301
|
Tsai LL, Yu CC, Lo JF, Sung WW, Lee H, Chen SL, Chou MY. Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1. J Dent Sci 2012; 7:111-117. [DOI: 10.1016/j.jds.2012.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
302
|
Slyskova J, Naccarati A, Pardini B, Polakova V, Vodickova L, Smerhovsky Z, Levy M, Lipska L, Liska V, Vodicka P. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis 2012; 27:225-32. [PMID: 22294771 DOI: 10.1093/mutage/ger088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alteration of DNA integrity is a potential cause of cancer and it is assumed that reduced DNA repair capacity and accumulation of DNA damage may represent intermediate markers in carcinogenesis. In this case-control study, DNA damage and nucleotide excision repair capacity (NER-DRC) were assessed in association with sporadic colorectal cancer (CRC). Both parameters were quantified by comet assay in blood cells of 70 untreated incident patients and 70 age-matched healthy controls. mRNA expression and polymorphisms in relevant NER genes were concurrently analyzed. The aim of this study was to characterize incident CRC patients for NER-DRC and to clarify possible relations between investigated variables. Comet assay and mRNA expression analysis showed that CRC patients differ in repair capacity as compared to controls. Patients had a lower NER-DRC and simultaneously they exhibited higher endogenous DNA damage (for both P < 0.001). Accumulation of DNA damage and decreasing NER-DRC behaved as independent modulating parameters strongly associated with CRC. Expression levels of 6 out of 9 studied genes differed between groups (P ≤ 0.001), but none of them was related to DRC or to any of the studied NER polymorphisms. However, in patients only, XPC Ala499Val modulated expression levels of XPC, XPB and XPD gene, whereas XPC Lys939Gln was associated with XPA expression level in controls (for all P < 0.05). This study provides evidence on altered DRC and DNA damage levels in sporadic CRC and proposes the relevance of the NER pathway in this malignancy. Further, alterations in a complex multigene process like DNA repair may be better characterized by functional quantification of repair capacity than by quantification of individual genes transcripts or gene variants alone.
Collapse
Affiliation(s)
- Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
304
|
Su Y, Orelli B, Madireddy A, Niedernhofer LJ, Schärer OD. Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair. J Biol Chem 2012; 287:21846-55. [PMID: 22547097 DOI: 10.1074/jbc.m111.337899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways.
Collapse
Affiliation(s)
- Yan Su
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | | | |
Collapse
|
305
|
Two different replication factor C proteins, Ctf18 and RFC1, separately control PCNA-CRL4Cdt2-mediated Cdt1 proteolysis during S phase and following UV irradiation. Mol Cell Biol 2012; 32:2279-88. [PMID: 22493068 DOI: 10.1128/mcb.06506-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.
Collapse
|
306
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
307
|
Abstract
Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular "splint" and reinforces B-form DNA by numerous protein-phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rm. B1-03, Bethesda, Maryland 20892, USA.
| |
Collapse
|
308
|
Zheng H, Cai Y, Ding S, Tang Y, Kropachev K, Zhou Y, Wang L, Wang S, Geacintov NE, Zhang Y, Broyde S. Base flipping free energy profiles for damaged and undamaged DNA. Chem Res Toxicol 2012; 23:1868-70. [PMID: 21090780 DOI: 10.1021/tx1003613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lesion-induced thermodynamic destabilization is believed to facilitate β-hairpin intrusion by the human XPC/hHR23B nucleotide excision repair (NER) recognition factor, accompanied by partner-base flipping, as suggested by the crystal structure of the yeast orthologue (Min, J. H., and Pavletich, N. P. (2007) Nature 449, 570-575). To investigate this proposed mechanism, we employed the umbrella sampling method to compute partner base flipping free energies for the repair susceptible 14R (+)-trans-anti-DB[a,l]P-N(2)-dG modified duplex 11-mer, derived from the fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene, and for the undamaged duplex. Our flipping free energy profiles show that the adduct has a lower flipping barrier by ∼7.7 kcal/mol, consistent with its thermally destabilizing impact on the damaged DNA duplex and its susceptibility to NER.
Collapse
Affiliation(s)
- Han Zheng
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 2012; 7:e30541. [PMID: 22412831 PMCID: PMC3295811 DOI: 10.1371/journal.pone.0030541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use.
Collapse
|
310
|
Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Schärer OD, Grollman AP. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 2012; 40:2494-505. [PMID: 22121226 PMCID: PMC3315299 DOI: 10.1093/nar/gkr1095] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023] Open
Abstract
Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.
Collapse
Affiliation(s)
- Victoria S. Sidorenko
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jung-Eun Yeo
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha R. Bonala
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Orlando D. Schärer
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Arthur P. Grollman
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
311
|
Roth HM, Römer J, Grundler V, Van Houten B, Kisker C, Tessmer I. XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst) 2012; 11:286-93. [PMID: 22237014 DOI: 10.1016/j.dnarep.2011.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/14/2011] [Accepted: 12/06/2011] [Indexed: 01/21/2023]
Abstract
Bax1 has recently been identified as a novel binding partner for the archaeal helicase XPB. We previously characterized Bax1 from Thermoplasma acidophilum as a Mg²⁺-dependent structure-specific endonuclease. Here we directly compare the endonuclease activity of Bax1 alone or in combination with XPB. Using several biochemical and biophysical approaches, we demonstrate regulation of Bax1 endonuclease activity by XPB. Interestingly, incision assays with Bax1 and XPB/Bax1 clearly demonstrate that Bax1 produces different incision patterns depending on the presence or absence of XPB. Using atomic force microscopy (AFM), we directly visualize and compare binding of Bax1 and XPB/Bax1 to different DNA substrates. Our AFM data support enhanced DNA binding affinity of Bax1 in the presence of XPB. Taken together, the DNA incision and binding results suggest that XPB is able to load and position Bax1 on the scissile DNA substrate, thus increasing the DNA substrate range of Bax1.
