301
|
Sardi M, Rovinskiy N, Zhang Y, Gasch AP. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Appl Environ Microbiol 2016; 82:5838-49. [PMID: 27451446 PMCID: PMC5038035 DOI: 10.1128/aem.01603-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms. IMPORTANCE Recent studies on natural variation within Saccharomyces cerevisiae have uncovered substantial phenotypic diversity. Here, we took advantage of this diversity, using it as a tool to infer the effects of combinatorial stress found in lignocellulosic hydrolysate. By comparing sensitive and tolerant strains, we implicated primary cellular targets of hydrolysate toxins and elucidated the physiological states of cells when exposed to this stress. We also explored the strain-specific effects of gene overexpression to further identify strain-specific responses to hydrolysate stresses and to identify genes that improve hydrolysate tolerance independent of strain background. This study underscores the importance of studying multiple strains to understand the effects of hydrolysate stress and provides a method to find genes that improve tolerance across strain backgrounds.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nikolay Rovinskiy
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
302
|
Juarez EF, Lau R, Friedman SH, Ghaffarizadeh A, Jonckheere E, Agus DB, Mumenthaler SM, Macklin P. Quantifying differences in cell line population dynamics using CellPD. BMC SYSTEMS BIOLOGY 2016; 10:92. [PMID: 27655224 PMCID: PMC5031291 DOI: 10.1186/s12918-016-0337-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The increased availability of high-throughput datasets has revealed a need for reproducible and accessible analyses which can quantitatively relate molecular changes to phenotypic behavior. Existing tools for quantitative analysis generally require expert knowledge. RESULTS CellPD (cell phenotype digitizer) facilitates quantitative phenotype analysis, allowing users to fit mathematical models of cell population dynamics without specialized training. CellPD requires one input (a spreadsheet) and generates multiple outputs including parameter estimation reports, high-quality plots, and minable XML files. We validated CellPD's estimates by comparing it with a previously published tool (cellGrowth) and with Microsoft Excel's built-in functions. CellPD correctly estimates the net growth rate of cell cultures and is more robust to data sparsity than cellGrowth. When we tested CellPD's usability, biologists (without training in computational modeling) ran CellPD correctly on sample data within 30 min. To demonstrate CellPD's ability to aid in the analysis of high throughput data, we created a synthetic high content screening (HCS) data set, where a simulated cell line is exposed to two hypothetical drug compounds at several doses. CellPD correctly estimates the drug-dependent birth, death, and net growth rates. Furthermore, CellPD's estimates quantify and distinguish between the cytostatic and cytotoxic effects of both drugs-analyses that cannot readily be performed with spreadsheet software such as Microsoft Excel or without specialized computational expertise and programming environments. CONCLUSIONS CellPD is an open source tool that can be used by scientists (with or without a background in computational or mathematical modeling) to quantify key aspects of cell phenotypes (such as cell cycle and death parameters). Early applications of CellPD may include drug effect quantification, functional analysis of gene knockout experiments, data quality control, minable big data generation, and integration of biological data with computational models.
Collapse
Affiliation(s)
- Edwin F Juarez
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA. .,Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Samuel H Friedman
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ahmadreza Ghaffarizadeh
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Edmond Jonckheere
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Paul Macklin
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
303
|
Guyot N, Réhault-Godbert S, Slugocki C, Harichaux G, Labas V, Helloin E, Nys Y. Characterization of egg white antibacterial properties during the first half of incubation: A comparative study between embryonated and unfertilized eggs. Poult Sci 2016; 95:2956-2970. [PMID: 27601682 DOI: 10.3382/ps/pew271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
Egg white is an important contributor to the protection of eggs against bacterial contaminations during the first half of incubation (day zero to 12), prior to the egg white transfer into the amniotic fluid to be orally absorbed by the embryo. This protective system relies on an arsenal of antimicrobial proteins and on intrinsic physicochemical properties that are generally unfavorable for bacterial multiplication and dissemination. Some changes in these parameters can be observed in egg white during egg storage and incubation. The aim of this work was to characterize changes in the antibacterial potential of egg white in embryonated eggs (FE) during the first half of incubation using unfertilized eggs (UF) as controls. Egg white samples were collected at day zero, 4, 8, and 12 and analyzed for pH, protein concentration, and protein profile. Antibacterial properties of egg white proteins were evaluated against Listeria monocytogenes, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. During incubation, differential variations of egg white pH and protein concentrations were observed between UF and FE. At equal protein concentrations, similar activities against L. monocytogenes and S. uberis were observed for FE and UF egg white proteins. A progressive decline in these activities, however, was observed over incubation time, regardless of the egg group (UF or FE). SDS-PAGE analysis of egg white proteins during incubation revealed discrete changes in the profile of major proteins, whereas the stability of some less abundant antimicrobial proteins seemed more affected. To conclude, the antibacterial activity of egg white proteins progressively decreased during the first half of egg incubation, possibly resulting from the alteration of specific antimicrobial proteins. This apparent decline may be partly counterbalanced in embryonated eggs by the increase in egg white protein concentration. The antibacterial potential of egg white is very effective during early stages of embryonic development but its alteration during incubation suggests that extra-embryonic structures could then progressively ensure protective functions.
