301
|
He Y, Zhang Q, Wang S, Chen Z, Cui Z, Guo ZH, Huang DS. Predicting the Sequence Specificities of DNA-Binding Proteins by DNA Fine-Tuned Language Model With Decaying Learning Rates. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:616-624. [PMID: 35389869 DOI: 10.1109/tcbb.2022.3165592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA-binding proteins (DBPs) play vital roles in the regulation of biological systems. Although there are already many deep learning methods for predicting the sequence specificities of DBPs, they face two challenges as follows. Classic deep learning methods for DBPs prediction usually fail to capture the dependencies between genomic sequences since their commonly used one-hot codes are mutually orthogonal. Besides, these methods usually perform poorly when samples are inadequate. To address these two challenges, we developed a novel language model for mining DBPs using human genomic data and ChIP-seq datasets with decaying learning rates, named DNA Fine-tuned Language Model (DFLM). It can capture the dependencies between genome sequences based on the context of human genomic data and then fine-tune the features of DBPs tasks using different ChIP-seq datasets. First, we compared DFLM with the existing widely used methods on 69 datasets and we achieved excellent performance. Moreover, we conducted comparative experiments on complex DBPs and small datasets. The results show that DFLM still achieved a significant improvement. Finally, through visualization analysis of one-hot encoding and DFLM, we found that one-hot encoding completely cut off the dependencies of DNA sequences themselves, while DFLM using language models can well represent the dependency of DNA sequences. Source code are available at: https://github.com/Deep-Bioinfo/DFLM.
Collapse
|
302
|
Li J, Wu Z, Lin W, Luo J, Zhang J, Chen Q, Chen J. iEnhancer-ELM: improve enhancer identification by extracting position-related multiscale contextual information based on enhancer language models. BIOINFORMATICS ADVANCES 2023; 3:vbad043. [PMID: 37113248 PMCID: PMC10125906 DOI: 10.1093/bioadv/vbad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Motivation Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences. Results In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models. iEnhancer-ELM tokenizes DNA sequences with multi-scale k-mers and extracts contextual information of different scale k-mers related with their positions via an multi-head attention mechanism. We first evaluate the performance of different scale k-mers, then ensemble them to improve the performance of enhancer identification. The experimental results on two popular benchmark datasets show that our model outperforms state-of-the-art methods. We further illustrate the interpretability of iEnhancer-ELM. For a case study, we discover 30 enhancer motifs via a 3-mer-based model, where 12 of motifs are verified by STREME and JASPAR, demonstrating our model has a potential ability to unveil the biological mechanism of enhancer. Availability and implementation The models and associated code are available at https://github.com/chen-bioinfo/iEnhancer-ELM. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Wenhao Lin
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | | |
Collapse
|
303
|
Zeng W, Gautam A, Huson DH. MuLan-Methyl-multiple transformer-based language models for accurate DNA methylation prediction. Gigascience 2022; 12:giad054. [PMID: 37489753 PMCID: PMC10367125 DOI: 10.1093/gigascience/giad054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Transformer-based language models are successfully used to address massive text-related tasks. DNA methylation is an important epigenetic mechanism, and its analysis provides valuable insights into gene regulation and biomarker identification. Several deep learning-based methods have been proposed to identify DNA methylation, and each seeks to strike a balance between computational effort and accuracy. Here, we introduce MuLan-Methyl, a deep learning framework for predicting DNA methylation sites, which is based on 5 popular transformer-based language models. The framework identifies methylation sites for 3 different types of DNA methylation: N6-adenine, N4-cytosine, and 5-hydroxymethylcytosine. Each of the employed language models is adapted to the task using the "pretrain and fine-tune" paradigm. Pretraining is performed on a custom corpus of DNA fragments and taxonomy lineages using self-supervised learning. Fine-tuning aims at predicting the DNA methylation status of each type. The 5 models are used to collectively predict the DNA methylation status. We report excellent performance of MuLan-Methyl on a benchmark dataset. Moreover, we argue that the model captures characteristic differences between different species that are relevant for methylation. This work demonstrates that language models can be successfully adapted to applications in biological sequence analysis and that joint utilization of different language models improves model performance. Mulan-Methyl is open source, and we provide a web server that implements the approach.
Collapse
Affiliation(s)
- Wenhuan Zeng
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
304
|
Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework. PLoS Comput Biol 2022; 18:e1010779. [PMID: 36520922 PMCID: PMC9836277 DOI: 10.1371/journal.pcbi.1010779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/12/2023] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enhancers are short non-coding DNA sequences outside of the target promoter regions that can be bound by specific proteins to increase a gene's transcriptional activity, which has a crucial role in the spatiotemporal and quantitative regulation of gene expression. However, enhancers do not have a specific sequence motifs or structures, and their scattered distribution in the genome makes the identification of enhancers from human cell lines particularly challenging. Here we present a novel, stacked multivariate fusion framework called SMFM, which enables a comprehensive identification and analysis of enhancers from regulatory DNA sequences as well as their interpretation. Specifically, to characterize the hierarchical relationships of enhancer sequences, multi-source biological information and dynamic semantic information are fused to represent regulatory DNA enhancer sequences. Then, we implement a deep learning-based sequence network to learn the feature representation of the enhancer sequences comprehensively and to extract the implicit relationships in the dynamic semantic information. Ultimately, an ensemble machine learning classifier is trained based on the refined multi-source features and dynamic implicit relations obtained from the deep learning-based sequence network. Benchmarking experiments demonstrated that SMFM significantly outperforms other existing methods using several evaluation metrics. In addition, an independent test set was used to validate the generalization performance of SMFM by comparing it to other state-of-the-art enhancer identification methods. Moreover, we performed motif analysis based on the contribution scores of different bases of enhancer sequences to the final identification results. Besides, we conducted interpretability analysis of the identified enhancer sequences based on attention weights of EnhancerBERT, a fine-tuned BERT model that provides new insights into exploring the gene semantic information likely to underlie the discovered enhancers in an interpretable manner. Finally, in a human placenta study with 4,562 active distal gene regulatory enhancers, SMFM successfully exposed tissue-related placental development and the differential mechanism, demonstrating the generalizability and stability of our proposed framework.
Collapse
|
305
|
Chen Y, Xie M, Wen J. Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning. Front Genet 2022; 13:1081842. [PMID: 36588793 PMCID: PMC9797047 DOI: 10.3389/fgene.2022.1081842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that histone modifications play an important part in various chromatin-dependent processes such as DNA replication, repair, and transcription. Using computational models to predict gene expression based on histone modifications has been intensively studied. However, the accuracy of the proposed models still has room for improvement, especially in cross-cell lines gene expression prediction. In the work, we proposed a new model TransferChrome to predict gene expression from histone modifications based on deep learning. The model uses a densely connected convolutional network to capture the features of histone modifications data and uses self-attention layers to aggregate global features of the data. For cross-cell lines gene expression prediction, TransferChrome adopts transfer learning to improve prediction accuracy. We trained and tested our model on 56 different cell lines from the REMC database. The experimental results show that our model achieved an average Area Under the Curve (AUC) score of 84.79%. Compared to three state-of-the-art models, TransferChrome improves the prediction performance on most cell lines. The experiments of cross-cell lines gene expression prediction show that TransferChrome performs best and is an efficient model for predicting cross-cell lines gene expression.