Collapse
Affiliation(s)
- Heide M Roth
- Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
312
|
Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapić-Otrin V. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J Biol Chem 2012; 287:12036-49. [PMID: 22334663 PMCID: PMC3320950 DOI: 10.1074/jbc.m111.307058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How the nucleotide excision repair (NER) machinery gains access to damaged chromatinized DNA templates and how the chromatin structure is modified to promote efficient repair of the non-transcribed genome remain poorly understood. The UV-damaged DNA-binding protein complex (UV-DDB, consisting of DDB1 and DDB2, the latter of which is mutated in xeroderma pigmentosum group E patients, is a substrate-recruiting module of the cullin 4B-based E3 ligase complex, DDB1-CUL4BDDB2. We previously reported that the deficiency of UV-DDB E3 ligases in ubiquitinating histone H2A at UV-damaged DNA sites in the xeroderma pigmentosum group E cells contributes to the faulty NER in these skin cancer-prone patients. Here, we reveal the mechanism by which monoubiquitination of specific H2A lysine residues alters nucleosomal dynamics and subsequently initiates NER. We show that DDB1-CUL4BDDB2 E3 ligase specifically binds to mononucleosomes assembled with human recombinant histone octamers and nucleosome-positioning DNA containing cyclobutane pyrimidine dimers or 6-4 photoproducts photolesions. We demonstrate functionally that ubiquitination of H2A Lys-119/Lys-120 is necessary for destabilization of nucleosomes and concomitant release of DDB1-CUL4BDDB2 from photolesion-containing DNA. Nucleosomes in which these lysines are replaced with arginines are resistant to such structural changes, and arginine mutants prevent the eviction of H2A and dissociation of polyubiquitinated DDB2 from UV-damaged nucleosomes. The partial eviction of H3 from the nucleosomes is dependent on ubiquitinated H2A Lys-119/Lys-120. Our results provide mechanistic insight into how post-translational modification of H2A at the site of a photolesion initiates the repair process and directly affects the stability of the human genome.
Collapse
Affiliation(s)
- Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Cai Y, Geacintov NE, Broyde S. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions. Biochemistry 2012; 51:1486-99. [PMID: 22242833 DOI: 10.1021/bi201794x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | | | | |
Collapse
|
314
|
Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol 2012; 19:291-8. [PMID: 22307053 DOI: 10.1038/nsmb.2240] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 01/12/2023]
Abstract
Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
315
|
Spoor M, Nagtegaal AP, Ridwan Y, Borgesius NZ, van Alphen B, van der Pluijm I, Hoeijmakers JH, Frens MA, Borst JGG. Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1δ/− mouse. Mech Ageing Dev 2012; 133:59-67. [DOI: 10.1016/j.mad.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/21/2022]
|
316
|
Kuper J, Kisker C. Damage recognition in nucleotide excision DNA repair. Curr Opin Struct Biol 2012; 22:88-93. [DOI: 10.1016/j.sbi.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/15/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
|
317
|
Neoadjuvant radiochemotherapy in adenocarcinoma of the esophagus: ERCC1 gene polymorphisms for prediction of response and prognosis. J Gastrointest Surg 2012; 16:26-34; discussion 34. [PMID: 21956434 DOI: 10.1007/s11605-011-1700-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/14/2011] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Neoadjuvant radiochemotherapy (RT/CTx) regimens were primarily designed for treatment of squamous cell carcinoma of the esophagus. Own preliminary results demonstrate that also patients with locally advanced adenocarcinoma of the esophagus may achieve a major response in 30% with a 3-year survival rate of 80%. To identify these patients, ERCC1 (rs11615) gene polymorphisms were analyzed. ERCC1 is a key enzyme of the nucleotide excision and repair (NER) complex to prevent DNA inter- and intra-strand crosslinks. PATIENTS AND METHODS Genomic DNA from 217 patients with cT3/4 adenocarcinoma of the esophagus was extracted from paraffin-embedded tissues. Of these patients, 153 underwent neoadjuvant RT/CTx (CDDP, 5-FU, 36 Gy). For analysis of ERCC1 single nucleotide polymorphisms (SNPs), allelic discrimination was performed by quantitative real-time PCR. Two allele-specific TaqMan probes in competition were used for amplification of ERCC1 (rs11615). Allelic genotyping was correlated with histomorphologic tumor regression after neoadjuvant RT/CTx and survival. Major response (MaHR) was defined as <10% vital residual tumor cells (VRTC). RESULTS Analysis of tumor regression revealed a MaHR in 56/153 (36.6%) patients with a 5-year survival rate (5-YSR) of 74% (p < 0.001). ERCC1 gene polymorphisms for all patients showed the following expression pattern: ERCC1 polymorphism (rs11615) CC: n = 27 (12.4%), TT: n = 98 (45.2%), C/T: n = 92 (42.4%). ERCC1 polymorphism CT was identified as a predictor for response to the neoadjuvant RT/CTx (p < 0.001). The 5-YSR for patients with C/T genotype was 51%. Contrary to this, the 5-YSR for the group of patients with a CC/TT polymorphism decreased to 34%. CONCLUSION Analysis of ERCC1 (rs11615) gene polymorphisms reveals a significant correlation with response and survival in patients with adenocarcinoma of the esophagus treated with a neoadjuvant radiochemotherapy. Single nucleotide polymorphisms of ERCC1 (rs11615) could therefore be applied to further individualize therapy in esophageal cancer.
