301
|
Teleman J, Chawade A, Sandin M, Levander F, Malmström J. Dinosaur: A Refined Open-Source Peptide MS Feature Detector. J Proteome Res 2016; 15:2143-51. [PMID: 27224449 PMCID: PMC4933939 DOI: 10.1021/acs.jproteome.6b00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
In bottom-up mass spectrometry (MS)-based
proteomics, peptide isotopic
and chromatographic traces (features) are frequently used for label-free
quantification in data-dependent acquisition MS but can also be used
for the improved identification of chimeric spectra or sample complexity
characterization. Feature detection is difficult because of the high
complexity of MS proteomics data from biological samples, which frequently
causes features to intermingle. In addition, existing feature detection
algorithms commonly suffer from compatibility issues, long computation
times, or poor performance on high-resolution data. Because of these
limitations, we developed a new tool, Dinosaur, with increased speed
and versatility. Dinosaur has the functionality to sample algorithm
computations through quality-control plots, which we call a plot trail.
From the evaluation of this plot trail, we introduce several algorithmic
improvements to further improve the robustness and performance of
Dinosaur, with the detection of features for 98% of MS/MS identifications
in a benchmark data set, and no other algorithm tested in this study
passed 96% feature detection. We finally used Dinosaur to reimplement
a published workflow for peptide identification in chimeric spectra,
increasing chimeric identification from 26% to 32% over the standard
workflow. Dinosaur is operating-system-independent and is freely available
as open source on https://github.com/fickludd/dinosaur.
Collapse
Affiliation(s)
- Johan Teleman
- Department of Immunotechnology, Lund University , 223 83 Lund, Sweden.,Department of Clinical Sciences Lund, Lund University , 221 00 Lund, Sweden
| | - Aakash Chawade
- Department of Immunotechnology, Lund University , 223 83 Lund, Sweden
| | - Marianne Sandin
- Department of Immunotechnology, Lund University , 223 83 Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University , 223 83 Lund, Sweden.,Bioinformatics Infrastructure for Life Sciences (BILS), Lund University , 223 83 Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences Lund, Lund University , 221 00 Lund, Sweden
| |
Collapse
|
302
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
303
|
Faini M, Stengel F, Aebersold R. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:966-974. [PMID: 27056566 PMCID: PMC4867889 DOI: 10.1007/s13361-016-1382-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland.
- Faculty of Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
304
|
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene 2016; 589:27-35. [PMID: 27170550 DOI: 10.1016/j.gene.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.
Collapse
Affiliation(s)
- Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
305
|
Abstract
Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.
Collapse
|
306
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
307
|
Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch Biochem Biophys 2016; 602:95-105. [PMID: 26968773 DOI: 10.1016/j.abb.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.
Collapse
|
308
|
Potluri P, Procaccio V, Scheffler IE, Wallace DC. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1336-1343. [PMID: 26946086 DOI: 10.1016/j.bbabio.2016.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Procaccio
- Dépt. de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Immo E Scheffler
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
309
|
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P, Hauryliuk V. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 2016; 6:18749. [PMID: 26728900 PMCID: PMC4700529 DOI: 10.1038/srep18749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system’s components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Ksenia Derbikova
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stoyan Tankov
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| |
Collapse
|
310
|
Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends Biochem Sci 2016; 41:20-32. [DOI: 10.1016/j.tibs.2015.10.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/18/2015] [Accepted: 10/29/2015] [Indexed: 01/30/2023]
|
311
|
Trahan C, Oeffinger M. Targeted cross-linking-mass spectrometry determines vicinal interactomes within heterogeneous RNP complexes. Nucleic Acids Res 2015; 44:1354-69. [PMID: 26657640 PMCID: PMC4756821 DOI: 10.1093/nar/gkv1366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Proteomic and RNomic approaches have identified many components of different ribonucleoprotein particles (RNPs), yet still little is known about the organization and protein proximities within these heterogeneous and highly dynamic complexes. Here we describe a targeted cross-linking approach, which combines cross-linking from a known anchor site with affinity purification and mass spectrometry (MS) to identify the changing vicinity interactomes along RNP maturation pathways. Our method confines the reaction radius of a heterobifunctional cross-linker to a specific interaction surface, increasing the probability to capture low abundance conformations and transient vicinal interactors too infrequent for identification by traditional cross-linking-MS approaches, and determine protein proximities within RNPs. Applying the method to two conserved RNA-associated complexes in Saccharomyces cerevisae, the mRNA export receptor Mex67:Mtr2 and the pre-ribosomal Nop7 subcomplex, we identified dynamic vicinal interactomes within those complexes and along their changing pathway milieu. Our results therefore show that this method provides a new tool to study the changing spatial organization of heterogeneous dynamic RNP complexes.