Collapse
|
306
|
miRBind: A Deep Learning Method for miRNA Binding Classification. Genes (Basel) 2022; 13:genes13122323. [PMID: 36553590 PMCID: PMC9777820 DOI: 10.3390/genes13122323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
Collapse
|
307
|
Markova EA, Shaw RE, Reynolds CR. Prediction of strain engineerings that amplify recombinant protein secretion through the machine learning approach MaLPHAS. ENGINEERING BIOLOGY 2022; 6:82-90. [PMID: 36968340 PMCID: PMC9995161 DOI: 10.1049/enb2.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
This article presents a discussion of the process of precision fermentation (PF), describing the history of the space, the expected 70% growth over the next 5 years, various applications of precision fermented products, and the markets available to be disrupted by the technology. A range of prokaryotic and eukaryotic host organisms used for PF are described, with the advantages, disadvantages and applications of each. The process of setting up PF and strain engineering is described, as well as various ways that computational analysis and design techniques can be employed to assist PF engineering. The article then describes the design and implementation of a machine learning method, machine learning predictions having amplified secretion (MaLPHAS) to predict strain engineerings, which optimise the secretion of a recombinant protein. This approach showed an in silico cross-validated R 2 accuracy on the training data of up to 46.6% and in an in vitro test on a Komagataella phaffii strain, identified one gene engineering out of five predicted, which was shown to double the secretion of a heterologous protein and outperform three of the best-known edits from the literature for improving secretion in K. phaffii.
Collapse
|
308
|
Mai DHA, Nguyen LT, Lee EY. TSSNote-CyaPromBERT: Development of an integrated platform for highly accurate promoter prediction and visualization of Synechococcus sp. and Synechocystis sp. through a state-of-the-art natural language processing model BERT. Front Genet 2022; 13:1067562. [PMID: 36523764 PMCID: PMC9745317 DOI: 10.3389/fgene.2022.1067562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Since the introduction of the first transformer model with a unique self-attention mechanism, natural language processing (NLP) models have attained state-of-the-art (SOTA) performance on various tasks. As DNA is the blueprint of life, it can be viewed as an unusual language, with its characteristic lexicon and grammar. Therefore, NLP models may provide insights into the meaning of the sequential structure of DNA. In the current study, we employed and compared the performance of popular SOTA NLP models (i.e., XLNET, BERT, and a variant DNABERT trained on the human genome) to predict and analyze the promoters in freshwater cyanobacterium Synechocystis sp. PCC 6803 and the fastest growing cyanobacterium Synechococcus elongatus sp. UTEX 2973. These freshwater cyanobacteria are promising hosts for phototrophically producing value-added compounds from CO2. Through a custom pipeline, promoters and non-promoters from Synechococcus elongatus sp. UTEX 2973 were used to train the model. The trained model achieved an AUROC score of 0.97 and F1 score of 0.92. During cross-validation with promoters from Synechocystis sp. PCC 6803, the model achieved an AUROC score of 0.96 and F1 score of 0.91. To increase accessibility, we developed an integrated platform (TSSNote-CyaPromBERT) to facilitate large dataset extraction, model training, and promoter prediction from public dRNA-seq datasets. Furthermore, various visualization tools have been incorporated to address the "black box" issue of deep learning and feature analysis. The learning transfer ability of large language models may help identify and analyze promoter regions for newly isolated strains with similar lineages.
Collapse
|
309
|
IUP-BERT: Identification of Umami Peptides Based on BERT Features. Foods 2022; 11:foods11223742. [PMID: 36429332 PMCID: PMC9689418 DOI: 10.3390/foods11223742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Umami is an important widely-used taste component of food seasoning. Umami peptides are specific structural peptides endowing foods with a favorable umami taste. Laboratory approaches used to identify umami peptides are time-consuming and labor-intensive, which are not feasible for rapid screening. Here, we developed a novel peptide sequence-based umami peptide predictor, namely iUP-BERT, which was based on the deep learning pretrained neural network feature extraction method. After optimization, a single deep representation learning feature encoding method (BERT: bidirectional encoder representations from transformer) in conjugation with the synthetic minority over-sampling technique (SMOTE) and support vector machine (SVM) methods was adopted for model creation to generate predicted probabilistic scores of potential umami peptides. Further extensive empirical experiments on cross-validation and an independent test showed that iUP-BERT outperformed the existing methods with improvements, highlighting its effectiveness and robustness. Finally, an open-access iUP-BERT web server was built. To our knowledge, this is the first efficient sequence-based umami predictor created based on a single deep-learning pretrained neural network feature extraction method. By predicting umami peptides, iUP-BERT can help in further research to improve the palatability of dietary supplements in the future.
Collapse
|
310
|
Lan AY, Corces MR. Deep learning approaches for noncoding variant prioritization in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1027224. [PMID: 36466610 PMCID: PMC9716280 DOI: 10.3389/fnagi.2022.1027224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Determining how noncoding genetic variants contribute to neurodegenerative dementias is fundamental to understanding disease pathogenesis, improving patient prognostication, and developing new clinical treatments. Next generation sequencing technologies have produced vast amounts of genomic data on cell type-specific transcription factor binding, gene expression, and three-dimensional chromatin interactions, with the promise of providing key insights into the biological mechanisms underlying disease. However, this data is highly complex, making it challenging for researchers to interpret, assimilate, and dissect. To this end, deep learning has emerged as a powerful tool for genome analysis that can capture the intricate patterns and dependencies within these large datasets. In this review, we organize and discuss the many unique model architectures, development philosophies, and interpretation methods that have emerged in the last few years with a focus on using deep learning to predict the impact of genetic variants on disease pathogenesis. We highlight both broadly-applicable genomic deep learning methods that can be fine-tuned to disease-specific contexts as well as existing neurodegenerative disease research, with an emphasis on Alzheimer's-specific literature. We conclude with an overview of the future of the field at the intersection of neurodegeneration, genomics, and deep learning.
