301
|
Vernay A, Schaub S, Guillas I, Bassilana M, Arkowitz RA. A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth. ACTA ACUST UNITED AC 2012; 198:711-30. [PMID: 22891265 PMCID: PMC3514036 DOI: 10.1083/jcb.201203099] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A gradient of PI(4,5)P2 formed by phospholipid synthesis, diffusion,
and regulated turnover is crucial for filamentous growth. Membrane lipids have been implicated in many critical cellular processes, yet
little is known about the role of asymmetric lipid distribution in cell
morphogenesis. The phosphoinositide bis-phosphate PI(4,5)P2 is
essential for polarized growth in a range of organisms. Although an asymmetric
distribution of this phospholipid has been observed in some cells, long-range
gradients of PI(4,5)P2 have not been observed. Here, we show that in
the human pathogenic fungus Candida albicans a steep,
long-range gradient of PI(4,5)P2 occurs concomitant with emergence of
the hyphal filament. Both sufficient PI(4)P synthesis and the actin cytoskeleton
are necessary for this steep PI(4,5)P2 gradient. In contrast, neither
microtubules nor asymmetrically localized mRNAs are critical. Our results
indicate that a gradient of PI(4,5)P2, crucial for filamentous
growth, is generated and maintained by the filament tip–localized
PI(4)P-5-kinase Mss4 and clearing of this lipid at the back of the cell.
Furthermore, we propose that slow membrane diffusion of PI(4,5)P2
contributes to the maintenance of such a gradient.
Collapse
Affiliation(s)
- Aurélia Vernay
- Institute of Biology Valrose, Université Nice - Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
302
|
Deretic D, Wang J. Molecular assemblies that control rhodopsin transport to the cilia. Vision Res 2012; 75:5-10. [PMID: 22892112 DOI: 10.1016/j.visres.2012.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023]
Abstract
This review will focus on the conserved molecular mechanisms for the specific targeting of rhodopsin and rhodopsin-like sensory receptors to the primary cilia. We will discuss the molecular assemblies that control the movement of rhodopsin from the central sorting station of the cell, the trans-Golgi network (TGN), into membrane-enclosed rhodopsin transport carriers (RTCs), and their delivery to the primary cilia and the cilia-derived sensory organelle, the rod outer segment (ROS). Recent studies reveal that these processes are initiated by the synergistic interaction of rhodopsin with the active form of the G-protein Arf4 and the Arf GTPase activating protein (GAP) ASAP1. During rhodopsin progression, ASAP1 serves as an activation platform that brings together the proteins necessary for transport to the cilia, including the Rab11a-Rabin8-Rab8 complex involved in ciliogenesis. These specialized molecular assemblies, through successive action of discrete modules, cooperatively determine how rhodopsin and other rhodopsin-like signaling receptors gain access to primary cilia.
Collapse
Affiliation(s)
- Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, United States.
| | | |
Collapse
|
303
|
Mahjoub MR, Stearns T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 2012; 22:1628-34. [PMID: 22840514 DOI: 10.1016/j.cub.2012.06.057] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/30/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
Abstract
The primary cilium is a nexus of cell signaling, and ciliary dysfunction is associated with polycystic kidney disease, retinal degeneration, polydactyly, neural tube defects, and obesity (ciliopathies). Signaling molecules for cilium-associated pathways are concentrated in the cilium, and this is essential for efficient signaling. Cilia are nucleated from centrioles, and aberrant centriole numbers are seen in many cancers and in some ciliopathies. We tested the effect of supernumerary centrioles on cilium function and found that cells with extra centrioles often formed more than one cilium, had reduced ciliary concentration of Smoothened in response to Sonic hedgehog stimulation, and reduced Shh pathway transcriptional activation. This ciliary dilution phenotype was also observed with the serotonin receptor Htr6, fibrocystin PKHD1, and Arl13b. The presence of extra centrioles and cilia disrupted epithelial organization in 3D spheroid culture. Cells mutant for the tuberous sclerosis gene Tsc2 also had extra cilia and diluted ciliary protein. In most cells, extra cilia were clustered and shared the same ciliary pocket, suggesting that the ciliary pocket is the rate-limiting structure for trafficking of ciliary proteins. Thus, extra centrioles and cilia disrupt signaling and may contribute to disease phenotypes.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
304
|
Kim MS, Froese CD, Xie H, Trimble WS. Uncovering principles that control septin-septin interactions. J Biol Chem 2012; 287:30406-13. [PMID: 22815479 DOI: 10.1074/jbc.m112.387464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.