Collapse
|
318
|
Liu D, Wu HZ, Zhang YN, Kang H, Sun MJ, Wang EH, Yang XL, Lian MQ, Yu ZJ, Zhao L, Olopade OI, Wei MJ. DNA repair genes XPC, XPG polymorphisms: relation to the risk of colorectal carcinoma and therapeutic outcome with Oxaliplatin-based adjuvant chemotherapy. Mol Carcinog 2011; 51 Suppl 1:E83-93. [PMID: 22213216 DOI: 10.1002/mc.21862] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/19/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Xeroderma pigmentosum complementation group C and G (XPC, XPG) play important roles in DNA damage repairing machinery. Genetic variations in the XPC and XPG may be associated with increased risk for colorectal carcinoma (CRC). In this study, we evaluated the relation between the XPC Lys939Gln, XPG Asp1104His polymorphisms, and CRC susceptibility in a population-based case-control study, which included 1,028 CRC cases and 1,085 controls. Compared with the corresponding wild genotypes, we found that individuals with at least one copy of the XPC Lys939Gln (AC or CC genotype) and XPG Asp1104His (GC or CC genotype) had an increased risk for CRC. In addition, the variant genotypes of the XPC Lys939Gln AC/CC (P = 0.027) or XPG Asp1104His GC/CC (P = 0.003) reduced the elevation of preoperative carcinoembryonic antigen (CEA) level. Moreover a significantly longer progression-free survival (PFS) after Oxaliplatin-based adjuvant chemotherapy was observed in patients with XPG Asp1104His wide-type GG genotype (n = 432, Log-rank test: P = 0.033). Cox proportional hazards analyses demonstrated that variant genotypes of XPG Asp1104His [hazard ratio (HR) = 1.692, 95% confidence interval (95%CI): 1.202-2.383, P = 0.003] as well as pathology grade (HR = 2.545, 95%CI: 2.139-3.030, P < 0.001), and lymph node metastases (HR = 1.851, 95%CI: 1.306-2.625, P < 0.001) were predictive of shorter PFS for the CRC patients with Oxaliplatin-based adjuvant chemotherapy. In conclusion, the current data suggested that XPC Lys939Gln and XPG Asp1104His polymorphisms might contribute to the identification of patients with increased risk for CRC.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Nouspikel T. Attenuated nucleotide excision repair leads to mutagenesis in cancer cells. Future Oncol 2011; 7:1361-3. [PMID: 22112311 DOI: 10.2217/fon.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
320
|
Lukin M, Zaliznyak T, Johnson F, de los Santos C. Structure and stability of DNA containing an aristolactam II-dA lesion: implications for the NER recognition of bulky adducts. Nucleic Acids Res 2011; 40:2759-70. [PMID: 22121223 PMCID: PMC3315293 DOI: 10.1093/nar/gkr1094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aristolochic acids I and II are prevalent plant toxicants found in the Aristolochiaceae plant family. Metabolic activation of the aristolochic acids leads to the formation of a cyclic N-hydroxylactam product that can react with the peripheral amino group of purine bases generating bulky DNA adducts. These lesions are mutagenic and established human carcinogens. Interestingly, although AL-dG adducts progressively disappear from the DNA of laboratory animals, AL-dA lesions has lasting persistence in the genome. We describe here NMR structural studies of an undecameric duplex damaged at its center by the presence of an ALII-dA adduct. Our data establish a locally perturbed double helical structure that accommodates the bulky adduct by displacing the counter residue into the major groove and stacking the ALII moiety between flanking bases. The presence of the ALII-dA perturbs the conformation of the 5′-side flanking base pair, but all other pairs of the duplex adopt standard conformations. Thermodynamic studies reveal that the lesion slightly decreases the energy of duplex formation in a sequence-dependent manner. We discuss our results in terms of its implications for the repair of ALII-dA adducts in mammalian cells.