Collapse
Affiliation(s)
- Alexander Y. Lan
- Gladstone Institute of Neurological Disease, San Francisco, CA, United States
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - M. Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, United States
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, United States
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
311
|
Lee D, Yang J, Kim S. Learning the histone codes with large genomic windows and three-dimensional chromatin interactions using transformer. Nat Commun 2022; 13:6678. [PMID: 36335101 PMCID: PMC9637148 DOI: 10.1038/s41467-022-34152-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The quantitative characterization of the transcriptional control by histone modifications has been challenged by many computational studies, but most of them only focus on narrow and linear genomic regions around promoters, leaving a room for improvement. We present Chromoformer, a transformer-based, three-dimensional chromatin conformation-aware deep learning architecture that achieves the state-of-the-art performance in the quantitative deciphering of the histone codes in gene regulation. The core essence of Chromoformer architecture lies in the three variants of attention operation, each specialized to model individual hierarchy of transcriptional regulation involving from core promoters to distal elements in contact with promoters through three-dimensional chromatin interactions. In-depth interpretation of Chromoformer reveals that it adaptively utilizes the long-range dependencies between histone modifications associated with transcription initiation and elongation. We also show that the quantitative kinetics of transcription factories and Polycomb group bodies can be captured by Chromoformer. Together, our study highlights the great advantage of attention-based deep modeling of complex interactions in epigenomes.
Collapse
Affiliation(s)
- Dohoon Lee
- grid.31501.360000 0004 0470 5905Bioinformatics Institute, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905BK21 FOUR Intelligence Computing, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jeewon Yang
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sun Kim
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Computer Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,AIGENDRUG Co., Ltd., Seoul, 08826 Republic of Korea
| |
Collapse
|
312
|
Rahardja S, Wang M, Nguyen BP, Fränti P, Rahardja S. A lightweight classification of adaptor proteins using transformer networks. BMC Bioinformatics 2022; 23:461. [PMID: 36333658 PMCID: PMC9635127 DOI: 10.1186/s12859-022-05000-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Adaptor proteins play a key role in intercellular signal transduction, and dysfunctional adaptor proteins result in diseases. Understanding its structure is the first step to tackling the associated conditions, spurring ongoing interest in research into adaptor proteins with bioinformatics and computational biology. Our study aims to introduce a small, new, and superior model for protein classification, pushing the boundaries with new machine learning algorithms. RESULTS We propose a novel transformer based model which includes convolutional block and fully connected layer. We input protein sequences from a database, extract PSSM features, then process it via our deep learning model. The proposed model is efficient and highly compact, achieving state-of-the-art performance in terms of area under the receiver operating characteristic curve, Matthew's Correlation Coefficient and Receiver Operating Characteristics curve. Despite merely 20 hidden nodes translating to approximately 1% of the complexity of previous best known methods, the proposed model is still superior in results and computational efficiency. CONCLUSIONS The proposed model is the first transformer model used for recognizing adaptor protein, and outperforms all existing methods, having PSSM profiles as inputs that comprises convolutional blocks, transformer and fully connected layers for the use of classifying adaptor proteins.
Collapse
Affiliation(s)
- Sylwan Rahardja
- grid.9668.10000 0001 0726 2490School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Mou Wang
- grid.440588.50000 0001 0307 1240School of Marine Science and Technology, Northwestern Polytechnical University and Singapore Institute of Technology, 710072 Xi’an, China
| | - Binh P. Nguyen
- grid.267827.e0000 0001 2292 3111School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - Pasi Fränti
- grid.9668.10000 0001 0726 2490School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Susanto Rahardja
- grid.440588.50000 0001 0307 1240School of Marine Science and Technology, Northwestern Polytechnical University and Singapore Institute of Technology, 710072 Xi’an, China ,grid.486188.b0000 0004 1790 4399Singapore Institute of Technology, Singapore, 138683 Singapore
| |
Collapse
|
313
|
Zhang Y, Liu Y, Wang Z, Wang M, Xiong S, Huang G, Gong M. Uncovering the Relationship between Tissue-Specific TF-DNA Binding and Chromatin Features through a Transformer-Based Model. Genes (Basel) 2022; 13:1952. [PMID: 36360189 PMCID: PMC9690320 DOI: 10.3390/genes13111952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024] Open
Abstract
Chromatin features can reveal tissue-specific TF-DNA binding, which leads to a better understanding of many critical physiological processes. Accurately identifying TF-DNA bindings and constructing their relationships with chromatin features is a long-standing goal in the bioinformatic field. However, this has remained elusive due to the complex binding mechanisms and heterogeneity among inputs. Here, we have developed the GHTNet (General Hybrid Transformer Network), a transformer-based model to predict TF-DNA binding specificity. The GHTNet decodes the relationship between tissue-specific TF-DNA binding and chromatin features via a specific input scheme of alternative inputs and reveals important gene regions and tissue-specific motifs. Our experiments show that the GHTNet has excellent performance, achieving about a 5% absolute improvement over existing methods. The TF-DNA binding mechanism analysis shows that the importance of TF-DNA binding features varies across tissues. The best predictor is based on the DNA sequence, followed by epigenomics and shape. In addition, cross-species studies address the limited data, thus providing new ideas in this case. Moreover, the GHTNet is applied to interpret the relationship among TFs, chromatin features, and diseases associated with AD46 tissue. This paper demonstrates that the GHTNet is an accurate and robust framework for deciphering tissue-specific TF-DNA binding and interpreting non-coding regions.
Collapse
Affiliation(s)
- Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuhang Liu
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zixuan Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Maocheng Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Shuwen Xiong
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Guo Huang
- School of Electronic Information and Artificial Intelligence, Leshan Normal University, Leshan 614000, China
| | - Meiqin Gong
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
314
|
Piao C, Lv M, Wang S, Zhou R, Wang Y, Wei J, Liu J. Multi-objective data enhancement for deep learning-based ultrasound analysis. BMC Bioinformatics 2022; 23:438. [PMID: 36266626 PMCID: PMC9583467 DOI: 10.1186/s12859-022-04985-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Recently, Deep Learning based automatic generation of treatment recommendation has been attracting much attention. However, medical datasets are usually small, which may lead to over-fitting and inferior performances of deep learning models. In this paper, we propose multi-objective data enhancement method to indirectly scale up the medical data to avoid over-fitting and generate high quantity treatment recommendations. Specifically, we define a main and several auxiliary tasks on the same dataset and train a specific model for each of these tasks to learn different aspects of knowledge in limited data scale. Meanwhile, a Soft Parameter Sharing method is exploited to share learned knowledge among models. By sharing the knowledge learned by auxiliary tasks to the main task, the proposed method can take different semantic distributions into account during the training process of the main task. We collected an ultrasound dataset of thyroid nodules that contains Findings, Impressions and Treatment Recommendations labeled by professional doctors. We conducted various experiments on the dataset to validate the proposed method and justified its better performance than existing methods.
