesis by exposing cells to very low fluences of alpha-particles, similar to those emitted by radon gas, such that as few as 1% of the cells in a population are traversed by a particle and thus receive any radiation exposure. By using the endpoints of changes in gene expression and induction of DNA damage, we show that nonirradiated "bystander" cells participate in the overall response of confluent density-inhibited populations of cultured fibroblast and epithelial cells. By in situ immunofluorescence techniques and the use of cells genetically compromised in their ability to perform gap junction intercellular communication, we present direct evidence for the involvement of connexin43-mediated intercellular communication in the transmission of damage signals to nonirradiated cells. Induction of the stress-inducible p21(Waf1) protein in aggregates of neighboring cells far exceeding the fraction of cells whose nucleus has been traversed occurred in gap junction-competent cells only. These changes in p21(Waf1) expression correlated with both the induction of DNA damage (as measured by micronucleus formation) as well as increased Ser-15 phosphorylation of p53.
Collapse
Affiliation(s)
- E I Azzam
- Department of Cancer Cell Biology, Laboratory of Radiobiology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
304
|
Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11149936 PMCID: PMC14611 DOI: 10.1073/pnas.011417098] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has generally been considered that important biological effects of ionizing radiation arise as a direct consequence of DNA damage occurring in irradiated cells. We have examined this hypothesis by exposing cells to very low fluences of alpha-particles, similar to those emitted by radon gas, such that as few as 1% of the cells in a population are traversed by a particle and thus receive any radiation exposure. By using the endpoints of changes in gene expression and induction of DNA damage, we show that nonirradiated "bystander" cells participate in the overall response of confluent density-inhibited populations of cultured fibroblast and epithelial cells. By in situ immunofluorescence techniques and the use of cells genetically compromised in their ability to perform gap junction intercellular communication, we present direct evidence for the involvement of connexin43-mediated intercellular communication in the transmission of damage signals to nonirradiated cells. Induction of the stress-inducible p21(Waf1) protein in aggregates of neighboring cells far exceeding the fraction of cells whose nucleus has been traversed occurred in gap junction-competent cells only. These changes in p21(Waf1) expression correlated with both the induction of DNA damage (as measured by micronucleus formation) as well as increased Ser-15 phosphorylation of p53.
Collapse
|
305
|
Abstract
BRCA1 and BRCA2 are breast cancer susceptibility genes. Mutations within BRCA1 and BRCA1 are responsible for most familial breast cancer cases. Targeted deletion of Brca1 or Brca2 in mice has revealed an essential function for their encoded products, BRCA1 and BRCA2, in cell proliferation during embryogenesis. Mouse models established from conditional expression of mutant Brca1 alleles develop mammary gland tumors, providing compelling evidence that BRCA1 functions as a breast cancer suppressor. Human cancer cells and mouse cells deficient in BRCA1 or BRCA2 exhibit radiation hypersensitivity and chromosomal abnormalities, thus revealing a potential role for both BRCA1 and BRCA2 in the maintenance of genetic stability through participation in the cellular response to DNA damage. Functional analyses of the BRCA1 and BRCA2 gene products have established their dual participation in transcription regulation and DNA damage repair. Potential insight into the molecular basis for these functions of BRCA1 and BRCA2 has been provided by studies that implicate these two tumor suppressors in both the maintenance of genetic stability and the regulation of cell growth and differentiation.
Collapse
Affiliation(s)
- L Zheng
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | |
Collapse
|
306
|
Abstract
As its name suggests, the ATM--'ataxia-telangiectasia, mutated'--gene is responsible for the rare disorder ataxia-telangiectasia. Patients show various abnormalities, mainly in their responses to DNA damage, but also in other cellular processes. Although it is hard to understand how a single gene product is involved in so many physiological processes, a clear picture is starting to emerge.
Collapse
Affiliation(s)
- M B Kastan
- Department of Hematology-Oncology, Saint Jude Children's Research Hospital, D1034, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
307
|
Frit P, Li RY, Arzel D, Salles B, Calsou P. Ku entry into DNA inhibits inward DNA transactions in vitro. J Biol Chem 2000; 275:35684-91. [PMID: 10945984 DOI: 10.1074/jbc.m004315200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Association of the DNA end-binding Ku70/Ku80 heterodimer with the 460-kDa serine/threonine kinase catalytic subunit forms the DNA-dependent protein kinase (DNA-PK) that is required for double-strand break repair by non-homologous recombination in mammalian cells. Recently, we have proposed a model in which the kinase activity is required for translocation of the DNA end-binding subunit Ku along the DNA helix when DNA-PK assembles on DNA ends. Here, we have questioned the consequences of Ku entry into DNA on local DNA processes by using human nuclear cell extracts incubated in the presence of linearized plasmid DNA. As two model processes, we have chosen nucleotide excision repair (NER) of UVC DNA lesions and transcription from viral promoters. We show that although NER efficiency is strongly reduced on linear DNA, it can be fully restored in the presence of DNA-PK inhibitors. Simultaneously, the amount of NER proteins bound to the UVC-damaged linear DNA is increased and the amount of Ku bound to the same DNA molecules is decreased. Similarly, the poor transcription efficiency exhibited by viral promoters on linear DNA is enhanced in the presence of DNA-PK inhibitor concentrations that prevent Ku entry into the DNA substrate molecule. The present results show that DNA-PK catalytic activity can regulate DNA transactions including transcription in the vicinity of double-strand breaks by controlling Ku entry into DNA.
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse and the Société Française de Recherches et d'Investissements, Berganton, 33127 Saint Jean d'Illac, France
| | | | | | | | | |
Collapse
|
308
|
Abstract
DNA damage frequently triggers death by apoptosis. The irreversible decision to die can be facilitated or forestalled through integration of a wide variety of stimuli from within and around the cell. Here we address some fundamental questions that arise from this model. Why should DNA damage initiate apoptosis in the first place? In damaged cells, what are the alternatives to death and why should they be selected in some circumstances but not others? What signals register DNA damage and how do they impinge on the effector pathways of apoptosis? Is there a suborganellar apoptosome complex effecting the integration of death signals within the nucleus, just as there is in the cytoplasm? And what are the consequences of failure to initiate apoptosis in response to DNA damage?
Collapse
Affiliation(s)
- T Rich
- Department of Pathology, University of Cambridge, UK
| | | | | |
Collapse
|
309
|
Abstract
Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used mainly for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing translesional DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy.
Collapse
Affiliation(s)
- D Averbeck
- Institut Curie, laboratoires Raymond-Latarjet, UMR2027 CNRS, centre universitaire d'Orsay, France
| |
Collapse
|
310
|
Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000; 102:463-73. [PMID: 10966108 DOI: 10.1016/s0092-8674(00)00051-9] [Citation(s) in RCA: 794] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that histone acetylases are important chromatin modifiers and that they play a central role in chromatin transcription. Here, we present evidence for novel roles of histone acetylases. The TIP60 histone acetylase purifies as a multimeric protein complex. Besides histone acetylase activity on chromatin, the TIP60 complex possesses ATPase, DNA helicase, and structural DNA binding activities. Ectopic expression of mutated TIP60 lacking histone acetylase activity results in cells with defective double-strand DNA break repair. Importantly, the resulting cells lose their apoptotic competence, suggesting a defect in the cells' ability to signal the existence of DNA damage to the apoptotic machinery. These results indicate that the histone acetylase TIP60-containing complex plays a role in DNA repair and apoptosis.
Collapse
Affiliation(s)
- T Ikura
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|