Collapse
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | |
Collapse
|
321
|
Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 2011; 31:494-502. [PMID: 22081108 DOI: 10.1038/emboj.2011.374] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023] Open
Abstract
The XPD protein is a vital subunit of the general transcription factor TFIIH which is not only involved in transcription but is also an essential component of the eukaryotic nucleotide excision DNA repair (NER) pathway. XPD is a superfamily-2 5'-3' helicase containing an iron-sulphur cluster. Its helicase activity is indispensable for NER and it plays a role in the damage verification process. Here, we report the first structure of XPD from Thermoplasma acidophilum (taXPD) in complex with a short DNA fragment, thus revealing the polarity of the translocated strand and providing insights into how the enzyme achieves its 5'-3' directionality. Accompanied by a detailed mutational and biochemical analysis of taXPD, we define the path of the translocated DNA strand through the protein and identify amino acids that are critical for protein function.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
322
|
Sal’nikova LE, Chumachenko AG, Lapteva NS, Vesnina IN, Kuznetsova GI, Rubanovich AV. Allelic variants of polymorphic genes associated with a higher frequency of chromosome aberrations. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
323
|
Sugasawa K. Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair. BIOCHEMISTRY (MOSCOW) 2011; 76:16-23. [PMID: 21568836 DOI: 10.1134/s0006297911010044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair (NER) subpathway operating throughout the mammalian genome is a versatile DNA repair system that can remove a wide variety of helix-distorting base lesions. This system contributes to prevention of blockage of DNA replication by the lesions, thereby suppressing mutagenesis and carcinogenesis. Therefore, it is of fundamental significance to understand how the huge genome can be surveyed for occurrence of a small number of lesions. Recent studies have revealed that this difficult task seems to be accomplished through sequential actions of multiple DNA damage recognition factors, including UV-DDB, XPC, and TFIIH. Notably, these factors adopt completely different strategies to recognize DNA damage. XPC detects disruption and/or destabilization of the base pairing, which ensures a broad spectrum of substrate specificity for global genome NER. In contrast, UV-DDB directly recognizes particular types of lesions, such as UV-induced photoproducts, thereby vitally recruiting XPC as well as further extending the substrate specificity. After DNA binding by XPC, moreover, the helicase activity associated with TFIIH scans a DNA strand to make a final search for the presence of aberrant chemical modifications of DNA. The combination of these different strategies makes a crucial contribution to simultaneously achieving efficiency, accuracy, and versatility of the entire repair system.
Collapse
Affiliation(s)
- K Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Hyogo, Japan.
| |
Collapse
|
324
|
Evdokimov AN, Petruseva IO, Pestryakov PE, Lavrik OI. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA. BIOCHEMISTRY (MOSCOW) 2011; 76:157-66. [PMID: 21568847 DOI: 10.1134/s0006297911010159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long linear DNA analogs of nucleotide excision repair (NER) substrates have been synthesized. They are 137-mer duplexes containing in their internal positions nucleotides with bulky substitutes imitating lesions with fluorochloroazidopyridyl and fluorescein groups introduced using spacer fragments at the 4N and 5C positions of dCMP and dUMP (Fap-dC- and Flu-dU-DNA) and DNA containing a (+)-cis-stereoisomer of benzo[a]pyrene-N2-deoxyguanidine (BP-dG-DNA, 131 bp). The interaction of the modified DNA duplexes with the proteins of NER-competent HeLa extract was investigated. The substrate properties of the model DNA in the reaction of specific excision were shown to vary in the series Fap-dC-DNA << Flu-dU-DNA < BP-dG-DNA. During the experiments on affinity modification of the proteins of NER-competent extract, Fap-dC-DNA (137 bp) containing a (32)P-label in the photoactive nucleotide demonstrated properties of a highly efficient and selective probe. The set of the main targets of labeling included polypeptides of the extract with the same values of apparent molecular weights (35-90 kDa) as when using the shorter (48 bp) Fap-dC-DNA. Besides, some of the extract proteins were shown capable of specific and effective interaction with the long analog of NER substrate. Electrophoretic mobility of these proteins coincided with the mobilities of DNA-binding subunits of XPC-HR23B and PARP1 (~127 and ~115 kDa, respectively). The 115-kDa target protein was identified as PARP1 using NAD+-based functional testing. The results suggest that the linear Fap-dC-DNA is an unrepairable substrate analog that can compete with effective NER substrates in the binding of the proteins responsible for lesion recognition and excision.
Collapse
Affiliation(s)
- A N Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
325
|
Pascucci B, D'Errico M, Parlanti E, Giovannini S, Dogliotti E. Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating. BIOCHEMISTRY (MOSCOW) 2011; 76:4-15. [PMID: 21568835 DOI: 10.1134/s0006297911010032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.
Collapse
Affiliation(s)
- B Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.
| | | | | | | | | |
Collapse
|
326
|
Rechkunova NI, Krasikova YS, Lavrik OI. Nucleotide excision repair: DNA damage recognition and preincision complex assembly. BIOCHEMISTRY (MOSCOW) 2011; 76:24-35. [PMID: 21568837 DOI: 10.1134/s0006297911010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
327
|
Terradas M, Martín M, Hernández L, Tusell L, Genescà A. Nuclear envelope defects impede a proper response to micronuclear DNA lesions. Mutat Res 2011; 729:35-40. [PMID: 21945242 DOI: 10.1016/j.mrfmmm.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/23/2023]
Abstract
When damage is inflicted in nuclear DNA, cells activate a hierarchical plethora of proteins that constitute the DNA damage response machinery. In contrast to the cell nucleus, the ability of micronuclear DNA lesions to activate this complex network is controversial. In order to determine whether the DNA contained in micronuclei is protected by the cellular damage response system, we studied the recruitment of excision repair factors to photolesions inflicted in the DNA of radiation-induced micronuclei. To perform this analysis, primary human dermal fibroblasts were exposed to UV-C light to induce photolesions in nuclear and micronuclear DNA. By means of immunofluorescence techniques, we observed that most micronuclei were devoid of NER factors. We conclude that UV photoproducts in micronuclei are mostly unable to generate an effective DNA damage response. We observed that the micronuclear envelope structure is a determinant factor that influences the repair of the DNA lesions inside micronuclei. Therefore, our results allow us to conclude that photolesions in radiation-induced micronuclei are poorly processed because the repair factors are unable to reach the micronuclear chromatin when a micronucleus is formed or after a genotoxic insult.