Collapse
Affiliation(s)
- Chengkai Piao
- College of Computer Science, Nankai University, Tianjin, China
| | - Mengyue Lv
- Department of Ultrasound, Cangzhou Municipal Haixing Hospital, Cangzhou, China
| | - Shujie Wang
- Department of Ultrasound, Cangzhou Municipal Haixing Hospital, Cangzhou, China
| | - Rongyan Zhou
- Department of Ultrasound, Cangzhou Municipal Haixing Hospital, Cangzhou, China
| | - Yuchen Wang
- College of Computer Science, Nankai University, Tianjin, China
| | - Jinmao Wei
- College of Computer Science, Nankai University, Tianjin, China.
| | - Jian Liu
- College of Computer Science, Nankai University, Tianjin, China.
| |
Collapse
|
315
|
Jin J, Yu Y, Wang R, Zeng X, Pang C, Jiang Y, Li Z, Dai Y, Su R, Zou Q, Nakai K, Wei L. iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations. Genome Biol 2022; 23:219. [PMID: 36253864 PMCID: PMC9575223 DOI: 10.1186/s13059-022-02780-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we propose iDNA-ABF, a multi-scale deep biological language learning model that enables the interpretable prediction of DNA methylations based on genomic sequences only. Benchmarking comparisons show that our iDNA-ABF outperforms state-of-the-art methods for different methylation predictions. Importantly, we show the power of deep language learning in capturing both sequential and functional semantics information from background genomes. Moreover, by integrating the interpretable analysis mechanism, we well explain what the model learns, helping us build the mapping from the discovery of important sequential determinants to the in-depth analysis of their biological functions.
Collapse
Affiliation(s)
- Junru Jin
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yingying Yu
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Xin Zeng
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
| | - Chao Pang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yi Jiang
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Zhongshen Li
- School of Software, Shandong University, Jinan, 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yutong Dai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan.
| | - Leyi Wei
- School of Software, Shandong University, Jinan, 250101, China.
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China.
| |
Collapse
|
316
|
PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability. Int J Mol Sci 2022; 23:ijms232012385. [PMID: 36293242 PMCID: PMC9604182 DOI: 10.3390/ijms232012385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Peptide detectability is defined as the probability of identifying a peptide from a mixture of standard samples, which is a key step in protein identification and analysis. Exploring effective methods for predicting peptide detectability is helpful for disease treatment and clinical research. However, most existing computational methods for predicting peptide detectability rely on a single information. With the increasing complexity of feature representation, it is necessary to explore the influence of multivariate information on peptide detectability. Thus, we propose an ensemble deep learning method, PD-BertEDL. Bidirectional encoder representations from transformers (BERT) is introduced to capture the context information of peptides. Context information, sequence information, and physicochemical information of peptides were combined to construct the multivariate feature space of peptides. We use different deep learning methods to capture the high-quality features of different categories of peptides information and use the average fusion strategy to integrate three model prediction results to solve the heterogeneity problem and to enhance the robustness and adaptability of the model. The experimental results show that PD-BertEDL is superior to the existing prediction methods, which can effectively predict peptide detectability and provide strong support for protein identification and quantitative analysis, as well as disease treatment.
Collapse
|
317
|
Towards a better understanding of TF-DNA binding prediction from genomic features. Comput Biol Med 2022; 149:105993. [DOI: 10.1016/j.compbiomed.2022.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
|
318
|
JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction. J Biomed Inform 2022; 136:104231. [DOI: 10.1016/j.jbi.2022.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
319
|
Zhang P, Zhang H, Wu H. iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species. Nucleic Acids Res 2022; 50:10278-10289. [PMID: 36161334 PMCID: PMC9561371 DOI: 10.1093/nar/gkac824] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Promoters are consensus DNA sequences located near the transcription start sites and they play an important role in transcription initiation. Due to their importance in biological processes, the identification of promoters is significantly important for characterizing the expression of the genes. Numerous computational methods have been proposed to predict promoters. However, it is difficult for these methods to achieve satisfactory performance in multiple species. In this study, we propose a novel weighted average ensemble learning model, termed iPro-WAEL, for identifying promoters in multiple species, including Human, Mouse, E.coli, Arabidopsis, B.amyloliquefaciens, B.subtilis and R.capsulatus. Extensive benchmarking experiments illustrate that iPro-WAEL has optimal performance and is superior to the current methods in promoter prediction. The experimental results also demonstrate a satisfactory prediction ability of iPro-WAEL on cross-cell lines, promoters annotated by other methods and distinguishing between promoters and enhancers. Moreover, we identify the most important transcription factor binding site (TFBS) motif in promoter regions to facilitate the study of identifying important motifs in the promoter regions. The source code of iPro-WAEL is freely available at https://github.com/HaoWuLab-Bioinformatics/iPro-WAEL.
Collapse
Affiliation(s)
- Pengyu Zhang
- School of Software, Shandong University, Jinan, 250101, Shandong, China.,College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongming Zhang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Wu
- School of Software, Shandong University, Jinan, 250101, Shandong, China
| |
Collapse
|
320
|
Grønbæk C, Liang Y, Elliott D, Krogh A. Context dependent prediction in DNA sequence using neural networks. PeerJ 2022; 10:e13666. [PMID: 36157058 PMCID: PMC9504454 DOI: 10.7717/peerj.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
One way to better understand the structure in DNA is by learning to predict the sequence. Here, we trained a model to predict the missing base at any given position, given its left and right flanking contexts. Our best-performing model was a neural network that obtained an accuracy close to 54% on the human genome, which is 2% points better than modelling the data using a Markov model. In likelihood-ratio tests, the neural network performed significantly better than any of the alternative models by a large margin. We report on where the accuracy was obtained, first observing that the performance appeared to be uniform over the chromosomes. The models performed best in repetitive sequences, as expected, although their performance far from random in the more difficult coding sections, the proportions being ~70:40%. We further explored the sources of the accuracy, Fourier transforming the predictions revealed weak but clear periodic signals. In the human genome the characteristic periods hinted at connections to nucleosome positioning. We found similar periodic signals in GC/AT content in the human genome, which to the best of our knowledge have not been reported before. On other large genomes similarly high accuracy was found, while lower predictive accuracy was observed on smaller genomes. Only in the mouse genome did we see periodic signals in the same range as in the human genome, though weaker and of a different type. This indicates that the sources of these signals are other or more than nucleosome arrangement. Interestingly, applying a model trained on the mouse genome to the human genome resulted in a performance far below that of the human model, except in the difficult coding regions. Despite the clear outcomes of the likelihood-ratio tests, there is currently a limited superiority of the neural network methods over the Markov model. We expect, however, that there is great potential for better modelling DNA using different neural network architectures.
Collapse
Affiliation(s)
- Christian Grønbæk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yuhu Liang
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Desmond Elliott
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark,Center for Health Data Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
321
|
Kshirsagar M, Yuan H, Ferres JL, Leslie C. BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin. Genome Biol 2022; 23:174. [PMID: 35971180 PMCID: PMC9380350 DOI: 10.1186/s13059-022-02723-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches.
