301
|
Böhm L, Torsin S, Tint SH, Eckstein MT, Ludwig T, Pérez JC. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog 2017; 13:e1006699. [PMID: 29069103 PMCID: PMC5673237 DOI: 10.1371/journal.ppat.1006699] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. The very same microbes that cause life-threatening human diseases are often harmless inhabitants on our mucosal surfaces. Yet the hallmarks of this so-called ‘commensal’ state remain underexplored. In this report we investigate the case of Candida albicans, the most prominent fungal species living in the human intestine but also a common cause of deep-seated, fatal infections. Mice carrying their own natural intact flora are not readily colonized by C. albicans implying a fundamental incompatibility between the indigenous mouse microbiota and this fungus. We explore the patterns of colonization of C. albicans in mice completely devoid of other microbes. We show that the fungus adopts its normal commensal morphology in these animals indicating that this experimental system is a suitable proxy to clearly dissect its commensal lifestyle in vivo. Gaining insights into the mechanisms that sustain the commensal features of C. albicans and other microbes is key to understand—and be able to prevent—what goes awry when these microorganisms invade other tissues and cause disease.
Collapse
Affiliation(s)
- Lena Böhm
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sanda Torsin
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
| | - Su Hlaing Tint
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
| | - Marie Therese Eckstein
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias Ludwig
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - J Christian Pérez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
302
|
Whole Genome Sequence of the Heterozygous Clinical Isolate Candida krusei 81-B-5. G3-GENES GENOMES GENETICS 2017; 7:2883-2889. [PMID: 28696923 PMCID: PMC5592916 DOI: 10.1534/g3.117.043547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei, strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.
Collapse
|
303
|
Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species. mBio 2017; 8:mBio.00201-17. [PMID: 28720726 PMCID: PMC5516249 DOI: 10.1128/mbio.00201-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae. We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans. Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker’s yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans.
Collapse
|
304
|
Development of a CRISPR-Cas9 System for Efficient Genome Editing of Candida lusitaniae. mSphere 2017; 2:mSphere00217-17. [PMID: 28657072 PMCID: PMC5480034 DOI: 10.1128/msphere.00217-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 11/20/2022] Open
Abstract
Candida lusitaniae is a member of the Candida clade that includes a diverse group of fungal species relevant to both human health and biotechnology. This species exhibits a full sexual cycle to undergo interconversion between haploid and diploid forms. C. lusitaniae is also an emerging opportunistic pathogen that can cause serious bloodstream infections in the clinic and yet has often proven to be refractory to facile genetic manipulations. In this work, we develop a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (Cas9) system to enable genome editing of C. lusitaniae. We demonstrate that expression of CRISPR-Cas9 components under species-specific promoters is necessary for efficient gene targeting and can be successfully applied to multiple genes in both haploid and diploid isolates. Gene deletion efficiencies with CRISPR-Cas9 were further enhanced in C. lusitaniae strains lacking the established nonhomologous end joining (NHEJ) factors Ku70 and DNA ligase 4. These results indicate that NHEJ plays an important role in directing the repair of DNA double-strand breaks (DSBs) in C. lusitaniae and that removal of this pathway increases integration of gene deletion templates by homologous recombination. The described approaches significantly enhance the ability to perform genetic studies in, and promote understanding of, this emerging human pathogen and model sexual species. IMPORTANCE The ability to perform efficient genome editing is a key development for detailed mechanistic studies of a species. Candida lusitaniae is an important member of the Candida clade and is relevant both as an emerging human pathogen and as a model for understanding mechanisms of sexual reproduction. We highlight the development of a CRISPR-Cas9 system for efficient genome manipulation in C. lusitaniae and demonstrate the importance of species-specific promoters for expression of CRISPR components. We also demonstrate that the NHEJ pathway contributes to non-template-mediated repair of DNA DSBs and that removal of this pathway enhances efficiencies of gene targeting by CRISPR-Cas9. These results therefore establish important genetic tools for further exploration of C. lusitaniae biology.
Collapse
|
305
|
Use of RNA-Protein Complexes for Genome Editing in Non- albicans Candida Species. mSphere 2017; 2:mSphere00218-17. [PMID: 28657070 PMCID: PMC5480035 DOI: 10.1128/msphere.00218-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Existing CRISPR-Cas9 genome modification systems for use in Candida albicans, which rely on constructs to endogenously express the Cas9 protein and guide RNA, do not work efficiently in other Candida species due to inefficient promoter activity. Here, we present an expression-free method that uses RNA-protein complexes and demonstrate its use in three Candida species known for their drug resistance profiles. We propose that this system will aid the genetic analysis of fungi that lack established genetic systems. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome modification systems have greatly facilitated the genetic analysis of fungal pathogens. In CRISPR-Cas9 genome editing methods designed for use in Candida albicans, DNAs that encode the necessary components are expressed in the target cells. Unfortunately, expression constructs that work efficiently in C. albicans are not necessarily expressed well in other pathogenic species within the genus Candida or the related genus Clavispora. To circumvent the need for species-specific expression constructs, we implemented an expression-free CRISPR genome editing system and demonstrated its successful use in three different non-albicans Candida species: Candida (Clavispora) lusitaniae, Candida glabrata, and Candida auris. In CRISPR-Cas9-mediated genome editing methods, a targeted double-stranded DNA break can be repaired by homologous recombination to a template designed by the investigator. In this protocol, the DNA cleavage is induced upon transformation of purified Cas9 protein in complex with gene-specific and scaffold RNAs, referred to as RNA-protein complexes (RNPs). In all three species, the use of RNPs increased both the number of transformants and the percentage of transformants in which the target gene was successfully replaced with a selectable marker. We constructed mutants defective in known or putative catalase genes in C. lusitaniae, C. glabrata, and C. auris and demonstrated that, in all three species, mutants were more susceptible to hydrogen peroxide than the parental strain. This method, which circumvents the need for expression of CRISPR-Cas9 components, may be broadly useful in the study of diverse Candida species and emergent pathogens for which there are limited genetic tools. IMPORTANCE Existing CRISPR-Cas9 genome modification systems for use in Candida albicans, which rely on constructs to endogenously express the Cas9 protein and guide RNA, do not work efficiently in other Candida species due to inefficient promoter activity. Here, we present an expression-free method that uses RNA-protein complexes and demonstrate its use in three Candida species known for their drug resistance profiles. We propose that this system will aid the genetic analysis of fungi that lack established genetic systems.
Collapse
|
306
|
Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M. The BioGRID interaction database: 2017 update. Nucleic Acids Res 2016; 45:D369-D379. [PMID: 27980099 PMCID: PMC5210573 DOI: 10.1093/nar/gkw1102] [Citation(s) in RCA: 697] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases.
Collapse
Affiliation(s)
- Andrew Chatr-Aryamontri
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lorrie Boucher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nadine K Kolas
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Lara O'Donnell
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Sara Oster
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Chandra Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Adnane Sellam
- Centre Hospitalier de l'Université Laval (CHUL), Québec, Québec G1V 4G2, Canada
| | - Chris Stark
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Bobby-Joe Breitkreutz
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada .,The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|