301
|
Liu T, Li J, Liu Y, Xiao N, Suo H, Xie K, Yang C, Wu C. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 2013; 35:1676-84. [PMID: 22669487 DOI: 10.1007/s10753-012-9484-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber contribute a significant proportion of daily energy requirement. Furthermore, these compounds are modulators of macrophage function and potential targets for the development of new drugs. The aims of this study were to evaluate the effects of three types of SCFAs (sodium acetate (NaAc), sodium propionate (NaP), and sodium butyrate (NaB)) on the production of NO and inducible nitric oxide synthase (iNOS) and proinflammatory and antiinflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin (IL-1, IL-6, and IL-10)) and to observe the effect of NaAc on inhibiting lipopolysaccharide (LPS)-induced NF-κB activation in LPS-stimulated RAW264.7 cells. The results show that three types of SCFAs (acetate, propionate, and butyrate) reduced the production of proinflammatory factors, including TNF-α, IL-1β, IL-6, and NO, and inhibited the vitality of iNOS. Meanwhile, SCFAs enhanced the production of antiinflammatory cytokine IL-10 in lower concentrations (1-1,200 μmol/L). Like NaB, NaAC inhibited LPS-induced NF-κB activation. These results may hold promise on the role that SCFAs have on the prevention and treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Cell Pharmacology, College of Pharmaceutical Sciences, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Kerr KR, Morris CL, Burke SL, Swanson KS. Influence of dietary fiber type and amount on energy and nutrient digestibility, fecal characteristics, and fecal fermentative end-product concentrations in captive exotic felids fed a raw beef-based diet. J Anim Sci 2013; 91:2199-210. [PMID: 23463568 DOI: 10.2527/jas.2012-5702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Little nutritional or metabolic information has been collected from captive exotic cats fed raw diets. In particular, fiber types and concentrations for use in raw meat-based diets for captive exotic felids have not been well studied. Our objective was to evaluate the effects of fiber type and concentration on apparent total tract energy and macronutrient digestibility, fecal characteristics, and fecal fermentative end-products in captive exotic felids. Four animals of each captive exotic species (jaguar (Panthera onca), cheetah (Acinonyz jubatus), Malayan tiger (Panthera tigris corbetti), and Siberian tiger (Panthera tigris altaica) were randomized in four 4 × 4 Latin square designs (1 Latin square per species) to 1 of the 4 raw beef-based dietary treatments (94.7 to 96.7% beef trimmings): 2 or 4% cellulose or 2 or 4% beet pulp. Felid species, fiber type, and fiber concentration all impacted digestibility and fecal fermentative end-products. Inclusion of beet pulp increased (P ≤ 0.05) fecal short-chain fatty acids and fecal output in all cats. Inclusion of 2 and 4% cellulose, and 4% beet pulp increased (P ≤ 0.05) fecal bulk and diluted fecal branched-chain fatty acid concentrations compared with 2% beet pulp. Apparent total tract DM, OM, fat, and GE digestibility coefficients decreased (P ≤ 0.05) linearly with BW of cats. Additionally, fecal moisture, fecal score, and concentrations of fermentative end-products increased (P ≤ 0.05) with BW. Although the response of many outcomes was dependent on cat size, in general, beet pulp increased wet fecal weight, fecal scores, and fecal metabolites, and reduced fecal pH. Cellulose generally reduced DM and OM digestibility, but increased dry fecal weight and fecal percent DM. Although beet pulp and cellulose fibers were tested individually in this study, these data indicate that the optimum fiber type and concentration for inclusion in captive exotic felid diets is likely a combination of fermentable and nonfermentable fibers, with the optimal fiber blend being dependent on species. Smaller cats, such as cheetahs and jaguars, tolerated fermentable fibers, whereas larger cats, such as Malayan and Siberian tigers, appeared to require more insoluble fibers that limit fermentation and provide fecal bulk. Further research is required to test whether these trends hold true when fed in combination.