Collapse
Affiliation(s)
- N Guyot
- URA, INRA, 37380, Nouzilly, France
| | | | - C Slugocki
- ISP, INRA, University of Tours, 37380, Nouzilly, France
| | - G Harichaux
- PRC, CNRS, IFCE, INRA, University of Tours, 37380, Nouzilly, France
| | - V Labas
- PRC, CNRS, IFCE, INRA, University of Tours, 37380, Nouzilly, France
| | - E Helloin
- ISP, INRA, University of Tours, 37380, Nouzilly, France
| | - Y Nys
- URA, INRA, 37380, Nouzilly, France
| |
Collapse
|
304
|
Jarvis NA, O'Bryan CA, Ricke SC, Johnson MG, Crandall PG. A review of minimal and defined media for growth of Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
305
|
Curiao T, Marchi E, Grandgirard D, León-Sampedro R, Viti C, Leib SL, Baquero F, Oggioni MR, Martinez JL, Coque TM. Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 2016; 17:491. [PMID: 27411385 PMCID: PMC4943003 DOI: 10.1186/s12864-016-2778-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Background Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work. Results Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility. Conclusions Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing “collateral sensitivity” to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2778-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tânia Curiao
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Emmanuela Marchi
- Department of Agrifood Production and Environmental Sciences, University of Florence, Firenze, Italy
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, Bern, Switzerland
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlo Viti
- Department of Agrifood Production and Environmental Sciences, University of Florence, Firenze, Italy
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, Bern, Switzerland
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - José Luis Martinez
- Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, Madrid, 28049, Spain
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Unidad de Resistencia a Antibióticos y Virulencia bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
306
|
Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A Concentration-Dependent Liquid Phase Separation Can Cause Toxicity upon Increased Protein Expression. Cell Rep 2016; 16:222-231. [PMID: 27320918 PMCID: PMC4929146 DOI: 10.1016/j.celrep.2016.05.076] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
Multiple human diseases are associated with a liquid-to-solid phase transition resulting in the formation of amyloid fibers or protein aggregates. Here, we present an alternative mechanism for cellular toxicity based on a concentration-dependent liquid-liquid demixing. Analyzing proteins that are toxic when their concentration is increased in yeast reveals that they share physicochemical properties with proteins that participate in physiological liquid-liquid demixing in the cell. Increasing the concentration of one of these proteins indeed results in the formation of cytoplasmic foci with liquid properties. Demixing occurs at the onset of toxicity and titrates proteins and mRNAs from the cytoplasm. Focus formation is reversible, and resumption of growth occurs as the foci dissolve as protein concentration falls. Preventing demixing abolishes the dosage sensitivity of the protein. We propose that triggering inappropriate liquid phase separation may be an important cause of dosage sensitivity and a determinant of human disease.