Collapse
Affiliation(s)
- Mariona Terradas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
328
|
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2011; 31:1869-83. [PMID: 21892204 DOI: 10.1038/onc.2011.384] [Citation(s) in RCA: 1985] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based drugs, and in particular cis-diamminedichloroplatinum(II) (best known as cisplatin), are employed for the treatment of a wide array of solid malignancies, including testicular, ovarian, head and neck, colorectal, bladder and lung cancers. Cisplatin exerts anticancer effects via multiple mechanisms, yet its most prominent (and best understood) mode of action involves the generation of DNA lesions followed by the activation of the DNA damage response and the induction of mitochondrial apoptosis. Despite a consistent rate of initial responses, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. An intense research has been conducted during the past 30 years and several mechanisms that account for the cisplatin-resistant phenotype of tumor cells have been described. Here, we provide a systematic discussion of these mechanism by classifying them in alterations (1) that involve steps preceding the binding of cisplatin to DNA (pre-target resistance), (2) that directly relate to DNA-cisplatin adducts (on-target resistance), (3) concerning the lethal signaling pathway(s) elicited by cisplatin-mediated DNA damage (post-target resistance) and (4) affecting molecular circuitries that do not present obvious links with cisplatin-elicited signals (off-target resistance). As in some clinical settings cisplatin constitutes the major therapeutic option, the development of chemosensitization strategies constitute a goal with important clinical implications.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848 Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Fisher LA, Bessho M, Wakasugi M, Matsunaga T, Bessho T. Role of interaction of XPF with RPA in nucleotide excision repair. J Mol Biol 2011; 413:337-46. [PMID: 21875596 DOI: 10.1016/j.jmb.2011.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/05/2011] [Accepted: 08/16/2011] [Indexed: 01/05/2023]
Abstract
Nucleotide excision repair (NER) is a very important defense system against various types of DNA damage, and it is necessary for maintaining genomic stability. The molecular mechanism of NER has been studied in considerable detail, and it has been shown that proper protein-protein interactions among NER factors are critical for efficient repair. A structure-specific endonuclease, XPF-ERCC1, which makes the 5' incision in NER, was shown to interact with a single-stranded DNA binding protein, RPA. However, the biological significance of this interaction was not studied in detail. We used the yeast two-hybrid assay to determine that XPF interacts with the p70 subunit of RPA. To further examine the role of this XPF-p70 interaction, we isolated a p70-interaction-deficient mutant form of XPF that contains a single amino acid substitution in the N-terminus of XPF by the reverse yeast two-hybrid assay using randomly mutagenized XPF. The biochemical properties of this RPA-interaction-deficient mutant XPF-ERCC1 are very similar to those of wild-type XPF-ERCC1 in vitro. Interestingly, expression of this mutated form of XPF in the XPF-deficient Chinese hamster ovary cell line, UV41, only partially restores NER activity and UV resistance in vivo compared to wild-type XPF. We discovered that the RPA-interaction-deficient XPF is not localized in nuclei and the mislocalization of XPF-ERCC1 prevents the complex from functioning in NER.
Collapse
Affiliation(s)
- Laura A Fisher
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
330
|
Lans H, Vermeulen W. Nucleotide Excision Repair in Caenorhabditis elegans. Mol Biol Int 2011; 2011:542795. [PMID: 22091407 PMCID: PMC3195855 DOI: 10.4061/2011/542795] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/18/2011] [Indexed: 01/23/2023] Open
Abstract
Nucleotide excision repair (NER) plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR) mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
331
|
Slyskova J, Naccarati A, Polakova V, Pardini B, Vodickova L, Stetina R, Schmuczerova J, Smerhovsky Z, Lipska L, Vodicka P. DNA damage and nucleotide excision repair capacity in healthy individuals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:511-517. [PMID: 21520291 DOI: 10.1002/em.20650] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/09/2010] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
Interindividual differences in DNA repair capacity (DRC) represent an important source of variability in genome integrity and thus influence health risk. In the last decade, DRC measurement has attracted attention as a potential biomarker in cancer prediction. Aim of the present exploratory study was to characterize the variability in DNA damage and DRC on 100 healthy individuals and to identify biological, lifestyle, or genetic factors modulating these parameters. The ultimate goal was to obtain reference data from cancer-free population, which may constitute background for further investigations on cancer patients. The endogenous DNA damage was measured as a level of DNA single-strand breaks and DRC, specific for nucleotide excision repair (NER), was evaluated using modified comet assay, following the challenge of peripheral blood mononuclear cells with benzo[a]pyrene diolepoxide. Additionally, genetic polymorphisms in NER genes (XPA, XPC, XPD, and XPG) were assessed. We have observed a substantial interindividual variability for both examined parameters. DNA damage was significantly affected by gender and alcohol consumption (P = 0.003 and P = 0.012, respectively), whereas DRC was associated with family history of cancer (P = 0.012). The stratification according to common variants in NER genes showed that DNA damage was significantly modulated by the presence of the variant T allele of XPC Ala499Val polymorphism (P = 0.01), while DRC was modulated by the presence of the A allele of XPA G23A polymorphism (P = 0.048). Our results indicate the range of endogenous DNA single-strand breaks and capacity of NER in healthy volunteers as well as the role of potentially relevant confounders. Environ. Mol. Mutagen. 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague
| | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Multiple roles of ubiquitination in the control of nucleotide excision repair. Mech Ageing Dev 2011; 132:355-65. [DOI: 10.1016/j.mad.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022]
|
333
|
Fagbemi AF, Orelli B, Schärer OD. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst) 2011; 10:722-9. [PMID: 21592868 PMCID: PMC3139800 DOI: 10.1016/j.dnarep.2011.04.022] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5' and 3' to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures.