Collapse
Affiliation(s)
- Moshe S Kim
- Program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
305
|
Affiliation(s)
- Nolan Beise
- Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
306
|
Szymanska K, Johnson CA. The transition zone: an essential functional compartment of cilia. Cilia 2012; 1:10. [PMID: 23352055 PMCID: PMC3555838 DOI: 10.1186/2046-2530-1-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
Recent studies of the primary cilium have begun to provide further insights into ciliary ultrastructure, with an emerging picture of complex compartmentalization and molecular components that combine in functional modules. Many proteins that are mutated in ciliopathies are localized to the transition zone, a compartment of the proximal region of the cilium. The loss of these components can disrupt ciliary functions such as the control of protein entry and exit from the cilium, the possible trafficking of essential ciliary components, and the regulation of signaling cascades and control of the cell cycle. The discovery of functional modules within the primary cilium may help in understanding the variable phenotypes and pleiotropy in ciliopathies.
Collapse
Affiliation(s)
- Katarzyna Szymanska
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St, James's University Hospital, Leeds, UK.
| | | |
Collapse
|
307
|
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012; 13:608-18. [PMID: 22653444 DOI: 10.1038/embor.2012.73] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022] Open
Abstract
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.
Collapse
|
308
|
Abstract
Cilia and flagella are membrane-sheathed, microtubule-based protrusions that decorate the surface of many eukaryotic cells. At their base, they form a selective barrier that concentrates certain proteins within the cilia but excludes others. Kee et al. (2012) now propose that nuclear pore complex proteins form a fundamental part of this diffusion barrier.
Collapse
|
309
|
Andersson ER. The role of endocytosis in activating and regulating signal transduction. Cell Mol Life Sci 2012; 69:1755-71. [PMID: 22113372 PMCID: PMC11114983 DOI: 10.1007/s00018-011-0877-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023]
Abstract
Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
310
|
Gate D, Danielpour M, Levy R, Breunig JJ, Town T. Basic biology and mechanisms of neural ciliogenesis and the B9 family. Mol Neurobiol 2012; 45:564-70. [PMID: 22644387 DOI: 10.1007/s12035-012-8276-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 11/28/2022]
Abstract
Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.
Collapse
Affiliation(s)
- David Gate
- Department of Biomedical Sciences and Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
311
|
Hsiao YC, Tuz K, Ferland RJ. Trafficking in and to the primary cilium. Cilia 2012; 1:4. [PMID: 23351793 PMCID: PMC3541539 DOI: 10.1186/2046-2530-1-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle trafficking is mediated by small GTPase proteins, such as Rabs and Arls/Arfs. These proteins have essential roles in maintaining normal cellular function, in part, through regulating intracellular trafficking. Moreover, these families of proteins have recently been implicated in the formation and function of the primary cilium. The primary cilium, which is found on almost every cell type in vertebrates, is an organelle that protrudes from the surface of the cell and functions as a signaling center. Interestingly, it has recently been linked to a variety of human diseases, collectively referred to as ciliopathies. The primary cilium has an exceptionally high density of receptors on its membrane that are important for sensing and transducing extracellular stimuli. Moreover, the primary cilium serves as a separate cellular compartment from the cytosol, providing for unique spatial and temporal regulation of signaling molecules to initiate downstream events. Thus, functional primary cilia are essential for normal signal transduction. Rabs and Arls/Arfs play critical roles in early cilia formation but are also needed for maintenance of ciliary function through their coordination with intraflagellar transport (IFT), a specialized trafficking system in primary cilia. IFT in cilia is pivotal for the proper movement of proteins into and out of this highly regulated organelle. In this review article, we explore the involvement of polarized vesicular trafficking in cilia formation and function, and discuss how defects in these processes could subsequently lead to the abnormalities observed in ciliopathies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Karina Tuz
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA
| | - Russell J Ferland
- Albany Medical College, Center for Neuropharmacology and Neuroscience, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
312
|
Abstract
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting.
Collapse
|
313
|
Sasai N, Briscoe J. Primary cilia and graded Sonic Hedgehog signaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:753-72. [PMID: 23799571 DOI: 10.1002/wdev.43] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
314
|
Arizono M, Bannai H, Nakamura K, Niwa F, Enomoto M, Matsu-Ura T, Miyamoto A, Sherwood MW, Nakamura T, Mikoshiba K. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Sci Signal 2012; 5:ra27. [PMID: 22472649 DOI: 10.1126/scisignal.2002498] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabotropic glutamate receptor (mGluR)-dependent calcium ion (Ca²+) signaling in astrocytic processes regulates synaptic transmission and local blood flow essential for brain function. However, because of difficulties in imaging astrocytic processes, the subcellular spatial organization of mGluR-dependent Ca²+ signaling is not well characterized and its regulatory mechanism remains unclear. Using genetically encoded Ca²+ indicators, we showed that despite global stimulation by an mGluR agonist, astrocyte processes intrinsically exhibited a marked enrichment of Ca²+ responses. Immunocytochemistry indicated that these polarized Ca²+ responses could be attributed to increased density of surface mGluR5 on processes relative to the soma. Single-particle tracking of surface mGluR5 dynamics revealed a membrane barrier that blocked the movement of mGluR5 between the processes and the soma. Overexpression of mGluR or expression of its carboxyl terminus enabled diffusion of mGluR5 between the soma and the processes, disrupting the polarization of mGluR5 and of mGluR-dependent Ca²+ signaling. Together, our results demonstrate an mGluR5-selective diffusion barrier between processes and soma that compartmentalized mGluR Ca²+ signaling in astrocytes and may allow control of synaptic and vascular activity in specific subcellular domains.