Collapse
Affiliation(s)
- Benedetta Bolognesi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nieves Lorenzo Gotor
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riddhiman Dhar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Baldrighi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
307
|
Fernandez-Ricaud L, Kourtchenko O, Zackrisson M, Warringer J, Blomberg A. PRECOG: a tool for automated extraction and visualization of fitness components in microbial growth phenomics. BMC Bioinformatics 2016; 17:249. [PMID: 27334112 PMCID: PMC4917999 DOI: 10.1186/s12859-016-1134-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Phenomics is a field in functional genomics that records variation in organismal phenotypes in the genetic, epigenetic or environmental context at a massive scale. For microbes, the key phenotype is the growth in population size because it contains information that is directly linked to fitness. Due to technical innovations and extensive automation our capacity to record complex and dynamic microbial growth data is rapidly outpacing our capacity to dissect and visualize this data and extract the fitness components it contains, hampering progress in all fields of microbiology. RESULTS To automate visualization, analysis and exploration of complex and highly resolved microbial growth data as well as standardized extraction of the fitness components it contains, we developed the software PRECOG (PREsentation and Characterization Of Growth-data). PRECOG allows the user to quality control, interact with and evaluate microbial growth data with ease, speed and accuracy, also in cases of non-standard growth dynamics. Quality indices filter high- from low-quality growth experiments, reducing false positives. The pre-processing filters in PRECOG are computationally inexpensive and yet functionally comparable to more complex neural network procedures. We provide examples where data calibration, project design and feature extraction methodologies have a clear impact on the estimated growth traits, emphasising the need for proper standardization in data analysis. CONCLUSIONS PRECOG is a tool that streamlines growth data pre-processing, phenotypic trait extraction, visualization, distribution and the creation of vast and informative phenomics databases.
Collapse
Affiliation(s)
- Luciano Fernandez-Ricaud
- />Department of Marine Sciences, Lundberg Laboratory, University of Gothenburg, Medicinaregatan 9c, 41390 Göteborg, Sweden
| | - Olga Kourtchenko
- />Department of Marine Sciences, University of Gothenburg, P.O. Box 461, SE 405 30 Göteborg, Sweden
| | - Martin Zackrisson
- />Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Medicinaregatan 9c, 41390 Göteborg, Sweden
| | - Jonas Warringer
- />Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Medicinaregatan 9c, 41390 Göteborg, Sweden
- />Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Anders Blomberg
- />Department of Marine Sciences, Lundberg Laboratory, University of Gothenburg, Medicinaregatan 9c, 41390 Göteborg, Sweden
| |
Collapse
|
308
|
Xu Y, Buss EA, Boucias DG. Culturing and Characterization of Gut Symbiont Burkholderia spp. from the Southern Chinch Bug, Blissus insularis (Hemiptera: Blissidae). Appl Environ Microbiol 2016; 82:3319-30. [PMID: 27016568 PMCID: PMC4959241 DOI: 10.1128/aem.00367-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/20/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The phloem-feeding Southern chinch bug, Blissus insularis, harbors a high density of the exocellular bacterial symbiont Burkholderia in the lumen of specialized midgut crypts. Here we developed an organ culture method that initially involved incubating the B. insularis crypts in osmotically balanced insect cell culture medium. This approach enabled the crypt-inhabiting Burkholderia spp. to make a transition to an in vitro environment and to be subsequently cultured in standard bacteriological media. Examinations using ribotyping and BOX-PCR fingerprinting techniques demonstrated that most in vitro-produced bacterial cultures were identical to their crypt-inhabiting Burkholderia counterparts. Genomic and physiological analyses of gut-symbiotic Burkholderia spp. that were isolated individually from two separate B. insularis laboratory colonies revealed that the majority of individual insects harbored a single Burkholderia ribotype in their midgut crypts, resulting in a diverse Burkholderia community within each colony. The diversity was also exhibited by the phenotypic and genotypic characteristics of these Burkholderia cultures. Access to cultures of crypt-inhabiting bacteria provides an opportunity to investigate the interaction between symbiotic Burkholderia spp. and the B. insularis host. Furthermore, the culturing method provides an alternative strategy for establishing in vitro cultures of other fastidious insect-associated bacterial symbionts. IMPORTANCE An organ culture method was developed to establish in vitro cultures of a fastidious Burkholderia symbiont associated with the midgut crypts of the Southern chinch bug, Blissus insularis The identities of the resulting cultures were confirmed using the genomic and physiological features of Burkholderia cultures isolated from B. insularis crypts, showing that host insects maintained the diversity of Burkholderia spp. over multiple generations. The availability of characterized gut-symbiotic Burkholderia cultures provides a resource for genetic manipulation of these bacteria and for examination of the mechanisms underlying insect-bacterium symbiosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USAWageningen University