Collapse
Affiliation(s)
| | - Han Yuan
- Calico Life Sciences, South San Francisco, CA, USA
| | | | | |
Collapse
|
322
|
A Neural Networks Approach for the Analysis of Reproducible Ribo–Seq Profiles. ALGORITHMS 2022. [DOI: 10.3390/a15080274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, the Ribosome profiling technique (Ribo–seq) has emerged as a powerful method for globally monitoring the translation process in vivo at single nucleotide resolution. Based on deep sequencing of mRNA fragments, Ribo–seq allows to obtain profiles that reflect the time spent by ribosomes in translating each part of an open reading frame. Unfortunately, the profiles produced by this method can vary significantly in different experimental setups, being characterized by a poor reproducibility. To address this problem, we have employed a statistical method for the identification of highly reproducible Ribo–seq profiles, which was tested on a set of E. coli genes. State-of-the-art artificial neural network models have been used to validate the quality of the produced sequences. Moreover, new insights into the dynamics of ribosome translation have been provided through a statistical analysis on the obtained sequences.
Collapse
|
323
|
Bai Z, Zhang YZ, Miyano S, Yamaguchi R, Fujimoto K, Uematsu S, Imoto S. Identification of bacteriophage genome sequences with representation learning. Bioinformatics 2022; 38:4264-4270. [PMID: 35920769 PMCID: PMC9477532 DOI: 10.1093/bioinformatics/btac509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Bacteriophages/phages are the viruses that infect and replicate within bacteria and archaea, and rich in human body. To investigate the relationship between phages and microbial communities, the identification of phages from metagenome sequences is the first step. Currently, there are two main methods for identifying phages: database-based (alignment-based) methods and alignment-free methods. Database-based methods typically use a large number of sequences as references; alignment-free methods usually learn the features of the sequences with machine learning and deep learning models. RESULTS We propose INHERIT which uses a deep representation learning model to integrate both database-based and alignment-free methods, combining the strengths of both. Pre-training is used as an alternative way of acquiring knowledge representations from existing databases, while the BERT-style deep learning framework retains the advantage of alignment-free methods. We compare INHERIT with four existing methods on a third-party benchmark dataset. Our experiments show that INHERIT achieves a better performance with the F1-score of 0.9932. In addition, we find that pre-training two species separately helps the non-alignment deep learning model make more accurate predictions. AVAILABILITY AND IMPLEMENTATION The codes of INHERIT are now available in: https://github.com/Celestial-Bai/INHERIT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zeheng Bai
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | - Satoru Miyano
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan,M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Rui Yamaguchi
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan,Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan,Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Kosuke Fujimoto
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Uematsu
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiya Imoto
- To whom correspondence should be addressed. or
| |
Collapse
|
324
|
Gwak HJ, Rho M. ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data. Brief Bioinform 2022; 23:6603436. [PMID: 35667011 DOI: 10.1093/bib/bbac204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are ubiquitous in humans and various environments and continually mutate themselves. Identifying viruses in an environment without cultivation is challenging; however, promoting the screening of novel viruses and expanding the knowledge of viral space is essential. Homology-based methods that identify viruses using known viral genomes rely on sequence alignments, making it difficult to capture remote homologs of the known viruses. To accurately capture viral signals from metagenomic samples, models are needed to understand the patterns encoded in the viral genomes. In this study, we developed a hierarchical BERT model named ViBE to detect eukaryotic viruses from metagenome sequencing data and classify them at the order level. We pre-trained ViBE using read-like sequences generated from the virus reference genomes and derived three fine-tuned models that classify paired-end reads to orders for eukaryotic deoxyribonucleic acid viruses and eukaryotic ribonucleic acid viruses. ViBE achieved higher recall than state-of-the-art alignment-based methods while maintaining comparable precision. ViBE outperformed state-of-the-art alignment-free methods for all test cases. The performance of ViBE was also verified using real sequencing datasets, including the vaginal virome.
Collapse
Affiliation(s)
- Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Korea.,Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| |
Collapse
|
325
|
Serna Garcia G, Leone M, Bernasconi A, Carman MJ. GeMI: interactive interface for transformer-based Genomic Metadata Integration. Database (Oxford) 2022; 2022:6600540. [PMID: 35657113 PMCID: PMC9216561 DOI: 10.1093/database/baac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022]
Abstract
The Gene Expression Omnibus (GEO) is a public archive containing >4 million digital samples from functional genomics experiments collected over almost two decades. The accompanying metadata describing the experiments suffer from redundancy, inconsistency and incompleteness due to the prevalence of free text and the lack of well-defined data formats and their validation. To remedy this situation, we created Genomic Metadata Integration (GeMI; http://gmql.eu/gemi/), a web application that learns to automatically extract structured metadata (in the form of key-value pairs) from the plain text descriptions of GEO experiments. The extracted information can then be indexed for structured search and used for various downstream data mining activities. GeMI works in continuous interaction with its users. The natural language processing transformer-based model at the core of our system is a fine-tuned version of the Generative Pre-trained Transformer 2 (GPT2) model that is able to learn continuously from the feedback of the users thanks to an active learning framework designed for the purpose. As a part of such a framework, a machine learning interpretation mechanism (that exploits saliency maps) allows the users to understand easily and quickly whether the predictions of the model are correct and improves the overall usability. GeMI’s ability to extract attributes not explicitly mentioned (such as sex, tissue type, cell type, ethnicity and disease) allows researchers to perform specific queries and classification of experiments, which was previously possible only after spending time and resources with tedious manual annotation. The usefulness of GeMI is demonstrated on practical research use cases.
Database URL
http://gmql.eu/gemi/
Collapse
Affiliation(s)
- Giuseppe Serna Garcia
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano , Via Ponzio 34/5, Milano 20133, Italy
| | - Michele Leone
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano , Via Ponzio 34/5, Milano 20133, Italy
| | - Anna Bernasconi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano , Via Ponzio 34/5, Milano 20133, Italy
| | - Mark J Carman
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano , Via Ponzio 34/5, Milano 20133, Italy
| |
Collapse
|
326
|
Lu AX, Lu AX, Pritišanac I, Zarin T, Forman-Kay JD, Moses AM. Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. PLoS Comput Biol 2022; 18:e1010238. [PMID: 35767567 PMCID: PMC9275697 DOI: 10.1371/journal.pcbi.1010238] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 07/12/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
A major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution. We use this as a contrastive learning signal for deep learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out homolog from another set of IDRs sampled randomly from the proteome. We pair reverse homology with a simple architecture and standard interpretation techniques, and show that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or bulk features like charge or amino acid propensities. We also show that our model can be used to produce visualizations of what residues and regions are most important to IDR function, generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using unsupervised neural networks is a promising avenue to gain systematic insight into poorly understood protein sequences.