Collapse
Affiliation(s)
- Adebanke F Fagbemi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
334
|
Reeves DA, Mu H, Kropachev K, Cai Y, Ding S, Kolbanovskiy A, Kolbanovskiy M, Chen Y, Krzeminski J, Amin S, Patel DJ, Broyde S, Geacintov NE. Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions. Nucleic Acids Res 2011; 39:8752-64. [PMID: 21764772 PMCID: PMC3203604 DOI: 10.1093/nar/gkr537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or 'deletion' duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N(2)-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system-base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen-base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC β-hairpin into the duplex and the normal recruitment of other downstream NER factors.
Collapse
Affiliation(s)
- Dara A Reeves
- Department of Chemistry, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
OBJECTIVE To investigate the association of the genetic variants in excision repair cross-complementation group 2 (ERCC2) R156R and ERCC4 rs3136038 with survival duration for patients with esophageal cancer. BACKGROUND ERCC2 and ERCC4 are important molecules participating nucleotide excision repair system. The clinical relevance of the genetic variants of these genes is largely unknown currently. PATIENTS AND METHODS A total of 400 patients with a diagnosis of esophageal cancer were included. The genetic variants in the promoter regions of ERCC2 on R156R and ERCC4 on rs3136038 were analyzed with the TaqMan assay from leukocyte DNA collected before treatment and correlated to survival of the patients. RESULTS Presence with ERCC2 R156R C/C or ERCC4 rs3136038 C/T genotype of the patients could additively increase risk of death and disease progression. Under multivariate analysis, T, N staging and simultaneous presentation of these unfavorable genotypes were found significant for prognosis (P < 0.05). Accumulation of each unfavorable genotype would associate with adjusted HRs [95% CI] of 1.35 [1.10-1.65] and 1.37 [1.12-1.68] (P ≤ 0.05) for death and disease progression respectively. The prognostic impact of these genotypes were more evident in the subgroup of patients with early disease status including T staging (II or less), free from lymph node metastasis or being able to undergo surgical resection (P < 0.05 for both overall and disease progression-free survival duration, respectively). CONCLUSION Genetic variants in ERCC2 and ERCC4 may provide further survival prediction in addition to TNM staging system of esophageal cancer, which is more evident in the patients with early disease status.
Collapse
|
337
|
Clement FC, Kaczmarek N, Mathieu N, Tomas M, Leitenstorfer A, Ferrando-May E, Naegeli H. Dissection of the xeroderma pigmentosum group C protein function by site-directed mutagenesis. Antioxid Redox Signal 2011; 14:2479-90. [PMID: 20649465 DOI: 10.1089/ars.2010.3399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Xeroderma pigmentosum group C (XPC) protein is a sensor of helix-distorting DNA lesions, the function of which is to trigger the global genome repair (GGR) pathway. Previous studies demonstrated that XPC protein operates by detecting the single-stranded character of non-hydrogen-bonded bases opposing lesion sites. This mode of action is supported by structural analyses of the yeast Rad4 homologue that identified critical side chains making close contacts with a pair of extrahelical nucleotides. Here, alanine substitutions of the respective conserved residues (N754, F756, F797, F799) in human XPC were tested for DNA-binding activity, accumulation in tracks and foci of DNA lesions, nuclear protein mobility, and the induction of downstream GGR reactions. This study discloses a dynamic interplay between XPC protein and DNA, whereby the association with one displaced nucleotide in the undamaged strand mediates the initial encounter with lesion sites. The additional flipping-out of an adjacent nucleotide is necessary to hand over the damaged site to the next GGR player. Surprisingly, this mutagenesis analysis also reveals that the rapid intranuclear trafficking of XPC protein depends on constitutive interactions with native DNA, implying that the search for base damage takes place in living cells by a facilitated diffusion process.
Collapse
Affiliation(s)
- Flurina C Clement
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
338
|
Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LHF. DNA damage response and transcription. DNA Repair (Amst) 2011; 10:743-50. [PMID: 21622031 DOI: 10.1016/j.dnarep.2011.04.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The molecular mechanisms by which these proteins bring about efficient TC-NER and trigger signaling after transcription arrest remain elusive; particularly the role of chromatin remodeling in TC-NER needs to be clarified in the context of anticipated structural changes that allow repair and transcription restart.