| | - Eileen A Buss
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USAWageningen University
| | - Drion G Boucias
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USAWageningen University
| |
Collapse
|
309
|
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci 2016. [PMID: 26224708 DOI: 10.1098/rspb.2015.1270] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Guillaume Lafforgue
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | - Francois Gatchitch
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | | | - Sylvain Moineau
- GREB and Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Québec, Canada G1V 0A6 Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Faculté des sciences et de génie, Université Laval, Québec, Canada G1V 0A6
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| |
Collapse
|
310
|
Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics 2016; 17:172. [PMID: 27094401 PMCID: PMC4837600 DOI: 10.1186/s12859-016-1016-7] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/06/2016] [Indexed: 11/29/2022] Open
Abstract
Background Plate readers can measure the growth curves of many microbial strains in a high-throughput fashion. The hundreds of absorbance readings collected simultaneously for hundreds of samples create technical hurdles for data analysis. Results Growthcurver summarizes the growth characteristics of microbial growth curve experiments conducted in a plate reader. The data are fitted to a standard form of the logistic equation, and the parameters have clear interpretations on population-level characteristics, like doubling time, carrying capacity, and growth rate. Conclusions Growthcurver is an easy-to-use R package available for installation from the Comprehensive R Archive Network (CRAN). The source code is available under the GNU General Public License and can be obtained from Github (Sprouffske K, Growthcurver sourcecode, 2016).
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne, 1015, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland. .,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne, 1015, Switzerland. .,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 24105, USA.
| |
Collapse
|
311
|
L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon. Biogerontology 2016; 17:737-47. [PMID: 27040824 PMCID: PMC4933726 DOI: 10.1007/s10522-016-9645-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/30/2016] [Indexed: 01/04/2023]
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.
Collapse
|
312
|
A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum. mSphere 2016; 1:mSphere00075-15. [PMID: 27303689 PMCID: PMC4863597 DOI: 10.1128/msphere.00075-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.
Collapse
|
313
|
Ho WS, Yap KP, Yeo CC, Rajasekaram G, Thong KL. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids. Front Microbiol 2016; 6:1547. [PMID: 26793180 PMCID: PMC4707298 DOI: 10.3389/fmicb.2015.01547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM−1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.
Collapse
Affiliation(s)
- Wing Sze Ho
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kien-Pong Yap
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| | | | - Kwai Lin Thong
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
314
|
Diversity and Evolution of the Tn5801-tet(M)-Like Integrative and Conjugative Elements among Enterococcus, Streptococcus, and Staphylococcus. Antimicrob Agents Chemother 2016; 60:1736-46. [PMID: 26729505 DOI: 10.1128/aac.01864-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022] Open
Abstract
This work describes the diversity and evolution of Tn5801 among enterococci, staphylococci, and streptococci based on analysis of the 5,073 genomes of these bacterial groups available in gene databases. We also examined 610 isolates of Enterococcus (from 10 countries, 1987 to 2010) for the presence of this and other known CTn-tet(M) elements due to the scarcity of data about Tn5801 among enterococci. Genome location (by ICeu-I-pulsed-field gel electrophoresis [PFGE] hybridization/integration site identification), conjugation and fitness (by standard methods), Tn5801 characterization (by long-PCR mapping/sequencing), and clonality (by PFGE/multilocus sequence typing [MLST]) were studied. Twenty-three Tn5801 variants (17 unpublished) clustered in two groups, designated "A" (25 kb; n = 14; predominant in Staphylococcus aureus) and "B" (20 kb; n = 9; predominant in Streptococcus agalactiae). The percent GC content of the common backbone suggests a streptococcal origin of Tn5801 group B, with further acquisition of a 5-kb fragment that resulted in group A. Deep sequence analysis allowed identification of variants associated with clonal lineages of S. aureus (clonal complex 8 [CC8], sequence type 239 [ST239]), S. agalactiae (CC17), Enterococcus faecium (ST17/ST18), or Enterococcus faecalis (ST8), local variants, or variants located in different species and geographical areas. All Tn5801 elements were chromosomally located upstream of the guaA gene, which serves as an integration hot spot. Transferability was demonstrated only for Tn5801 type B among E. faecalis clonal backgrounds, which eventually harbored another Tn5801 copy. The study documents early acquisition of Tn5801 by Enterococcus, Staphylococcus, and Streptococcus. Clonal waves of these pathogens seem to have contributed to the geographical spread and local evolution of the transposon. Horizontal transfer, also demonstrated, could explain the variability observed, with the isolates often containing sequences of different origins.