Collapse
Affiliation(s)
- K R Kerr
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
303
|
Schuijt TJ, van der Poll T, de Vos WM, Wiersinga WJ. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol 2013; 21:221-9. [PMID: 23454077 DOI: 10.1016/j.tim.2013.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract harbors a complex population of microbes that play a fundamental role in the development of the immune system and human health. Besides an important local contribution in the host defense against infections, it has become increasingly clear that intestinal bacteria also modulate immune responses at systemic sites. These new insights can be of profound clinical relevance especially for intensive care medicine where the majority of patients are treated with antibiotics, which have pervasive and long-term effects on the intestinal microbiota. Moreover, considerable progress has been made in defining the role of the intestinal microbiota in both health and disease. In this review, we highlight these aspects and focus on recent key findings addressing the role of intestinal microbiota in antimicrobial defense mechanisms and its impact on intestinal homeostasis in the critically ill.
Collapse
Affiliation(s)
- Tim J Schuijt
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | |
Collapse
|
304
|
Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol Cell Biol 2013; 33:1303-16. [PMID: 23339868 DOI: 10.1128/mcb.00858-12] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4/FIAF) has been proposed as a circulating mediator between the gut microbiota and fat storage. Here, we show that transcription and secretion of ANGPTL4 in human T84 and HT29 colon adenocarcinoma cells is highly induced by physiological concentrations of short-chain fatty acids (SCFA). SCFA induce ANGPTL4 by activating the nuclear receptor peroxisome proliferator activated receptor γ (PPARγ), as demonstrated using PPARγ antagonist, PPARγ knockdown, and transactivation assays, which show activation of PPARγ but not PPARα and PPARδ by SCFA. At concentrations required for PPARγ activation and ANGPTL4 induction in colon adenocarcinoma cells, SCFA do not stimulate PPARγ in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPARγ modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modeling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data point to activation of PPARs as a novel mechanism of gene regulation by SCFA in the colon, in addition to other mechanisms of action of SCFA.
Collapse
|
305
|
Lappi J, Kolehmainen M, Mykkänen H, Poutanen K. Do Large Intestinal Events Explain the Protective Effects of Whole Grain Foods Against Type 2 Diabetes? Crit Rev Food Sci Nutr 2013; 53:631-40. [DOI: 10.1080/10408398.2010.550388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
306
|
Costa GT, Guimarães SB, Sampaio HADC. Fructo-oligosaccharide effects on blood glucose: an overview. Acta Cir Bras 2012; 27:279-82. [PMID: 22460261 DOI: 10.1590/s0102-86502012000300013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/11/2012] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify the current status of scientific knowledge in fructo-oligosaccharides (FOS), non-conventional sugars that play an important role in glycemia control. METHODS We performed a search for scientific articles in MEDLINE and LILACS databases, from January 1962 to December 2011, using English/Portuguese key words: "blood glucose/glicemia", "prebiotics/prebióticos" and "dietary fiber/fibras na dieta". From an initial number of 434 references, some repeated, 43 references published from 1962 to 2011 were included in this study. The selected texts were distributed in three topics: (1) metabolism of FOS, (2) FOS and experimental studies involving glucose and (3) human studies involving glucose and FOS. RESULTS Five studies have shown that the use of FOS reduces the fecal content and increases intestinal transit time. Experimental studies have shown that dietary supplementation with high doses (60 g/Kg) of propionate, a short-chain fatty acid decreased glycemia. The use of lower doses (3 g/kg) did not produce the same results. Study in subjects with diabetes type II showed that the addition of 8 grams of FOS in the diet for 14 days, caused a reduction in serum glucose. In another study with healthy subjects, there were no changes in glycemic control. CONCLUSIONS This review demonstrates that consumption of FOS has a beneficial influence on glucose metabolism. The controversies appear to be due to inadequate methodological designs and/or the small number of individuals included in some studies.