Collapse
Affiliation(s)
- Misa Arizono
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Gilden JK, Peck S, Chen YCM, Krummel MF. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. ACTA ACUST UNITED AC 2012; 196:103-14. [PMID: 22232702 PMCID: PMC3255977 DOI: 10.1083/jcb.201105127] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Septins assemble on the cortex and restore normal cell shape by retracting aberrantly protruding membranes and promoting cortical contraction during amoeboid motility. Increasing evidence supports a critical role for the septin cytoskeleton at the plasma membrane during physiological processes including motility, formation of dendritic spines or cilia, and phagocytosis. We sought to determine how septins regulate the plasma membrane, focusing on this cytoskeletal element’s role during effective amoeboid motility. Surprisingly, septins play a reactive rather than proactive role, as demonstrated during the response to increasing hydrostatic pressure and subsequent regulatory volume decrease. In these settings, septins were required for rapid cortical contraction, and SEPT6-GFP was recruited into filaments and circular patches during global cortical contraction and also specifically during actin filament depletion. Recruitment of septins was also evident during excessive blebbing initiated by blocking membrane trafficking with a dynamin inhibitor, providing further evidence that septins are recruited to facilitate retraction of membranes during dynamic shape change. This function of septins in assembling on an unstable cortex and retracting aberrantly protruding membranes explains the excessive blebbing and protrusion observed in septin-deficient T cells.
Collapse
Affiliation(s)
- Julia K Gilden
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
316
|
Kočevar N, Odreman F, Vindigni A, Grazio SF, Komel R. Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J Gastroenterol 2012; 18:1216-28. [PMID: 22468085 PMCID: PMC3309911 DOI: 10.3748/wjg.v18.i11.1216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To search for and validate differentially expressed proteins in patients with gastric adenocarcinoma.
METHODS: We used two-dimensional gel electrophoresis and mass spectrometry to search for differentially expressed proteins in patients with gastric adenocarcinoma. A set of proteins was validated with immunoblotting.
RESULTS: We identified 30 different proteins involved in various biological processes: metabolism, development, death, response to stress, cell cycle, cell communication, transport, and cell motility. Eight proteins were chosen for further validation by immunoblotting. Our results show that gastrokine-1, 39S ribosomal protein L12 (mitochondrial precursor), plasma cell-induced resident endoplasmic reticulum protein, and glutathione S-transferase mu 3 were significantly underexpressed in gastric adenocarcinoma relative to adjacent non-tumor tissue samples. On the other hand, septin-2, ubiquitin-conjugating enzyme E2 N, and transaldolase were significantly overexpressed. Translationally controlled tumor protein was shown to be differentially expressed only in patients with cancer of the gastric cardia/esophageal border.
CONCLUSION: This work presents a set of possible diagnostic biomarkers, validated for the first time. It might contribute to the efforts of understanding gastric cancer carcinogenesis.
Collapse
|
317
|
Hassounah NB, Bunch TA, McDermott KM. Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res 2012; 18:2429-35. [PMID: 22415315 DOI: 10.1158/1078-0432.ccr-11-0755] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abnormal Hedgehog (Hh) pathway activity has been reported in many cancers, including basal cell carcinomas, medulloblastomas, rhabdomyosarcomas, glioblastomas, and breast and prostate cancers. For this reason, the Hh pathway is a flourishing area for development of anticancer drugs such as Hh ligand antagonists (e.g., 5E1 and robotnikinin), Smo inhibitors (e.g., GDC-0449 and IPI-926), and Gli transcriptional activity inhibitors (e.g., GANT58 and GANT61). It is now clear that primary cilia are required for activation of the Hh pathway in normal vertebrate cells. It is in the primary cilium that both positive and negative effectors of the Hh pathway are processed by posttranslational modifications. In many cancers, preliminary results suggest that primary cilia are lost. As drugs that inhibit different steps of the Hh pathway are developed, it will be important to consider how these drugs will function in the context of primary cilia in the tumor environment. Here, we discuss why some of the Hh inhibitors may be ineffective if primary cilia are lost on cancer cells. Understanding the relationships between clinical inhibitors of the Hh pathway and the presence or absence of primary cilia may turn out to be critical for targeting these therapeutics to the correct population of patients and improving their efficacy. Further work is needed in this area to maximize the potential of these exciting therapeutic targets.