Collapse
Affiliation(s)
- Alex X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Amy X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
327
|
Nakai K, Wei L. Recent Advances in the Prediction of Subcellular Localization of Proteins and Related Topics. FRONTIERS IN BIOINFORMATICS 2022; 2:910531. [PMID: 36304291 PMCID: PMC9580943 DOI: 10.3389/fbinf.2022.910531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of subcellular localization of proteins from their amino acid sequences has a long history in bioinformatics and is still actively developing, incorporating the latest advances in machine learning and proteomics. Notably, deep learning-based methods for natural language processing have made great contributions. Here, we review recent advances in the field as well as its related fields, such as subcellular proteomics and the prediction/recognition of subcellular localization from image data.
Collapse
Affiliation(s)
- Kenta Nakai
- Institute of Medical Science, The University of Tokyo, Minato-Ku, Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China
| |
Collapse
|
328
|
Yang M, Huang L, Huang H, Tang H, Zhang N, Yang H, Wu J, Mu F. Integrating convolution and self-attention improves language model of human genome for interpreting non-coding regions at base-resolution. Nucleic Acids Res 2022; 50:e81. [PMID: 35536244 PMCID: PMC9371931 DOI: 10.1093/nar/gkac326] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Interpretation of non-coding genome remains an unsolved challenge in human genetics due to impracticality of exhaustively annotating biochemically active elements in all conditions. Deep learning based computational approaches emerge recently to help interpret non-coding regions. Here, we present LOGO (Language of Genome), a self-attention based contextualized pre-trained language model containing only two self-attention layers with 1 million parameters as a substantially light architecture that applies self-supervision techniques to learn bidirectional representations of the unlabelled human reference genome. LOGO is then fine-tuned for sequence labelling task, and further extended to variant prioritization task via a special input encoding scheme of alternative alleles followed by adding a convolutional module. Experiments show that LOGO achieves 15% absolute improvement for promoter identification and up to 4.5% absolute improvement for enhancer-promoter interaction prediction. LOGO exhibits state-of-the-art multi-task predictive power on thousands of chromatin features with only 3% parameterization benchmarking against the fully supervised model, DeepSEA and 1% parameterization against a recent BERT-based DNA language model. For allelic-effect prediction, locality introduced by one dimensional convolution shows improved sensitivity and specificity for prioritizing non-coding variants associated with human diseases. In addition, we apply LOGO to interpret type 2 diabetes (T2D) GWAS signals and infer underlying regulatory mechanisms. We make a conceptual analogy between natural language and human genome and demonstrate LOGO is an accurate, fast, scalable, and robust framework to interpret non-coding regions for global sequence labeling as well as for variant prioritization at base-resolution.
Collapse
Affiliation(s)
- Meng Yang
- MGI, BGI-Shenzhen, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | - Hui Tang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Nan Zhang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jihong Wu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Feng Mu
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
329
|
Abdalla M, Abdalla M. A general framework for predicting the transcriptomic consequences of non-coding variation and small molecules. PLoS Comput Biol 2022; 18:e1010028. [PMID: 35421087 PMCID: PMC9041867 DOI: 10.1371/journal.pcbi.1010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/26/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Genome wide association studies (GWASs) for complex traits have implicated thousands of genetic loci. Most GWAS-nominated variants lie in noncoding regions, complicating the systematic translation of these findings into functional understanding. Here, we leverage convolutional neural networks to assist in this challenge. Our computational framework, peaBrain, models the transcriptional machinery of a tissue as a two-stage process: first, predicting the mean tissue specific abundance of all genes and second, incorporating the transcriptomic consequences of genotype variation to predict individual abundance on a subject-by-subject basis. We demonstrate that peaBrain accounts for the majority (>50%) of variance observed in mean transcript abundance across most tissues and outperforms regularized linear models in predicting the consequences of individual genotype variation. We highlight the validity of the peaBrain model by calculating non-coding impact scores that correlate with nucleotide evolutionary constraint that are also predictive of disease-associated variation and allele-specific transcription factor binding. We further show how these tissue-specific peaBrain scores can be leveraged to pinpoint functional tissues underlying complex traits, outperforming methods that depend on colocalization of eQTL and GWAS signals. We subsequently: (a) derive continuous dense embeddings of genes for downstream applications; (b) highlight the utility of the model in predicting transcriptomic impact of small molecules and shRNA (on par with in vitro experimental replication of external test sets); (c) explore how peaBrain can be used to model difficult-to-study processes (such as neural induction); and (d) identify putatively functional eQTLs that are missed by high-throughput experimental approaches.
Collapse
Affiliation(s)
- Moustafa Abdalla
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Computational Statistics and Machine Learning, Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MA); (MA)
| | - Mohamed Abdalla
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- * E-mail: (MA); (MA)
| |
Collapse
|
330
|
Yamada K, Hamada M. Prediction of RNA-protein interactions using a nucleotide language model. BIOINFORMATICS ADVANCES 2022; 2:vbac023. [PMID: 36699410 PMCID: PMC9710633 DOI: 10.1093/bioadv/vbac023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 01/28/2023]
Abstract
Motivation The accumulation of sequencing data has enabled researchers to predict the interactions between RNA sequences and RNA-binding proteins (RBPs) using novel machine learning techniques. However, existing models are often difficult to interpret and require additional information to sequences. Bidirectional encoder representations from transformer (BERT) is a language-based deep learning model that is highly interpretable. Therefore, a model based on BERT architecture can potentially overcome such limitations. Results Here, we propose BERT-RBP as a model to predict RNA-RBP interactions by adapting the BERT architecture pretrained on a human reference genome. Our model outperformed state-of-the-art prediction models using the eCLIP-seq data of 154 RBPs. The detailed analysis further revealed that BERT-RBP could recognize both the transcript region type and RNA secondary structure only based on sequence information. Overall, the results provide insights into the fine-tuning mechanism of BERT in biological contexts and provide evidence of the applicability of the model to other RNA-related problems. Availability and implementation Python source codes are freely available at https://github.com/kkyamada/bert-rbp. The datasets underlying this article were derived from sources in the public domain: [RBPsuite (http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/), Ensembl Biomart (http://asia.ensembl.org/biomart/martview/)]. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Keisuke Yamada
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
331
|
Perez Martell RI, Ziesel A, Jabbari H, Stege U. Supervised promoter recognition: a benchmark framework. BMC Bioinformatics 2022; 23:118. [PMID: 35366794 PMCID: PMC8976979 DOI: 10.1186/s12859-022-04647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Motivation
Deep learning has become a prevalent method in identifying genomic regulatory sequences such as promoters. In a number of recent papers, the performance of deep learning models has continually been reported as an improvement over alternatives for sequence-based promoter recognition. However, the performance improvements in these models do not account for the different datasets that models are evaluated on. The lack of a consensus dataset and procedure for benchmarking purposes has made the comparison of each model’s true performance difficult to assess.