Collapse
|
307
|
Liu T, Xiao N, Liu Y, Wilson B, Li J, Wang Y, Cao X, Liu Z. The anti-inflammatory effects of ethyl acetate on Lipopolysaccharide/D-galactosamine challenged mice and Lipopolysaccharide activated RAW264.7 cells. Biochem Biophys Res Commun 2012; 427:518-24. [DOI: 10.1016/j.bbrc.2012.09.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 12/20/2022]
|
308
|
Geraylou Z, Souffreau C, Rurangwa E, D'Hondt S, Callewaert L, Courtin CM, Delcour JA, Buyse J, Ollevier F. Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. FISH & SHELLFISH IMMUNOLOGY 2012; 33:718-24. [PMID: 22796425 DOI: 10.1016/j.fsi.2012.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/01/2012] [Accepted: 06/15/2012] [Indexed: 05/24/2023]
Abstract
Arabinoxylan-oligosaccharides (AXOS) are a newly discovered class of candidate prebiotics that exert different properties depending on their structure. In this study the effects of two different structures of AXOS, namely AXOS-32-0.30 (average degree of polymerization: 32, average degree of substitution: 0.30) and AXOS-3-0.25, were investigated on growth performance, immune responses, gut microbial fermentation and gut bacterial composition of juvenile Siberian sturgeon (Acipenser baerii). After a two weeks acclimation, fish (25.9 ± 0.9 g) were distributed over 24 aquariums (8 replicates per treatment) and fed a control diet or a diet containing 2% AXOS-32-0.30 or AXOS-3-0.25 for 12 weeks. Growth performance and feed utilization tend to improve in sturgeon fed on diets supplemented with AXOS-32-0.30, however not significant. Survival was high in all groups. Both AXOS preparations significantly enhanced the phagocytic activity of fish macrophages compared to the control group, while the alternative haemolytic complement activity and total serum peroxidase content improved only in the group fed AXOS-32-0.30 (P < 0.05). The lysozyme activity was not affected by AXOS addition. Simultaneously, the amount of short-chain fatty acids (SCFAs) was highest in the hind gut of sturgeon fed AXOS-32-0.30. The concentrations of acetate, butyrate and total SCFAs in fish fed AXOS-32-0.30 was significantly higher than in the groups fed the control diet or AXOS-3-0.25. Study of the bacterial community in the sturgeon hindgut using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that both preparations of AXOS induced changes in the bacterial composition. According to redundancy analysis (RDA), hindgut microbiota of each treatment group clustered apart from one another (P = 0.001). DNA sequencing of the dominant DGGE bands recovered from the different treatments showed that AXOS mainly stimulated the growth of lactic acid bacteria and Clostridium sp., with more pronounced effects of AXOS-32-0.30. It is concluded that AXOS improves sturgeon health through prebiotic action, but the induced effects depend on the specific structure of AXOS. A higher degree of polymerization of AXOS had a stronger beneficial impact in this sturgeon species.
Collapse
Affiliation(s)
- Zahra Geraylou
- Laboratory of Aquatic Ecology, Evolution and Conservation, Zoological Institute, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Lokesh J, Fernandes JMO, Korsnes K, Bergh O, Brinchmann MF, Kiron V. Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2012; 33:626-31. [PMID: 22771966 DOI: 10.1016/j.fsi.2012.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/20/2012] [Accepted: 06/15/2012] [Indexed: 05/24/2023]
Abstract
Immunomodulatory feed additives are expected to exert their primary influence at the intestinal level through the expression of cytokines, which in turn affect the immune responses in fish. In two separate experiments a yeast-derived mannan oligosaccharide product (YM) or a purified β-glucan (BG) product were fed to Atlantic cod (Gadus morhua L.) for 5 weeks, after which they were bath-challenged with a bacterial pathogen--Vibrio anguillarum. The transcription of selected cytokines (proinflammatory--il1b, il8, ifng; anti-inflammatory--il10) in different intestinal segments was analysed using qPCR. In the case of YM study, the effect of the compound was observed in both the posterior intestine and rectum of Atlantic cod, upon challenge with the pathogen. iIl1b expression in the posterior intestine and rectum of post-challenge fish was significantly higher than that of pre-challenge fish. In the case of il8 the difference was confined to rectum. The expression of ifng was altered only in the anterior intestine upon YM feeding. In the BG trial, the additive had a differential effect on the expression of the cytokine genes. In anterior intestine and rectum, the purified β-glucan additive significantly elevated the expression of il1b when challenged with V. anguillarum. An effect of BG on the anti-inflammatory cytokine il10 was visible in the rectum after the pathogen challenge. The differential responses of cytokines in the intestine of fish upon exposure to V. anguillarum suggest that both mannan oligosaccharides and β-glucans impact the ability of Atlantic cod to respond to the pathogen.