Collapse
Affiliation(s)
- Nadia B Hassounah
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
318
|
Czarnecki PG, Shah JV. The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol 2012; 22:201-10. [PMID: 22401885 DOI: 10.1016/j.tcb.2012.02.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
Researchers from various disciplines, including cell and developmental biology, genetics and molecular medicine, have revealed an exceptional diversity of cellular functions that are mediated by cilia-dependent mechanisms. Recent studies have directed our attention to proteins that localize to the ciliary transition zone (TZ), a small evolutionarily conserved subcompartment that is situated between the basal body (BB) and the more distal ciliary axoneme. These reports shed light on the roles of TZ proteins in ciliogenesis, ciliary protein homeostasis and specification of ciliary signaling, and pave the way for understanding their contribution to human ciliopathies. In this review, we describe the interplay of multimeric protein complexes at the TZ, integrating morphological, genetic and proteomic data towards an account of TZ function in ciliary physiology.
Collapse
Affiliation(s)
- Peter G Czarnecki
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
319
|
Ziółkowska NE, Christiano R, Walther TC. Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends Cell Biol 2012; 22:151-8. [DOI: 10.1016/j.tcb.2011.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
|
320
|
Maclean LM, O'Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, Smith DF. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol 2012; 14:740-61. [PMID: 22256896 PMCID: PMC3491706 DOI: 10.1111/j.1462-5822.2012.01756.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins of the Leishmania hydrophilic acylated surface protein B (HASPB) family are only expressed in infective parasites (both extra- and intracellular stages) and, together with the peripheral membrane protein SHERP (small hydrophilic endoplasmic reticulum-associated protein), are essential for parasite differentiation (metacyclogenesis) in the sand fly vector. HASPB is a ‘non-classically’ secreted protein, requiring N-terminal acylation for trafficking to and exposure on the plasma membrane. Here, we use live cell imaging methods to further explore this pathway to the membrane and flagellum. Unlike HASPB trafficking in transfected mammalian cells, we find no evidence for a phosphorylation-regulated recycling pathway in metacyclic parasites. Once at the plasma membrane, HASPB18–GFP (green fluorescent protein) can undergo bidirectional movement within the inner leaflet of the membrane and on the flagellum. Transfer of fluorescent protein between the flagellum and the plasma membrane is compromised, however, suggesting the presence of a diffusion barrier at the base of the Leishmania flagellum. Full-length HASPB is released from the metacyclic parasite surface on to macrophages during phagocytosis but while expression is maintained in intracellular amastigotes, HASPB cannot be detected on the external surface in these cells. Thus HASPB may be a dual function protein that is shed by the infective metacyclic but retained internally once Leishmania are taken up by macrophages.
Collapse
Affiliation(s)
- Lorna M Maclean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
321
|
Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, Pan HA, Wu CM, Su SM, Hsu CC, Kuo PL. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat 2012; 33:710-9. [PMID: 22275165 DOI: 10.1002/humu.22028] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 01/03/2012] [Indexed: 11/11/2022]
Abstract
Septins are members of the GTPase superfamily, which has been implicated in diverse cellular functions including cytokinesis and morphogenesis. Septin 12 (SEPT12) is a testis-specific gene critical for the terminal differentiation of male germ cells. We report the identification of two missense SEPT12 mutations, c.266C>T/p.Thr89Met and c.589G>A/p.Asp197Asn, in infertile men. Both mutations are located inside the GTPase domain and may alter the protein structure as suggested by in silico modeling. The p.Thr89Met mutation significantly reduced guanosine-5'-triphosphate (GTP) hydrolytic activity, and the p.Asp197Asn mutation (SEPT12(D197N)) interfered with GTP binding. Both mutant SEPT12 proteins restricted the filament formation of the wild-type SEPT12 in a dose-dependent manner. The patient carrying SEPT12(D197N) presented with oligoasthenozoospermia, whereas the SEPT12(T89M) patient had asthenoteratozoospermia. The characteristic sperm pathology of the SEPT12(D197N) patient included defective annulus with bent tail and loss of SEPT12 from the annulus of abnormal sperm. Our finding suggests loss-of-function mutations in SEPT12 disrupted sperm structural integrity by perturbing septin filament formation.
Collapse
Affiliation(s)
- Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Proteomic analysis of mammalian primary cilia. Curr Biol 2012; 22:414-9. [PMID: 22326026 DOI: 10.1016/j.cub.2012.01.031] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/16/2011] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.
Collapse
|
323
|
Abstract
Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host-microorganism interactions.