Results
We present a framework called Supervised Promoter Recognition Framework (‘SUPR REF’) capable of streamlining the complete process of training, validating, testing, and comparing promoter recognition models in a systematic manner. SUPR REF includes the creation of biologically relevant benchmark datasets to be used in the evaluation process of deep learning promoter recognition models. We showcase this framework by comparing the models’ performances on alternative datasets, and properly evaluate previously published models on new benchmark datasets. Our results show that the reliability of deep learning ab initio promoter recognition models on eukaryotic genomic sequences is still not at a sufficient level, as overall performance is still low. These results originate from a subset of promoters, the well-known RNA Polymerase II core promoters. Furthermore, given the observational nature of these data, cross-validation results from small promoter datasets need to be interpreted with caution.
Collapse
|
332
|
Lin K, Quan X, Jin C, Shi Z, Yang J. An Interpretable Double-Scale Attention Model for Enzyme Protein Class Prediction Based on Transformer Encoders and Multi-Scale Convolutions. Front Genet 2022; 13:885627. [PMID: 35432476 PMCID: PMC9012241 DOI: 10.3389/fgene.2022.885627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Classification and annotation of enzyme proteins are fundamental for enzyme research on biological metabolism. Enzyme Commission (EC) numbers provide a standard for hierarchical enzyme class prediction, on which several computational methods have been proposed. However, most of these methods are dependent on prior distribution information and none explicitly quantifies amino-acid-level relations and possible contribution of sub-sequences. Methods In this study, we propose a double-scale attention enzyme class prediction model named DAttProt with high reusability and interpretability. DAttProt encodes sequence by self-supervised Transformer encoders in pre-training and gathers local features by multi-scale convolutions in fine-tuning. Specially, a probabilistic double-scale attention weight matrix is designed to aggregate multi-scale features and positional prediction scores. Finally, a full connection linear classifier conducts a final inference through the aggregated features and prediction scores. Results On DEEPre and ECPred datasets, DAttProt performs as competitive with the compared methods on level 0 and outperforms them on deeper task levels, reaching 0.788 accuracy on level 2 of DEEPre and 0.967 macro-F1 on level 1 of ECPred. Moreover, through case study, we demonstrate that the double-scale attention matrix learns to discover and focus on the positions and scales of bio-functional sub-sequences in the protein. Conclusion Our DAttProt provides an effective and interpretable method for enzyme class prediction. It can predict enzyme protein classes accurately and furthermore discover enzymatic functional sub-sequences such as protein motifs from both positional and spatial scales.
Collapse
Affiliation(s)
- Ken Lin
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xiongwen Quan
- College of Artificial Intelligence, Nankai University, Tianjin, China
- *Correspondence: Xiongwen Quan,
| | - Chen Jin
- College of Computer Science, Nankai University, Tianjin, China
| | - Zhuangwei Shi
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Jinglong Yang
- College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
333
|
Wang JX, Li Y, Li X, Lu ZH. Alzheimer's Disease Classification Through Imaging Genetic Data With IGnet. Front Neurosci 2022; 16:846638. [PMID: 35310099 PMCID: PMC8927016 DOI: 10.3389/fnins.2022.846638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The application of deep learning techniques to the detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention. The rapid progress in neuroimaging and sequencing techniques has enabled the generation of large-scale imaging genetic data for AD research. In this study, we developed a deep learning approach, IGnet, for automated AD classification using both magnetic resonance imaging (MRI) data and genetic sequencing data. The proposed approach integrates computer vision (CV) and natural language processing (NLP) techniques, with a deep three-dimensional convolutional network (3D CNN) being used to handle the three-dimensional MRI input and a Transformer encoder being used to manage the genetic sequence input. The proposed approach has been applied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. Using baseline MRI scans and selected single-nucleotide polymorphisms on chromosome 19, it achieved a classification accuracy of 83.78% and an area under the receiver operating characteristic curve (AUC-ROC) of 0.924 with the test set. The results demonstrate the great potential of using multi-disciplinary AI approaches to integrate imaging genetic data for the automated classification of AD.
Collapse
Affiliation(s)
- Jade Xiaoqing Wang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States
- *Correspondence: Jade Xiaoqing Wang
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xintong Li
- Department of Linguistics, The Ohio State University, Columbus, OH, United States
| | - Zhao-Hua Lu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
334
|
Yang Y, Hou Z, Wang Y, Ma H, Sun P, Ma Z, Wong KC, Li X. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network. Brief Bioinform 2022; 23:6533504. [PMID: 35189638 DOI: 10.1093/bib/bbac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Identifying genome-wide binding events between circular RNAs (circRNAs) and RNA-binding proteins (RBPs) can greatly facilitate our understanding of functional mechanisms within circRNAs. Thanks to the development of cross-linked immunoprecipitation sequencing technology, large amounts of genome-wide circRNA binding event data have accumulated, providing opportunities for designing high-performance computational models to discriminate RBP interaction sites and thus to interpret the biological significance of circRNAs. Unfortunately, there are still no computational models sufficiently flexible to accommodate circRNAs from different data scales and with various degrees of feature representation. Here, we present HCRNet, a novel end-to-end framework for identification of circRNA-RBP binding events. To capture the hierarchical relationships, the multi-source biological information is fused to represent circRNAs, including various natural language sequence features. Furthermore, a deep temporal convolutional network incorporating global expectation pooling was developed to exploit the latent nucleotide dependencies in an exhaustive manner. We benchmarked HCRNet on 37 circRNA datasets and 31 linear RNA datasets to demonstrate the effectiveness of our proposed method. To evaluate further the model's robustness, we performed HCRNet on a full-length dataset containing 740 circRNAs. Results indicate that HCRNet generally outperforms existing methods. In addition, motif analyses were conducted to exhibit the interpretability of HCRNet on circRNAs. All supporting source code and data can be downloaded from https://github.com/yangyn533/HCRNet and https://doi.org/10.6084/m9.figshare.16943722.v1. And the web server of HCRNet is publicly accessible at http://39.104.118.143:5001/.