Collapse
|
315
|
Erickson KE, Otoupal PB, Chatterjee A. Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. ACS Infect Dis 2015; 1:555-67. [PMID: 27623410 DOI: 10.1021/acsinfecdis.5b00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.
Collapse
Affiliation(s)
- Keesha E. Erickson
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| | - Peter B. Otoupal
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| |
Collapse
|
316
|
Mira PM, Meza JC, Nandipati A, Barlow M. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change. Mol Biol Evol 2015; 32:2707-15. [PMID: 26113371 DOI: 10.1093/molbev/msv146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations.
Collapse
Affiliation(s)
- Portia M Mira
- School of Natural Sciences, University of California, Merced
| | - Juan C Meza
- School of Natural Sciences, University of California, Merced
| | - Anna Nandipati
- School of Natural Sciences, University of California, Merced
| | - Miriam Barlow
- School of Natural Sciences, University of California, Merced
| |
Collapse
|
317
|
Bruchmann S, Muthukumarasamy U, Pohl S, Preusse M, Bielecka A, Nicolai T, Hamann I, Hillert R, Kola A, Gastmeier P, Eckweiler D, Häussler S. Deep transcriptome profiling of clinicalKlebsiella pneumoniaeisolates reveals strain and sequence type-specific adaptation. Environ Microbiol 2015; 17:4690-710. [DOI: 10.1111/1462-2920.13016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian Bruchmann
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Uthayakumar Muthukumarasamy
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Sarah Pohl
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Agata Bielecka
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Isabell Hamann
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Roger Hillert
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Denitsa Eckweiler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| |
Collapse
|
318
|
Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. J Mol Evol 2015; 81:110-20. [PMID: 26349578 DOI: 10.1007/s00239-015-9697-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.
Collapse
|
319
|
Essential validation methods for E. coli strains created by chromosome engineering. J Biol Eng 2015; 9:11. [PMID: 26140052 PMCID: PMC4488041 DOI: 10.1186/s13036-015-0008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome engineering encompasses a collection of homologous recombination-based techniques that are employed to modify the genome of a model organism in a controlled fashion. Such techniques are widely used in both fundamental and industrial research to introduce multiple insertions in the same Escherichia coli strain. To date, λ-Red recombination (also known as recombineering) and P1 phage transduction are the most successfully implemented chromosome engineering techniques in E. coli. However, due to errors that can occur during the strain creation process, reliable validation methods are essential upon alteration of a strain's chromosome. RESULTS AND DISCUSSION Polymerase chain reaction (PCR)-based methods and DNA sequence analysis are rapid and powerful methods to verify successful integration of DNA sequences into a chromosome. Even though these verification methods are necessary, they may not be sufficient in detecting all errors, imposing the requirement of additional validation methods. For example, as extraneous insertions may occur during recombineering, we highlight the use of Southern blotting to detect their presence. These unwanted mutations can be removed via transducing the region of interest into the wild type chromosome using P1 phages. However, in doing so one must verify that both the P1 lysate and the strains utilized are free from contamination with temperate phages, as these can lysogenize inside a cell as a large plasmid. Thus, we illustrate various methods to probe for temperate phage contamination, including cross-streak agar and Evans Blue-Uranine (EBU) plate assays, whereby the latter is a newly reported technique for this purpose in E. coli. Lastly, we discuss methodologies for detecting defects in cell growth and shape characteristics, which should be employed as an additional check. CONCLUSION The simple, yet crucial validation techniques discussed here can be used to reliably verify any chromosomally engineered E. coli strains for errors such as non-specific insertions in the chromosome, temperate phage contamination, and defects in growth and cell shape. While techniques such as PCR and DNA sequence verification should standardly be performed, we illustrate the necessity of performing these additional assays. The discussed techniques are highly generic and can be easily applied to any type of chromosome engineering.