Collapse
|
324
|
Ikenouchi J, Suzuki M, Umeda K, Ikeda K, Taguchi R, Kobayashi T, Sato SB, Kobayashi T, Stolz DB, Umeda M. Lipid polarity is maintained in absence of tight junctions. J Biol Chem 2012; 287:9525-33. [PMID: 22294698 DOI: 10.1074/jbc.m111.327064] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of tight junctions (TJs) in the establishment and maintenance of lipid polarity in epithelial cells has long been a subject of controversy. We have addressed this issue using lysenin, a toxin derived from earthworms, and an influenza virus labeled with a fluorescent lipid, octadecylrhodamine B (R18). When epithelial cells are stained with lysenin, lysenin selectively binds to their apical membranes. Using an artificial liposome, we demonstrated that lysenin recognizes the membrane domains where sphingomyelins are clustered. Interestingly, lysenin selectively stained the apical membranes of epithelial cells depleted of zonula occludens proteins (ZO-deficient cells), which completely lack TJs. Furthermore, the fluorescent lipid inserted into the apical membrane by fusion with the influenza virus did not diffuse to the lateral membrane in ZO-deficient epithelial cells. This study revealed that sphingomyelin-cluster formation occurs only in the apical membrane and that lipid polarity is maintained even in the absence of TJs.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Simons M, Snaidero N, Aggarwal S. Cell polarity in myelinating glia: from membrane flow to diffusion barriers. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1146-53. [PMID: 22314181 DOI: 10.1016/j.bbalip.2012.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
Abstract
Myelin-forming glia are highly polarized cells that synthesize as an extension of their plasma membrane, a multilayered myelin membrane sheath, with a unique protein and lipid composition. In most cells polarity is established by the polarized exocytosis of membrane vesicles to the distinct plasma membrane domains. Since myelin is composed of a stack of tightly packed membrane layers that do not leave sufficient space for the vesicular trafficking, we hypothesize that myelin does not use polarized exocytosis as a primary mechanism, but rather depends on lateral transport of membrane components in the plasma membrane. We suggest a model in which vesicle-mediated transport is confined to the cytoplasmic channels, from where transport to the compacted areas occurs by lateral flow of cargo within the plasma membrane. A diffusion barrier that is formed by MBP and the two adjacent cytoplasmic leaflets of the myelin bilayers acts a molecular sieve and regulates the flow of the components. Finally, we highlight potential mechanism that may contribute to the assembly of specific lipids within myelin. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany.
| | | | | |
Collapse
|
327
|
Zent E, Vetter I, Wittinghofer A. Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol Chem 2012; 392:791-7. [PMID: 21824007 DOI: 10.1515/bc.2011.082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Septins constitute a family of conserved guanine nucleotide binding proteins found in a wide range of organisms from fungi to mammals. Members of the family share a canonical G-domain with N- and C-terminal extensions. G-domains assemble into hetero-oligomeric complexes which form non-polarised filaments or rings. Linear filaments are formed between the G-domains using either the guanine nucleotide binding site (G interface) or N- and C-terminal extensions (NC interface). Sept7 is a unique among the 13 human septins in that it occupies the ends of hexameric building blocks which assemble into non-polarised filaments. To gain insight into its particular properties we performed structural and biochemical studies on Sept7. We solved the crystal structure of a Sept7 dimer in the GDP-bound state. The structure and biochemistry of Sept7 provide new insights into the dynamics of the G interface and outline the differences in the properties of Sept7 compared to the members of group 2 septins.
Collapse
Affiliation(s)
- Eldar Zent
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | |
Collapse
|
328
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
329
|
Abstract
Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments. The cilium is a unique compartment that contains a distinct complement of protein and lipid. However, the molecular mechanisms by which soluble and membrane protein components are targeted to and trafficked into the cilium are not well understood. Cilia are generated and maintained by IFT (intraflagellar transport) in which IFT cargoes are transported along axonemal microtubules by kinesin and dynein motors. A variety of genetic, biochemical and cell biological approaches has established the heterotrimeric kinesin-2 motor as the 'core' IFT motor, whereas other members of the kinesin-2, kinesin-3 and kinesin-4 families function as 'accessory' motors for the transport of specific cargoes in diverse cell types. Motors of the kinesin-9 and kinesin-13 families play a non-IFT role in regulating ciliary beating or axonemal length, respectively. Entry of kinesin motors and their cargoes into the ciliary compartment requires components of the nuclear import machinery, specifically importin-β2 (transportin-1) and Ran-GTP (Ran bound to GTP), suggesting that similar mechanisms may regulate entry into the nuclear and ciliary compartments.