Collapse
Affiliation(s)
- Yuning Yang
- School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China
| | - Zilong Hou
- School of Artificial Intelligence, Jilin University, Changchun, Jilin, China
| | - Yansong Wang
- School of Artificial Intelligence, Jilin University, Changchun, Jilin, China
| | - Hongli Ma
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China
| | - Ka-Chun Wong
- School of Computer Science, City University of Hong Kong, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun, Jilin, China
| |
Collapse
|
335
|
Context dependency of nucleotide probabilities and variants in human DNA. BMC Genomics 2022; 23:87. [PMID: 35100973 PMCID: PMC8802520 DOI: 10.1186/s12864-021-08246-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Genomic DNA has been shaped by mutational processes through evolution. The cellular machinery for error correction and repair has left its marks in the nucleotide composition along with structural and functional constraints. Therefore, the probability of observing a base in a certain position in the human genome is highly context-dependent. Results Here we develop context-dependent nucleotide models. We first investigate models of nucleotides conditioned on sequence context. We develop a bidirectional Markov model that use an average of the probability from a Markov model applied to both strands of the sequence and thus depends on up to 14 bases to each side of the nucleotide. We show how the genome predictability varies across different types of genomic regions. Surprisingly, this model can predict a base from its context with an average of more than 50% accuracy. For somatic variants we show a tendency towards higher probability for the variant base than for the reference base. Inspired by DNA substitution models, we develop a model of mutability that estimates a mutation matrix (called the alpha matrix) on top of the nucleotide distribution. The alpha matrix can be estimated from a much smaller context than the nucleotide model, but the final model will still depend on the full context of the nucleotide model. With the bidirectional Markov model of order 14 and an alpha matrix dependent on just one base to each side, we obtain a model that compares well with a model of mutability that estimates mutation probabilities directly conditioned on three nucleotides to each side. For somatic variants in particular, our model fits better than the simpler model. Interestingly, the model is not very sensitive to the size of the context for the alpha matrix. Conclusions Our study found strong context dependencies of nucleotides in the human genome. The best model uses a context of 14 nucleotides to each side. Based on these models, a substitution model was constructed that separates into the context model and a matrix dependent on a small context. The model fit somatic variants particularly well. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-021-08246-1).
Collapse
|
336
|
Kashiwagi S, Sato K, Sakakibara Y. A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions. Life (Basel) 2021; 11:1135. [PMID: 34833011 PMCID: PMC8624843 DOI: 10.3390/life11111135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein-RNA interactions (PRIs) are essential for many biological processes, so understanding aspects of the sequences and structures involved in PRIs is important for unraveling such processes. Because of the expensive and time-consuming techniques required for experimental determination of complex protein-RNA structures, various computational methods have been developed to predict PRIs. However, most of these methods focus on predicting only RNA-binding regions in proteins or only protein-binding motifs in RNA. Methods for predicting entire residue-base contacts in PRIs have not yet achieved sufficient accuracy. Furthermore, some of these methods require the identification of 3D structures or homologous sequences, which are not available for all protein and RNA sequences. Here, we propose a prediction method for predicting residue-base contacts between proteins and RNAs using only sequence information and structural information predicted from sequences. The method can be applied to any protein-RNA pair, even when rich information such as its 3D structure, is not available. In this method, residue-base contact prediction is formalized as an integer programming problem. We predict a residue-base contact map that maximizes a scoring function based on sequence-based features such as k-mers of sequences and the predicted secondary structure. The scoring function is trained using a max-margin framework from known PRIs with 3D structures. To verify our method, we conducted several computational experiments. The results suggest that our method, which is based on only sequence information, is comparable with RNA-binding residue prediction methods based on known binding data.
Collapse
Affiliation(s)
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (S.K.); (Y.S.)
| | | |
Collapse
|
337
|
Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley DR. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 2021; 18:1196-1203. [PMID: 34608324 PMCID: PMC8490152 DOI: 10.1038/s41592-021-01252-x] [Citation(s) in RCA: 460] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer-promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.
Collapse
|
338
|
Schreiber J, Singh R. Machine learning for profile prediction in genomics. Curr Opin Chem Biol 2021; 65:35-41. [PMID: 34107341 DOI: 10.1016/j.cbpa.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 02/08/2023]
Abstract
A recent deluge of publicly available multi-omics data has fueled the development of machine learning methods aimed at investigating important questions in genomics. Although the motivations for these methods vary, a task that is commonly adopted is that of profile prediction, where predictions are made for one or more forms of biochemical activity along the genome, for example, histone modification, chromatin accessibility, or protein binding. In this review, we give an overview of the research works performing profile prediction, define two broad categories of profile prediction tasks, and discuss the types of scientific questions that can be answered in each.
Collapse
Affiliation(s)
| | - Ritambhara Singh
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, United States.
| |
Collapse
|
339
|
Iuchi H, Matsutani T, Yamada K, Iwano N, Sumi S, Hosoda S, Zhao S, Fukunaga T, Hamada M. Representation learning applications in biological sequence analysis. Comput Struct Biotechnol J 2021; 19:3198-3208. [PMID: 34141139 PMCID: PMC8190442 DOI: 10.1016/j.csbj.2021.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Although remarkable advances have been reported in high-throughput sequencing, the ability to aptly analyze a substantial amount of rapidly generated biological (DNA/RNA/protein) sequencing data remains a critical hurdle. To tackle this issue, the application of natural language processing (NLP) to biological sequence analysis has received increased attention. In this method, biological sequences are regarded as sentences while the single nucleic acids/amino acids or k-mers in these sequences represent the words. Embedding is an essential step in NLP, which performs the conversion of these words into vectors. Specifically, representation learning is an approach used for this transformation process, which can be applied to biological sequences. Vectorized biological sequences can then be applied for function and structure estimation, or as input for other probabilistic models. Considering the importance and growing trend for the application of representation learning to biological research, in the present study, we have reviewed the existing knowledge in representation learning for biological sequence analysis.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Taro Matsutani
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keisuke Yamada
- School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Natsuki Iwano
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Shunsuke Sumi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shion Hosoda
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Shitao Zhao
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-0032, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
340
|
Ofer D, Brandes N, Linial M. The language of proteins: NLP, machine learning & protein sequences. Comput Struct Biotechnol J 2021; 19:1750-1758. [PMID: 33897979 PMCID: PMC8050421 DOI: 10.1016/j.csbj.2021.03.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Natural language processing (NLP) is a field of computer science concerned with automated text and language analysis. In recent years, following a series of breakthroughs in deep and machine learning, NLP methods have shown overwhelming progress. Here, we review the success, promise and pitfalls of applying NLP algorithms to the study of proteins. Proteins, which can be represented as strings of amino-acid letters, are a natural fit to many NLP methods. We explore the conceptual similarities and differences between proteins and language, and review a range of protein-related tasks amenable to machine learning. We present methods for encoding the information of proteins as text and analyzing it with NLP methods, reviewing classic concepts such as bag-of-words, k-mers/n-grams and text search, as well as modern techniques such as word embedding, contextualized embedding, deep learning and neural language models. In particular, we focus on recent innovations such as masked language modeling, self-supervised learning and attention-based models. Finally, we discuss trends and challenges in the intersection of NLP and protein research.
Collapse
Affiliation(s)
| | - Nadav Brandes
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|