Collapse
|
320
|
Concepción-Acevedo J, Weiss HN, Chaudhry WN, Levin BR. Malthusian Parameters as Estimators of the Fitness of Microbes: A Cautionary Tale about the Low Side of High Throughput. PLoS One 2015; 10:e0126915. [PMID: 26114477 PMCID: PMC4482697 DOI: 10.1371/journal.pone.0126915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/09/2015] [Indexed: 01/29/2023] Open
Abstract
The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.
Collapse
Affiliation(s)
| | - Howard N. Weiss
- Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Waqas Nasir Chaudhry
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
321
|
Hose J, Yong CM, Sardi M, Wang Z, Newton MA, Gasch AP. Dosage compensation can buffer copy-number variation in wild yeast. eLife 2015; 4. [PMID: 25955966 PMCID: PMC4448642 DOI: 10.7554/elife.05462] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is linked to myriad diseases but also facilitates organismal evolution. It remains unclear how cells overcome the deleterious effects of aneuploidy until new phenotypes evolve. Although laboratory strains are extremely sensitive to aneuploidy, we show here that aneuploidy is common in wild yeast isolates, which show lower-than-expected expression at many amplified genes. We generated diploid strain panels in which cells carried two, three, or four copies of the affected chromosomes, to show that gene-dosage compensation functions at >30% of amplified genes. Genes subject to dosage compensation are under higher expression constraint in wild populations—but they show elevated rates of gene amplification, suggesting that copy-number variation is buffered at these genes. We find that aneuploidy provides a clear ecological advantage to oak strain YPS1009, by amplifying a causal gene that escapes dosage compensation. Our work presents a model in which dosage compensation buffers gene amplification through aneuploidy to provide a natural, but likely transient, route to rapid phenotypic evolution. DOI:http://dx.doi.org/10.7554/eLife.05462.001 Evolution is driven by changes to the genes and other genetic information found in the DNA of an organism. These changes might, for example, alter the physical characteristics of the organism, or change how efficiently crucial tasks are carried out inside cells. Whatever the change, if it makes it easier for the organism to survive and reproduce, it is more likely to be passed on to future generations. DNA is organized inside cells in structures called chromosomes. Most of the cells in animals, plants, and fungi contain two copies of each chromosome. However, sometimes mistakes happen during cell division and extra copies of a chromosome—and hence the genes contained within it—may end up in a cell. These extra copies of genes might help to speed up the rate at which a species evolves, as the ‘spare’ copies are free to adapt to new roles. However, having extra copies of genes can also often be harmful, and in humans can cause genetic disorders such as Down syndrome. In the laboratory, chromosomes are commonly studied in a species of yeast called Saccharomyces cerevisiae. This species consists of several groups—or strains—that are genetically distinct from each other. Over the years, breeding the yeast for experiments has created laboratory strains that have lost some of the characteristics seen in wild strains. Earlier studies suggested that these cells fail to grow properly if they contain extra copies of chromosomes. Now, Hose et al. have studied nearly 50 wild strains of Saccharomyces cerevisiae. In these, extra copies of chromosomes are commonplace, and seemingly have no detrimental effect on growth. Instead, Hose et al. found that cells with too many copies of a gene use many of those genes less often than would be expected. This process is known as ‘dosage compensation’. This dosage compensation has not been observed in laboratory strains, in part because the extra gene copies make them sickly and hard to study. Together, the results provide examples of how dosage compensation could help new traits to evolve in a species by reducing the negative effects of duplicated genes. This knowledge may have broad application, from suggesting methods to alleviate human disorders to implicating new ways to engineer useful traits in yeast and other microbes. DOI:http://dx.doi.org/10.7554/eLife.05462.002
Collapse
Affiliation(s)
- James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Chris Mun Yong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Maria Sardi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Michael A Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
322
|
Rational design of antibiotic treatment plans: a treatment strategy for managing evolution and reversing resistance. PLoS One 2015; 10:e0122283. [PMID: 25946134 PMCID: PMC4422678 DOI: 10.1371/journal.pone.0122283] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