Collapse
|
330
|
Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation? ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1160-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
331
|
Drummond IA. Cilia functions in development. Curr Opin Cell Biol 2012; 24:24-30. [PMID: 22226236 DOI: 10.1016/j.ceb.2011.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
Recent advances in developmental genetics and human disease gene cloning have highlighted the essential roles played by cilia in developmental cell fate decisions, left-right asymmetry, and the pathology of human congenital disorders. Hedgehog signaling in sensory cilia illustrates the importance of trafficking receptors to the cilia membrane (Patched and Smoothened) and the concept of cilia 'gatekeepers' that restrict entry and egress of cilia proteins (Suppressor of fused: Gli complexes). Cilia-driven fluid flow in the embryonic node highlights the role of motile cilia in both generation and detection of mechanical signals in development. In this brief review I select examples of recent studies that have clarified and consolidated our understanding of the role of cilia in development.
Collapse
Affiliation(s)
- Iain A Drummond
- Nephrology Division, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, United States.
| |
Collapse
|
332
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|
333
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
334
|
Werner ME, Mitchell BJ. Understanding ciliated epithelia: the power of Xenopus. Genesis 2011; 50:176-85. [PMID: 22083727 DOI: 10.1002/dvg.20824] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/20/2023]
Abstract
Ciliated epithelia are important in a wide variety of biological contexts where they generate directed fluid flow. Here we address the fundamental advances in understanding ciliated epithelia that have been achieved using Xenopus as a model system. Xenopus embryos are covered with a ciliated epithelium that propels fluid unidirectionally across their surface. The external nature of this tissue, coupled with the molecular tools available in Xenopus and the ease of microscopic analysis on intact animals has thrust Xenopus to the forefront of ciliated epithelia biology. We discuss advances in understanding the molecular regulators of ciliated epithelia cell fate as well as basic aspects of ciliated epithelia cell biology including ciliogenesis and cell polarity.
Collapse
Affiliation(s)
- M E Werner
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60302, USA
| | | |
Collapse
|
335
|
Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc Natl Acad Sci U S A 2011; 109:203-8. [PMID: 22184246 DOI: 10.1073/pnas.1115109109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proteins segregate into discrete subcellular compartments via a variety of mechanisms, including motor protein transport, local binding, and diffusion barriers. This physical separation of cell functions serves, in part, as a mechanism for controlling compartment activity by allowing regulation of local protein concentrations. In this study we explored how soluble protein size impacts access to the confined space within the retinal photoreceptor outer segment signaling compartment and discovered a strikingly steep relationship. We find that GFP monomers, dimers, and trimers expressed transgenically in frog rods are present in the outer segment at 1.8-, 2.9-, and 6.8-fold lower abundances, relative to the cell body, than the small soluble fluorescent marker, calcein. Theoretical analysis, based on statistical-mechanical models of molecular access to polymer meshes, shows that these observations can be explained by the steric hindrance of molecules occupying the highly constrained spaces between outer segment disc membranes. This mechanism may answer a long-standing question of how the soluble regulatory protein, arrestin, is effectively excluded from the outer segments of dark-adapted rods and cones. Generally, our results suggest an alternate mode for the control of protein access to cell domains based on dynamic, size-dependent compartmental partitioning that does not require diffusion barriers, active transport, or large numbers of immobile binding sites.
Collapse
|
336
|
A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 2011; 14:61-72. [PMID: 22179047 DOI: 10.1038/ncb2410] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia. The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.
Collapse
|
337
|
Avasthi P, Marshall WF. Stages of ciliogenesis and regulation of ciliary length. Differentiation 2011; 83:S30-42. [PMID: 22178116 DOI: 10.1016/j.diff.2011.11.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.
Collapse
Affiliation(s)
- Prachee Avasthi
- Department of Biochemistry & Biophysics, University of California GH-N372F Genentech Hall, Box 2200, UCSF, 600 16th St. San Francisco, CA 94158, USA
| | | |
Collapse
|
338
|
The ciliary transitional zone and nephrocystins. Differentiation 2011; 83:S91-6. [PMID: 22169048 DOI: 10.1016/j.diff.2011.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 01/13/2023]
Abstract
Loss of cilia and ciliary protein causes various abnormalities (called ciliopathy), including situs inversus, renal cystic diseases, polydactyly and dysgenesis of the nervous system. Renal cystic diseases are the most frequently observed symptoms in ciliopathies. Cilia are microtubule-based organelles with the following regions: a ciliary tip, shaft, transitional zone and basal body/mother centriole. Joubert syndrome (JBTS), Meckel Gruber syndrome (MKS) and Nephronophthisis (NPHP) are overlapping syndromes. Recent studies show that JBST and MKS responsible gene products are localized in the transitional zone of the cilia, where they function as a diffusion barrier, and control protein sorting and ciliary membrane composition. Nephrocystins are gene products of NPHP responsible genes, and at least 11 genes have been identified. Although some nephrocystins interact with JBST and MKS proteins, proteomic analysis suggests that they do not form a single complex. Localization analysis reveals that nephrocystins can be divided into two groups. Group I nephrocystins are localized in the transitional zone, whereas group II nephrocystins are localized in the Inv compartment. Homologs of group I nephrocystins, but not group II nephrocystins, have been reported in C. reinhardtii and C. elegans. In this review, we summarize the structure of the ciliary base of C. reinhardtii, C. elegans and mammalian primary cilia, and discuss function of nephrocystins. We also propose a new classification of nephrocystins.