Collapse
Affiliation(s)
- Jep Lokesh
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | | | | | | | | |
Collapse
|
310
|
Chuang SC, Norat T, Murphy N, Olsen A, Tjønneland A, Overvad K, Boutron-Ruault MC, Perquier F, Dartois L, Kaaks R, Teucher B, Bergmann MM, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Grioni S, Sacerdote C, Panico S, Palli D, Tumino R, Peeters PHM, Bueno-de-Mesquita B, Ros MM, Brustad M, Åsli LA, Skeie G, Quirós JR, González CA, Sánchez MJ, Navarro C, Ardanaz Aicua E, Dorronsoro M, Drake I, Sonestedt E, Johansson I, Hallmans G, Key T, Crowe F, Khaw KT, Wareham N, Ferrari P, Slimani N, Romieu I, Gallo V, Riboli E, Vineis P. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr 2012; 96:164-74. [PMID: 22648726 DOI: 10.3945/ajcn.111.028415] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies have shown that high fiber intake is associated with lower mortality. However, little is known about the association of dietary fiber with specific causes of death other than cardiovascular disease (CVD). OBJECTIVE The aim of this study was to assess the relation between fiber intake, mortality, and cause-specific mortality in a large European prospective study of 452,717 men and women. DESIGN HRs and 95% CIs were estimated by using Cox proportional hazards models, stratified by age, sex, and center and adjusted for education, smoking, alcohol consumption, BMI, physical activity, total energy intake, and, in women, ever use of menopausal hormone therapy. RESULTS During a mean follow-up of 12.7 y, a total of 23,582 deaths were recorded. Fiber intake was inversely associated with total mortality (HR(per 10-g/d increase): 0.90; 95% CI: 0.88, 0.92); with mortality from circulatory (HR(per 10-g/d increase): 0.90 and 0.88 for men and women, respectively), digestive (HR: 0.61 and 0.64), respiratory (HR: 0.77 and 0.62), and non-CVD noncancer inflammatory (HR: 0.85 and 0.80) diseases; and with smoking-related cancers (HR: 0.86 and 0.89) but not with non-smoking-related cancers (HR: 1.05 and 0.97). The associations were more evident for fiber from cereals and vegetables than from fruit. The associations were similar across BMI and physical activity categories but were stronger in smokers and participants who consumed >18 g alcohol/d. CONCLUSIONS Higher fiber intake is associated with lower mortality, particularly from circulatory, digestive, and non-CVD noncancer inflammatory diseases. Our results support current recommendations of high dietary fiber intake for health maintenance.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- School of Public Health, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Paturi G, Butts CA, Stoklosinski H, Ansell J. Effects of early dietary intervention with a fermentable fibre on colonic microbiota activity and mucin gene expression in newly weaned rats. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
312
|
Frei R, Lauener RP, Crameri R, O'Mahony L. Microbiota and dietary interactions: an update to the hygiene hypothesis? Allergy 2012; 67:451-61. [PMID: 22257145 DOI: 10.1111/j.1398-9995.2011.02783.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/31/2022]
Abstract
The dramatic increase in the incidence and severity of allergy and asthma has been proposed to be linked with an altered exposure to, and colonization by, micro-organisms, particularly early in life. However, other lifestyle factors such as diet and physical activity are also thought to be important, and it is likely that multiple environmental factors with currently unrecognized interactions contribute to the atopic state. This review will focus on the potential role of microbial metabolites in immunoregulatory functions and highlights the known molecular mechanisms, which may mediate the interactions between diet, microbiota, and protection from allergy and asthma.
Collapse
Affiliation(s)
| | | | - R. Crameri
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos; Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos; Switzerland
| |
Collapse
|
313
|
Al-Lahham S, Roelofsen H, Rezaee F, Weening D, Hoek A, Vonk R, Venema K. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur J Clin Invest 2012; 42:357-64. [PMID: 21913915 DOI: 10.1111/j.1365-2362.2011.02590.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short-chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation. MATERIALS AND METHODS Human omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP-1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex-ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT-PCR. RESULTS Treatment of adipose tissue explants with propionic acid results in a significant down-regulation of several inflammatory cytokines and chemokines such as TNF-α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed. CONCLUSION We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity-associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity-related inflammation and associated diseases.