The development of reliable methods for restoring susceptibility after antibiotic resistance arises has proven elusive. A greater understanding of the relationship between antibiotic administration and the evolution of resistance is key to overcoming this challenge. Here we present a data-driven mathematical approach for developing antibiotic treatment plans that can reverse the evolution of antibiotic resistance determinants. We have generated adaptive landscapes for 16 genotypes of the TEM β-lactamase that vary from the wild type genotype “TEM-1” through all combinations of four amino acid substitutions. We determined the growth rate of each genotype when treated with each of 15 β-lactam antibiotics. By using growth rates as a measure of fitness, we computed the probability of each amino acid substitution in each β-lactam treatment using two different models named the Correlated Probability Model (CPM) and the Equal Probability Model (EPM). We then performed an exhaustive search through the 15 treatments for substitution paths leading from each of the 16 genotypes back to the wild type TEM-1. We identified optimized treatment paths that returned the highest probabilities of selecting for reversions of amino acid substitutions and returning TEM to the wild type state. For the CPM model, the optimized probabilities ranged between 0.6 and 1.0. For the EPM model, the optimized probabilities ranged between 0.38 and 1.0. For cyclical CPM treatment plans in which the starting and ending genotype was the wild type, the probabilities were between 0.62 and 0.7. Overall this study shows that there is promise for reversing the evolution of resistance through antibiotic treatment plans.
Collapse
|
323
|
Jung PP, Christian N, Kay DP, Skupin A, Linster CL. Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS One 2015; 10:e0119807. [PMID: 25822370 PMCID: PMC4379057 DOI: 10.1371/journal.pone.0119807] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
Collapse
Affiliation(s)
- Paul P. Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nils Christian
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel P. Kay
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- * E-mail:
| |
Collapse
|
324
|
Löhr IH, Hülter N, Bernhoff E, Johnsen PJ, Sundsfjord A, Naseer U. Persistence of a pKPN3-like CTX-M-15-encoding IncFIIK plasmid in a Klebsiella pneumonia ST17 host during two years of intestinal colonization. PLoS One 2015; 10:e0116516. [PMID: 25738592 PMCID: PMC4349654 DOI: 10.1371/journal.pone.0116516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To characterize the CTX-M-15-encoding plasmid in a Klebsiella pneumoniae ST17 strain, responsible for an outbreak at a Norwegian neonatal intensive care unit and subsequent colonization of affected children for up to two years. To identify plasmid-mediated features relevant for the outbreak dynamics, and to investigate the plasmids capability of horizontal transfer, its segregational stability and plasmid-mediated fitness costs. METHODS Plasmid profiling was performed by S1-nuclease PFGE, PCR-based replicon typing and Southern blot-hybridization. The complete sequence of the CTX-M-15-encoding plasmid was obtained by 454 sequencing. Plasmid self-transferability was investigated by broth- and filter mating, segregational stability was explored by serial passage, and plasmid-conferred fitness costs were examined in pairwise head-to-head competitions and by growth rate comparisons. RESULTS CTX-M-15 was encoded by a ~180 kb IncFIIK plasmid in K. pneumoniae ST17. S1-nuclease PFGE profiles of the first and the last CTX-M-15-producing K. pneumoniae isolates, recovered from the four children colonized the longest, suggested that the plasmid was stably maintained during intestinal carriage of up to two years. The DNA sequence of the pKPN3-like plasmid, pKp848CTX, uncovered a Tn3-like antibiotic resistance region and multiple heavy metal- and thermoresistance determinants. Plasmid pKp848CTX could not be transferred to Escherichia coli in vitro and we found no evidence to support horizontal plasmid transfer in vivo. Segregational plasmid loss ranging from 0.83% to 17.5% was demonstrated in evolved populations in vitro, but only minor fitness costs were associated with plasmid-carriage. CONCLUSIONS Plasmid pKp848CTX encodes phenotypic traits, which may have had an impact on the fitness and survival of the K. pneumoniae ST17 strain in the outbreak setting. The antibiotic resistance plasmid pKp848CTX was stably maintained during two years of intestinal colonization, conferring negligible fitness cost to its host, and thus seem well adapted to its K. pneumoniae host.