Collapse
|
339
|
Garcia G, Bertin A, Li Z, Song Y, McMurray MA, Thorner J, Nogales E. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. ACTA ACUST UNITED AC 2011; 195:993-1004. [PMID: 22144691 PMCID: PMC3241732 DOI: 10.1083/jcb.201107123] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substitution of specific terminal subunits within septin complexes and septin phosphorylation drive the formation of distinct higher-order septin assemblies in budding yeast. Septins are conserved guanosine triphosphate–binding cytoskeletal proteins involved in membrane remodeling. In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1), which are essential for cytokinesis, transition during bud growth from a patch to a collar, which splits into two rings in cytokinesis and is disassembled before the next cell cycle. Cdc3, Cdc10, Cdc11, and Cdc12 form an apolar octameric rod with Cdc11 at each tip, which polymerizes into straight paired filaments. We show that Shs1 substitutes for Cdc11, resulting in octameric rods that do not polymerize into filaments but associate laterally, forming curved bundles that close into rings. In vivo, half of shs1Δ mutant cells exhibit incomplete collars and disrupted neck filaments. Importantly, different phosphomimetic mutations in Shs1 can either prevent ring formation or promote formation of a gauzelike meshwork. These results show that a single alternative terminal subunit is sufficient to confer a distinctive higher-order septin ultrastructure that can be further regulated by phosphorylation.
Collapse
Affiliation(s)
- Galo Garcia
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
340
|
Abstract
The exchange of substances between higher organisms and the environment occurs across transporting epithelia whose basic features are tight junctions (TJs) that seal the intercellular space, and polarity, which enables cells to transport substances vectorially. In a previous study, we demonstrated that 10 nM ouabain modulates TJs, and we now show that it controls polarity as well. We gauge polarity through the development of a cilium at the apical domain of Madin-Darby canine kidney cells (MDCK, epithelial dog kidney). Ouabain accelerates ciliogenesis in an ERK1/2-dependent manner. Claudin-2, a molecule responsible for the Na(+) and H(2)O permeability of the TJs, is also present at the cilium, as it colocalizes and coprecipitates with acetylated α-tubulin. Ouabain modulates claudin-2 localization at the cilium through ERK1/2. Comparing wild-type and ouabain-resistant MDCK cells, we show that ouabain acts through Na(+),K(+)-ATPase. Taken together, our previous and present results support the possibility that ouabain constitutes a hormone that modulates the transporting epithelial phenotype, thereby playing a crucial role in metazoan life.
Collapse
|
341
|
Novarino G, Akizu N, Gleeson JG. Modeling human disease in humans: the ciliopathies. Cell 2011; 147:70-9. [PMID: 21962508 DOI: 10.1016/j.cell.2011.09.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Indexed: 11/26/2022]
Abstract
Soon, the genetic basis of most human Mendelian diseases will be solved. The next challenge will be to leverage this information to uncover basic mechanisms of disease and develop new therapies. To understand how this transformation is already beginning to unfold, we focus on the ciliopathies, a class of multi-organ diseases caused by disruption of the primary cilium. Through a convergence of data involving mutant gene discovery, proteomics, and cell biology, more than a dozen phenotypically distinguishable conditions are now united as ciliopathies. Sitting at the interface between simple and complex genetic conditions, these diseases provide clues to the future direction of human genetics.
Collapse
Affiliation(s)
- Gaia Novarino
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
342
|
Hall PA, Russell SEH. Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J Pathol 2011; 226:287-99. [PMID: 21990096 DOI: 10.1002/path.3024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 02/06/2023]
Abstract
The septins are a family of GTP-binding proteins, evolutionarily conserved from yeast through to mammals, with roles in multiple core cellular functions. Here we provide an overview of our current knowledge of septin structure and function and focus mainly on mammalian septins, but gain much insight by drawing on knowledge of septins in other organisms. We describe their genomic and transcriptional complexity: a complexity manifest also in the diversity of scaffold structures that septins can form. Septin complexes can act to localize interacting proteins at specific intracellular locales and can also define membrane compartments by defining diffusion barriers. By such activities, septins can contribute to the definition of spatial asymmetry and cell polarity and we suggest a potential role in stem cell biology. Finally, we review the evidence that septins contribute to various disease states and argue that it is a breakdown in the tight regulation of their expression (particularly of individual isoforms), and also their inherent ability to oligomerize, which is pathogenic. Study of the perturbation of septin complex formation in disease will provide valuable insights into septin biology and will be a fertile ground for study.