Collapse
Affiliation(s)
- Sa'ad Al-Lahham
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
314
|
Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 2012; 155:324-31. [DOI: 10.1016/j.vetmic.2011.08.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/20/2011] [Accepted: 08/25/2011] [Indexed: 01/12/2023]
|
315
|
Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 2012; 4:4. [PMID: 22414433 PMCID: PMC3312834 DOI: 10.1186/1868-7083-4-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Butyrate is a short chain fatty acid derived from the microbial fermentation of dietary fibers in the colon. In the last decade, multiple beneficial effects of butyrate at intestinal and extraintestinal level have been demonstrated. The mechanisms of action of butyrate are different and many of these involve an epigenetic regulation of gene expression through the inhibition of histone deacetylase. There is a growing interest in butyrate because its impact on epigenetic mechanisms will lead to more specific and efficacious therapeutic strategies for the prevention and treatment of different diseases ranging from genetic/metabolic conditions to neurological degenerative disorders. This review is focused on recent data regarding the epigenetic effects of butyrate with potential clinical implications in human medicine.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Pediatrics, University of Naples 'Federico II', Via S Pansini 5, Naples 80131, Italy.
| | | | | |
Collapse
|
316
|
Eelderink C, Moerdijk-Poortvliet TCW, Wang H, Schepers M, Preston T, Boer T, Vonk RJ, Schierbeek H, Priebe MG. The glycemic response does not reflect the in vivo starch digestibility of fiber-rich wheat products in healthy men. J Nutr 2012; 142:258-63. [PMID: 22223569 DOI: 10.3945/jn.111.147884] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Starchy food products differ in the rate of starch digestion, which can affect their metabolic impact. In this study, we examined how the in vivo starch digestibility is reflected by the glycemic response, because this response is often used to predict starch digestibility. Ten healthy male volunteers [age 21 ± 0.5 y, BMI 23 ± 0.6 kg/m² (mean ± SEM)] participated in a cross-over study, receiving three different meals: pasta with normal wheat bran (PA) and bread with normal (CB) or purple wheat bran (PBB). Purple wheat bran was added in an attempt to decrease the rate of starch digestion. The meals were enriched in ¹³C and the dual isotope technique was applied to calculate the rate of appearance of exogenous glucose (RaE). The ¹³C-isotopic enrichment of glucose in plasma was measured with GC/combustion/isotope ratio MS (IRMS) and liquid chromatography/IRMS. Both IRMS techniques gave similar results. Plasma glucose concentrations [2-h incremental AUC (iAUC)] did not differ between the test meals. The RaE was similar after consumption of CB and PBB, showing that purple wheat bran in bread does not affect in vivo starch digestibility. However, the iAUC of RaE after men consumed PA was less than after they consumed CB (P < 0.0001) despite the similar glucose response. To conclude, the glycemic response does not always reflect the in vivo starch digestibility. This could have implications for intervention studies in which the glycemic response is used to characterize test products.
Collapse
Affiliation(s)
- Coby Eelderink
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Evaluation of gastrointestinal transit in rats fed dietary fibres differing in their susceptibility to large intestine fermentation. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
318
|
Wang A, Si H, Liu D, Jiang H. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells. J Nutr 2012; 142:1-6. [PMID: 22113869 PMCID: PMC6498458 DOI: 10.3945/jn.111.148155] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Butyrate is a major SCFA produced by microbial fermentation of dietary fiber in the gastrointestinal tract. Butyrate is widely thought to mediate the benefits of fiber and resistant starch consumption to colon health in humans. Besides serving as a substrate for energy production, butyrate has many regulatory effects in animals. Little is known about the signaling mechanisms underlying the regulatory effects of butyrate and other SCFA. In this study, we determined whether butyrate can activate cAMP-protein kinase A (PKA)- cAMP response element (CRE)-binding protein (CREB) signaling in Caco-2 cells, a model of intestinal epithelial cells. Butyrate promoted luciferase expression from a CRE-reporter construct, induced phosphorylation of CREB, increased the activity of PKA, and elevated the levels of cAMP in Caco-2 cells. These data suggest that butyrate activates cAMP-PKA-CREB signaling in Caco-2 cells. Butyrate, however, had no effect on the activities of adenylyl cyclase (AC) and phosphodiesterase (PDE), two enzymes that determine the production and degradation of intracellular cAMP, respectively. Because the activities of AC and PDE are primarily regulated by G protein-coupled receptor (GPR)-mediated intracellular signaling, lack of an effect of butyrate on these two enzymes suggests that butyrate does not activate cAMP-PKA-CREB signaling through GPR. Butyrate-treated Caco-2 cells had greater concentrations of ATP than untreated cells. Because ATP is the substrate for cAMP production, this difference suggests that butyrate may activate cAMP-PKA-CREB signaling in Caco-2 cells through increased ATP production. Overall, this study raises the possibility that some of the regulatory effects of butyrate in animals, including those on the colonocytes, may be mediated by the cAMP-PKA-CREB signaling pathway at the cellular level.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Hongwei Si
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
319
|
Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 2012; 302:G1-9. [PMID: 22016433 PMCID: PMC3345969 DOI: 10.1152/ajpgi.00048.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.