Collapse
Affiliation(s)
- Iren Høyland Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| | - Nils Hülter
- Department of Pharmacy, UiT the Arctic University of Norway, Tromsø, Norway
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Pål Jarle Johnsen
- Department of Pharmacy, UiT the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Umaer Naseer
- Department of Medical Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Food-borne Infections, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
325
|
Cavallo JA, Strumia MC, Gomez CG. Preparation of a milk spoilage indicator adsorbed to a modified polypropylene film as an attempt to build a smart packaging. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
326
|
Trilisenko LV, Kulakovskaya TV. Polyphosphates as an energy source for growth of Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2014; 79:478-82. [PMID: 24954599 DOI: 10.1134/s0006297914050125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.
Collapse
Affiliation(s)
- L V Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
327
|
Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model. J Antibiot (Tokyo) 2014; 67:763-9. [PMID: 24865865 DOI: 10.1038/ja.2014.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/08/2022]
Abstract
Staphylococcus biofilm exhibits high antibiotic resistance and therapeutic doses of antibiotics are often sub-inhibitory. Whereas data are available on the effect of sub-inhibitory antibiotics on matrix formation, little is known on their influence on biofilm population. Here, using BioTimer Assay (BTA), a method developed to quantify biofilm population, the influence of sub-inhibitory gentamicin, ofloxacin and azithromycin on Staphylococcus aureus ATCC 6538 biofilm population in flow with respect to static condition was assessed. Antibiotics and flow condition increased biofilm population even if at different extent, depending on the antibiotic molecule. The greatest bacterial population was found in biofilm developed under flow condition in the presence of azithromycin. A significant increase in biofilm matrix was recorded for biofilm developed in the presence of antibiotics in flow with respect to static condition. The growth rates (GRs) of 24-h biofilm developed under the influence of antibiotics and flow condition were also evaluated using BTA and a specific mathematical model. Antibiotics and flow condition affected the GRs of 24-h biofilm even if at different extent. The lowest GR value was recorded for biofilm developed under flow condition in the presence of ofloxacin. Although further studies are needed, our data indicate that antibiotics and flow condition influenced biofilm development by increasing both bacterial population and matrix formation and affected the GRs of the developed biofilm. To the best of our knowledge, BTA is unique in allowing the calculation of the GRs of biofilm and it may be considered to be a useful study model to evaluate the activity of antibiofilm molecules.
Collapse
|
328
|
Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity (Edinb) 2014; 113:375-80. [PMID: 24849169 DOI: 10.1038/hdy.2014.49] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/01/2023] Open
Abstract
Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.
Collapse
|
329
|
Differential requirement for PBP1a and PBP1b in in vivo and in vitro fitness of Vibrio cholerae. Infect Immun 2014; 82:2115-24. [PMID: 24614657 DOI: 10.1128/iai.00012-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated the roles of the Vibrio cholerae high-molecular-weight bifunctional penicillin binding proteins, PBP1a and PBP1b, in the fitness of this enteric pathogen. Using a screen for synthetic lethality, we found that the V. cholerae PBP1a and PBP1b proteins, like their Escherichia coli homologues, are each essential in the absence of the other and in the absence of the other's putative activator, the outer membrane lipoproteins LpoA and LpoB, respectively. Comparative analyses of V. cholerae mutants suggest that PBP1a/LpoA of V. cholerae play a more prominent role in generating and/or maintaining the pathogen's cell wall than PBP1b/LpoB. V. cholerae lacking PBP1b or LpoB exhibited wild-type growth under all conditions tested. In contrast, V. cholerae lacking PBP1a or LpoA exhibited growth deficiencies in minimal medium, in the presence of deoxycholate and bile, and in competition assays with wild-type cells both in vitro and in the infant mouse small intestine. PBP1a pathway mutants are particularly impaired in stationary phase, which renders them sensitive to a product(s) present in supernatants from stationary-phase wild-type cells. The marked competitive defect of the PBP1a pathway mutants in vivo was largely absent when exponential-phase cells rather than stationary-phase cells were used to inoculate suckling mice. Thus, at least for V. cholerae PBP1a pathway mutants, the growth phase of the inoculum is a key modulator of infectivity.
Collapse
|