Collapse
Affiliation(s)
- Peter A Hall
- Department of Molecular Oncology and Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | |
Collapse
|
343
|
|
344
|
Serrão VHB, Alessandro F, Caldas VEA, Marçal RL, Pereira HD, Thiemann OH, Garratt RC. Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 2011; 585:3868-73. [PMID: 22064074 DOI: 10.1016/j.febslet.2011.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/21/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
We describe the purification, crystallization and structure for the GTP-binding domain of human septin 7 (SEPT7G). We show that it forms filaments within the crystal lattice which employ both the G and NC interfaces, similar to those seen in the hetero-filament of SEPT2/6/7. The NC interface is considered promiscuous as it is absent from the hetero-filament. Such promiscuity could provide the potential for permuting monomers along a filament in order to generate diversity in hetero-polymers. On the other hand, our results suggest that the G and NC interfaces may be necessary but insufficient for determining correct hetero-filament assembly.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
345
|
Farnum CE, Wilsman NJ. Axonemal positioning and orientation in three-dimensional space for primary cilia: what is known, what is assumed, and what needs clarification. Dev Dyn 2011; 240:2405-31. [PMID: 22012592 PMCID: PMC3278774 DOI: 10.1002/dvdy.22756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two positional characteristics of the ciliary axoneme--its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional (3D) space--are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
346
|
The emerging functions of septins in metazoans. EMBO Rep 2011; 12:1118-26. [PMID: 21997296 DOI: 10.1038/embor.2011.193] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Septins form a subfamily of highly related GTP-binding proteins conserved from eukaryotic protists to mammals. In most cases, septins function in close association with cell membranes and the actin and microtubule cytoskeleton to regulate a wide variety of key cellular processes. Further underscoring their importance, septin abnormalities are associated with several human diseases. Remarkably, septins have the ability to polymerize into assemblies of different sizes in vitro and in vivo. In cells, these structures act in the formation of diffusion barriers and scaffolds that maintain subcellular polarity. Here, we focus on the emerging roles of vertebrate septins in ciliogenesis, neurogenesis, tumorigenesis and host-pathogen interactions, and discuss whether unifying themes underlie the molecular function of septins in health and disease.
Collapse
|
347
|
Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev 2011; 79:4-18. [PMID: 22031228 DOI: 10.1002/mrd.21393] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/23/2011] [Indexed: 11/11/2022]
Abstract
Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems.
Collapse
Affiliation(s)
- Mariano G Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
348
|
Mimori-Kiyosue Y. Shaping microtubules into diverse patterns: molecular connections for setting up both ends. Cytoskeleton (Hoboken) 2011; 68:603-18. [PMID: 22021191 DOI: 10.1002/cm.20540] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/17/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
Microtubules serve as rails for intracellular trafficking and their appropriate organization is critical for the generation of cell polarity, which is a foundation of cell differentiation, tissue morphogenesis, ontogenesis and the maintenance of homeostasis. The microtubule array is not just a static railway network; it undergoes repeated collapse and reassembly in diverse patterns during cell morphogenesis. In the last decade much progress has been made toward understanding the molecular mechanisms governing complex microtubule patterning. This review first revisits the basic principle of microtubule dynamics, and then provides an overview of how microtubules are arranged in highly shaped and functional patterns in cells changing their morphology by factors controlling the fate of microtubule ends.
Collapse
Affiliation(s)
- Yuko Mimori-Kiyosue
- Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe Institute, Kobe, Hyogo, Japan.
| |
Collapse
|
349
|
Abstract
Eukaryotic cilia and flagella perform motility and sensory functions which are essential for cell survival in protozoans, and to organism development and homoeostasis in metazoans. Their ultrastructure has been studied from the early beginnings of electron microscopy, and these studies continue to contribute to much of our understanding about ciliary biology. In the light of the progress made in the visualization of cellular structures over the last decade, we revisit the ultrastructure of cilia and flagella. We briefly describe the typical features of a 9+2 axoneme before focusing extensively on the transition zone, the ciliary necklace, the singlet zone, the ciliary cap and the ciliary crown. We discuss how the singlet zone is linked to sensory and/or motile function, the contribution of the ciliary crown to ovocyte and mucosal propulsion, and the relationship between the ciliary cap and microtubule growth and shortening, and its relation to ciliary beat. We further examine the involvement of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier.
Collapse
|
350
|
Abstract
A recent report suggests that plasma membrane proteins are excluded from primary cilia via anchoring to the cortical actin cytoskeleton. These findings challenge the existence of a diffusion barrier at the base of the cilium.
Collapse
Affiliation(s)
- David K Breslow
- Stanford University School of Medicine, Department of Molecular and Cellular Physiology, Stanford, CA 94305-5345, USA
| | | |
Collapse
|