Collapse
Affiliation(s)
- Henrike M. Hamer
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karen Windey
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
320
|
Mirmonsef P, Zariffard MR, Gilbert D, Makinde H, Landay AL, Spear GT. Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands. Am J Reprod Immunol 2011; 67:391-400. [PMID: 22059850 DOI: 10.1111/j.1600-0897.2011.01089.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PROBLEM Short-chain fatty acids (SCFAs), produced at relatively high levels by anaerobic bacteria in bacterial vaginosis (BV), are believed to be anti-inflammatory. BV, a common alteration in the genital microbiota associated with increased susceptibility to HIV infection, is characterized by increased levels of both pro-inflammatory cytokines and SCFAs. We investigated how SCFAs alone or together with Toll-like receptor (TLR) ligands affected pro-inflammatory cytokine secretion. METHOD OF STUDY Cytokines were measured by ELISA. Flow was used for phenotyping and reactive oxygen species (ROS) measurement. RESULTS Short-chain fatty acids, at 20 mM, induced interleukin (IL)-8, IL-6, and IL-1β release, while lower levels (0.02-2 mM) did not induce cytokine secretion. Levels >20 mM were toxic to cells. Interestingly, lower levels of SCFAs significantly enhanced TLR2 ligand- and TLR7 ligand-induced production of IL-8 and TNFα in a time- and dose-dependent manner, but had little effect on lipopolysaccharide-induced cytokine release. SCFAs mediated their effects on pro-inflammatory cytokine production at least in part by inducing the generation of ROS. CONCLUSION Our data suggest that SCFAs, especially when combined with specific TLR ligands, contribute to a pro-inflammatory milieu in the lower genital tract and help further our understanding of how BV affects susceptibility to microbial infections.
Collapse
Affiliation(s)
- Paria Mirmonsef
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
321
|
Kubena KS. Metabolic Syndrome in Adolescents: Issues and Opportunities. ACTA ACUST UNITED AC 2011; 111:1674-9. [DOI: 10.1016/j.jada.2011.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/02/2011] [Indexed: 01/19/2023]
|
322
|
Abstract
Caspases are aspartate-specific cysteine proteases that have an essential role in apoptosis and inflammation, and contribute to the maintenance of homeostasis in the intestine. These facts, together with the knowledge that caspases are implicated in host-microbe crosstalk, prompted us to investigate the effect of caspase (Casp)1, -3 and -7 deficiency on the composition of the murine gut microbiota. We observed significant changes in the abundance of the Firmicutes and Bacteroidetes phyla, in particular the Lachnospiraceae, Porphyromonodaceae and Prevotellacea families, when comparing Casp-1, -7 and -3 knockout mice with wild-type mice. Our data point toward an intricate relationship between these caspases and the composition of the murine gut microflora.
Collapse
|
323
|
Najbjerg H, Young JF, Bertram HC. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8994-9000. [PMID: 21786785 DOI: 10.1021/jf201489b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a (1)H NMR-based approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 trans-11), linoleic acid (C18:2), or palmitic acid (C16:0), and multivariate data analysis revealed a strong effect of fatty acid on the lipophilic metabolite fraction. Inspection of the spectra revealed that the difference between the observed responses could be ascribed to the appearance of resonances from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12:0), myristic acid (C14:0), or palmitic acid (C16:0), an effect of fatty acid length was also evident, and data indicated that short-chain fatty acids (C4-C6) are immediately converted, whereas medium-long-chain fatty acids (C12-16) are incorporated into triglycerides and deposited in the cells. In conclusion, the present study demonstrates that (1)H NMR spectroscopy is a useful method for studying the uptake of fatty acids in in vitro cells.