Collapse
Affiliation(s)
- Saskia Lagerwerf
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
339
|
Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 2011; 30:2520-31. [PMID: 21587205 PMCID: PMC3155297 DOI: 10.1038/emboj.2011.162] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022] Open
Abstract
Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies.
Collapse
|
340
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
341
|
Gil J, Ramsey D, Stembalska A, Karpinski P, Pesz KA, Laczmanska I, Leszczynski P, Grzebieniak Z, Sasiadek MM. The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual's susceptibility to sporadic colorectal cancer. Mol Biol Rep 2011. [PMID: 21559836 DOI: 10.1007/s11033-0110767-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological data show that colorectal cancer (CRC) is the second most frequent malignancy worldwide. The involvement of "minor impact genes" such as XME and DNA-repair genes in the etiology of sporadic cancer has been postulated by other authors. We focused on analyzing polymorphisms in DNA-repair genes in CRC. We considered the following genes involved in DNA-repair pathways: base excision repair (OGG1 Ser326Cys, XRCC1 Trp194Arg and Arg399Gln); nucleotide excision repair [XPA (-4)G/A, XPC C/A (i11) and A33512C (Lys939Gln), XPD Asp312Asn and A18911C (Lys751Gln), XPF Arg415Gln, XPG Asp1104His, ERCC1 C118T]; homologous recombination repair [NBS1 Glu185Gln, Rad51 135G/C, XRCC3 C18067 (Thr241Met)]. The study group consisted of 133 patients diagnosed with sporadic CRC, while the control group was composed of 100 age-matched non-cancer volunteers. Genotyping was performed by PCR and PCR-RFLP. Fisher's exact test with a Bonferroni correction for multiple testing was used. We found that: (i) XPC C/A (i11) heterozygous variant is associated with increased risk of CRC [OR is 2.07 (95% CI 1.1391, 3.7782) P=0.038], (ii) XPD A18911C (Lys751Gln) is associated with decreased risk of CRC [OR=0.4497, (95% CI 0.2215, 0.9131) P=0.031] for an individual with at least one A allele at this locus. (1) The XPC C/A (i11) genotype is associated with an increased risk of sporadic colorectal cancer. (2) The NER pathway has been highlighted in our study, as a most important in modulation of individual susceptibility to sCRC.
Collapse
Affiliation(s)
- Justyna Gil
- Department of Genetics, Medical University of Wroclaw, Marcinkowskiego 1, 50-368, Wroclaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Gil J, Ramsey D, Stembalska A, Karpinski P, Pesz KA, Laczmanska I, Leszczynski P, Grzebieniak Z, Sasiadek MM. The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual's susceptibility to sporadic colorectal cancer. Mol Biol Rep 2011; 39:527-34. [PMID: 21559836 DOI: 10.1007/s11033-011-0767-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 04/27/2011] [Indexed: 12/19/2022]
Abstract
Epidemiological data show that colorectal cancer (CRC) is the second most frequent malignancy worldwide. The involvement of "minor impact genes" such as XME and DNA-repair genes in the etiology of sporadic cancer has been postulated by other authors. We focused on analyzing polymorphisms in DNA-repair genes in CRC. We considered the following genes involved in DNA-repair pathways: base excision repair (OGG1 Ser326Cys, XRCC1 Trp194Arg and Arg399Gln); nucleotide excision repair [XPA (-4)G/A, XPC C/A (i11) and A33512C (Lys939Gln), XPD Asp312Asn and A18911C (Lys751Gln), XPF Arg415Gln, XPG Asp1104His, ERCC1 C118T]; homologous recombination repair [NBS1 Glu185Gln, Rad51 135G/C, XRCC3 C18067 (Thr241Met)]. The study group consisted of 133 patients diagnosed with sporadic CRC, while the control group was composed of 100 age-matched non-cancer volunteers. Genotyping was performed by PCR and PCR-RFLP. Fisher's exact test with a Bonferroni correction for multiple testing was used. We found that: (i) XPC C/A (i11) heterozygous variant is associated with increased risk of CRC [OR is 2.07 (95% CI 1.1391, 3.7782) P=0.038], (ii) XPD A18911C (Lys751Gln) is associated with decreased risk of CRC [OR=0.4497, (95% CI 0.2215, 0.9131) P=0.031] for an individual with at least one A allele at this locus. (1) The XPC C/A (i11) genotype is associated with an increased risk of sporadic colorectal cancer. (2) The NER pathway has been highlighted in our study, as a most important in modulation of individual susceptibility to sCRC.
Collapse
Affiliation(s)
- Justyna Gil
- Department of Genetics, Medical University of Wroclaw, Marcinkowskiego 1, 50-368, Wroclaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
344
|
Scrima A, Fischer ES, Lingaraju GM, Böhm K, Cavadini S, Thomä NH. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett 2011; 585:2818-25. [PMID: 21550341 DOI: 10.1016/j.febslet.2011.04.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 12/27/2022]
Abstract
The DDB1-DDB2-CUL4-RBX1 complex serves as the primary detection device for UV-induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1-CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1-CUL4 complexes. DDB2 and the Cockayne-syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1-CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles.