Collapse
Affiliation(s)
- Heidi Najbjerg
- Department of Food Science, Aarhus University, Research Centre Foulum, Tjele, Denmark
| | | | | |
Collapse
|
324
|
Chuang SC, Vermeulen R, Sharabiani MTA, Sacerdote C, Fatemeh SH, Berrino F, Krogh V, Palli D, Panico S, Tumino R, Athersuch TJ, Vineis P. The intake of grain fibers modulates cytokine levels in blood. Biomarkers 2011; 16:504-10. [PMID: 21812595 DOI: 10.3109/1354750x.2011.599042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dietary fiber may modulate the environment of the intestinal lumen, alter the intestinal microflora populations, and influence the immune response and disease risk. Epidemiological investigations have suggested that higher fiber intake is associated with lower overall mortality, in particular from cardiovascular and digestive tract diseases. Here a panel of 17 cytokines and chemokines were measured in plasma of 88 cancer-free subjects sampled within the Italian EPIC-Italy cohort. A statistically significant inverse association (p-trend = 0.01) was observed for cereal fiber and cytokines included in the main factor in factor analysis (IL-1β, IL-4, IL-5, IL-6, IL-13, and TNF-α), which alone explained 35.5% of variance. Our study suggests that fiber intake, especially cereal fiber, may be associated with a decreased level of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Conterno L, Fava F, Viola R, Tuohy KM. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? GENES & NUTRITION 2011; 6:241-60. [PMID: 21559992 PMCID: PMC3145060 DOI: 10.1007/s12263-011-0230-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/20/2011] [Indexed: 12/18/2022]
Abstract
Obesity is now considered a major public health concern globally as it predisposes to a number of chronic human diseases. Most developed countries have experienced a dramatic and significant rise in obesity since the 1980s, with obesity apparently accompanying, hand in hand, the adoption of "Western"-style diets and low-energy expenditure lifestyles around the world. Recent studies report an aberrant gut microbiota in obese subjects and that gut microbial metabolic activities, especially carbohydrate fermentation and bile acid metabolism, can impact on a number of mammalian physiological functions linked to obesity. The aim of this review is to present the evidence for a characteristic "obese-type" gut microbiota and to discuss studies linking microbial metabolic activities with mammalian regulation of lipid and glucose metabolism, thermogenesis, satiety, and chronic systemic inflammation. We focus in particular on short-chain fatty acids (SCFA) produced upon fiber fermentation in the colon. Although SCFA are reported to be elevated in the feces of obese individuals, they are also, in contradiction, identified as key metabolic regulators of the physiological checks and controls mammals rely upon to regulate energy metabolism. Most studies suggest that the gut microbiota differs in composition between lean and obese individuals and that diet, especially the high-fat low-fiber Western-style diet, dramatically impacts on the gut microbiota. There is currently no consensus as to whether the gut microbiota plays a causative role in obesity or is modulated in response to the obese state itself or the diet in obesity. Further studies, especially on the regulatory role of SCFA in human energy homeostasis, are needed to clarify the physiological consequences of an "obese-style" microbiota and any putative dietary modulation of associated disease risk.
Collapse
Affiliation(s)
- Lorenza Conterno
- Nutrition and Nutrigenomics Group, Research and Innovation Centre, FEM-IASMA, 38010, S. Michele a.A, Trento, Italy,
| | | | | | | |
Collapse
|
326
|
Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; 17:1519-28. [PMID: 21472114 PMCID: PMC3070119 DOI: 10.3748/wjg.v17.i12.1519] [Citation(s) in RCA: 893] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 02/06/2023] Open
Abstract
The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.
Collapse
|
327
|
Abstract
Antibiotics have been used effectively as a means to treat bacterial infections in humans and animals for over half a century. However, through their use, lasting alterations are being made to a mutualistic relationship that has taken millennia to evolve: the relationship between the host and its microbiota. Host-microbiota interactions are dynamic; therefore, changes in the microbiota as a consequence of antibiotic treatment can result in the dysregulation of host immune homeostasis and an increased susceptibility to disease. A better understanding of both the changes in the microbiota as a result of antibiotic treatment and the consequential changes in host immune homeostasis is imperative, so that these effects can be mitigated.
Collapse
|
328
|
Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol 2011; 14:106-14. [PMID: 21215684 DOI: 10.1016/j.mib.2010.12.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/13/2010] [Accepted: 12/13/2010] [Indexed: 12/24/2022]
Abstract
Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of 'innocuous' resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|