Collapse
Affiliation(s)
- Andrea Scrima
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
345
|
Graf N, Ang WH, Zhu G, Myint M, Lippard SJ. Role of endonucleases XPF and XPG in nucleotide excision repair of platinated DNA and cisplatin/oxaliplatin cytotoxicity. Chembiochem 2011; 12:1115-23. [PMID: 21452186 DOI: 10.1002/cbic.201000724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Indexed: 12/12/2022]
Abstract
Resistance of tumor cells to platinum anticancer agents poses a major problem in cancer chemotherapy. One of the mechanisms associated with platinum-based drug resistance is the enhanced capacity of the cell to carry out nucleotide excision repair (NER) on platinum-damaged DNA. Endonucleases XPF and XPG are critical components of NER, responsible for excising the damaged DNA strand to remove the DNA lesion. Here, we investigated possible consequences of down-regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair. We further evaluated the sensitivity of such cells toward the platinum anticancer drugs cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Nora Graf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | |
Collapse
|
346
|
Metzger R, Bollschweiler E, Hölscher AH, Warnecke-Eberz U. ERCC1: impact in multimodality treatment of upper gastrointestinal cancer. Future Oncol 2011; 6:1735-49. [PMID: 21142660 DOI: 10.2217/fon.10.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platinum-based drugs and radiation are key elements of multimodality treatment in a wide variety of solid tumors and especially tumors of the upper gastrointestinal tract. Cytotoxicity is directly related to their ability to cause DNA damage. This event consecutively triggers the nucleotide excision repair (NER) complex. The NER capacity has a major impact on chemo and radiation sensitivity, emergence of resistance and patient outcome. Excision repair cross-complementing group 1 (ERCC1) is a key molecule in NER. This review provides an overview of the NER complex with a focus on ERCC1. Recent literature has been analyzed and provides information regarding the potential role of ERCC1 as a prognostic factor in multimodality treatment of upper gastrointestinal cancer and cancer risk. To date, the role of ERCC1 as a predictive marker for individual multimodality treatment is far from being firmly established for routine use. However, with reliable methods, established cut-off values and validation in large, prospective, randomized trials, ERCC1 may possibly prove to play an important role as a tumor marker in individualized treatment for upper gastrointestinal cancer.
Collapse
Affiliation(s)
- Ralf Metzger
- Department of General, Visceral & Cancer Surgery, University of Cologne, Germany
| | | | | | | |
Collapse
|
347
|
Souza LR, Fonseca-Silva T, Pereira CS, Santos EP, Lima LC, Carvalho HA, Gomez RS, Guimarães ALS, De Paula AMB. Immunohistochemical analysis of p53, APE1, hMSH2 and ERCC1 proteins in actinic cheilitis and lip squamous cell carcinoma. Histopathology 2011; 58:352-60. [PMID: 21323960 DOI: 10.1111/j.1365-2559.2011.03756.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. METHODS AND RESULTS Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n=15), actinic cheilitis (AC) (n=30), and lip squamous cell carcinoma (LSCC) (n=27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. CONCLUSIONS Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.
Collapse
Affiliation(s)
- Ludmilla R Souza
- Health Science Programme, State University of Montes Claros, Montes Claros, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Castells E, Molinier J, Benvenuto G, Bourbousse C, Zabulon G, Zalc A, Cazzaniga S, Genschik P, Barneche F, Bowler C. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J 2011; 30:1162-72. [PMID: 21304489 DOI: 10.1038/emboj.2011.20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 01/10/2011] [Indexed: 11/09/2022] Open
Abstract
Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.
Collapse
Affiliation(s)
- Enric Castells
- Institut de Biologie de l'Ecole Normale Supérieure, Section de Génomique Environnementale et Evolutive, CNRS UMR 8197 INSERM U1021, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Overmeer RM, Moser J, Volker M, Kool H, Tomkinson AE, van Zeeland AA, Mullenders LHF, Fousteri M. Replication protein A safeguards genome integrity by controlling NER incision events. ACTA ACUST UNITED AC 2011; 192:401-15. [PMID: 21282463 PMCID: PMC3101093 DOI: 10.1083/jcb.201006011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Continued association of RPA with sites of incomplete nucleotide excision repair averts further incision events until repair is completed. Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complexes; however, its regulation in vivo is poorly understood. Notably, the transition from dual incision to repair synthesis should be rigidly synchronized as it might lead to accumulation of unprocessed repair intermediates. We monitored NER regulatory events in vivo using sequential UV irradiations. Under conditions that allow incision yet prevent completion of repair synthesis or ligation, preincision factors can reassociate with new damage sites. In contrast, replication protein A remains at the incomplete NER sites and regulates a feedback loop from completion of DNA repair synthesis to subsequent damage recognition, independently of ATR signaling. Our data reveal an important function for replication protein A in averting further generation of DNA strand breaks that could lead to mutagenic and recombinogenic events.
Collapse
Affiliation(s)
- René M Overmeer
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Rechkunova NI, Maltseva EA, Lavrik OI. Nucleotide excision repair in higher eukaryotes: Mechanism of primary damage recognition. Mol Biol 2011. [DOI: 10.1134/s0026893308010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|