Collapse
Affiliation(s)
- Christian Trahan
- Department for Systems Biology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Département de biochimie, Faculté de médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Marlene Oeffinger
- Department for Systems Biology, Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Département de biochimie, Faculté de médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
312
|
Liu F, Heck AJR. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol 2015; 35:100-8. [DOI: 10.1016/j.sbi.2015.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/28/2023]
|
313
|
|
314
|
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Mol Cell 2015; 61:3-14. [PMID: 26585390 DOI: 10.1016/j.molcel.2015.10.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany; Center for integrated Protein Science Munich, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
315
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
316
|
Richter-Dennerlein R, Dennerlein S, Rehling P. Integrating mitochondrial translation into the cellular context. Nat Rev Mol Cell Biol 2015; 16:586-92. [PMID: 26535422 DOI: 10.1038/nrm4051] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial-encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes.
Collapse
|
317
|
Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, Follman D, Wang J, Cai Y, Goldfeder LC, Olivier KN, Xie Y, Via LE, Cho SN, Barry CE, Chen RY. Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. EBioMedicine 2015; 2:1627-33. [PMID: 26870788 PMCID: PMC4740314 DOI: 10.1016/j.ebiom.2015.09.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Long-term linezolid use is limited by mitochondrial toxicity-associated adverse events (AEs). Within a prospective, randomized controlled trial of linezolid to treat chronic extensively drug-resistant tuberculosis, we serially monitored the translational competence of mitochondria isolated from peripheral blood of participants by determining the cytochrome c oxidase/citrate synthase activity ratio. We compared this ratio with AEs associated with mitochondrial dysfunction. Linezolid trough concentrations were determined for 38 participants at both 600 mg and 300 mg doses. Those on 600 mg had a significantly higher risk of AE than those on 300 mg (HR 3·10, 95% CI 1·23-7 · 86). Mean mitochondrial function levels were significantly higher in patients before starting linezolid compared to their concentrations on 300 mg (P = 0·004) or 600 mg (P < 0·0001). Increasing mean linezolid trough concentrations were associated with lower mitochondrial function levels (Spearman's ρ = - 0.48; P = 0.005). Mitochondrial toxicity risk increased with increasing linezolid trough concentrations, with all patients with mean linezolid trough > 2 μg/ml developing an AE related to mitochondrial toxicity, whether on 300 mg or 600 mg. Therapeutic drug monitoring may be useful to prevent the development of mitochondrial toxicity associated with long-term linezolid use.
Collapse
Affiliation(s)
- Taeksun Song
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Myungsun Lee
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Han-Seung Jeon
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Yumi Park
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Lori E. Dodd
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, Newark, NJ, USA
| | - Dean Follman
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wang
- Clinical Research Directorate, Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ying Cai
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa C. Goldfeder
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingda Xie
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, Republic of South Africa
| | - Sang Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, Republic of South Africa
| | - Ray Y. Chen
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
318
|
Passos DO, Lyumkis D. Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits. J Struct Biol 2015; 192:235-44. [PMID: 26470814 DOI: 10.1016/j.jsb.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022]
Abstract
A single-particle cryoEM reconstruction of the large ribosomal subunit from Saccharomyces cerevisiae was obtained from a dataset of ∼75,000 particles. The gold-standard and frequency-limited approaches to single-particle refinement were each independently used to determine orientation parameters for the final reconstruction. Both approaches showed similar resolution curves and nominal resolution values for the 60S dataset, estimated at 2.9 Å. The amount of over-fitting present during frequency-limited refinement was quantitatively analyzed using the high-resolution phase-randomization test, and the results showed no apparent over-fitting. The number of asymmetric subunits required to reach specific resolutions was subsequently analyzed by refining subsets of the data in an ab initio manner. With our data collection and processing strategies, sub-nanometer resolution was obtained with ∼200 asymmetric subunits (or, equivalently for the ribosomal subunit, particles). Resolutions of 5.6 Å, 4.5 Å, and 3.8 Å were reached with ∼1000, ∼1600, and ∼5000 asymmetric subunits, respectively. At these resolutions, one would expect to detect alpha-helical pitch, separation of beta-strands, and separation of Cα atoms, respectively. Using this map, together with strategies for ab initio model building and model refinement, we built a region of the ribosomal protein eL6, which was missing in previous models of the yeast ribosome. The relevance for more routine high-resolution structure determination is discussed.
Collapse
Affiliation(s)
- Dario Oliveira Passos
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
319
|
Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie 2015; 117:48-62. [DOI: 10.1016/j.biochi.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
|
320
|
Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MEDCHEMCOMM 2015; 7:11-27. [PMID: 26877861 DOI: 10.1039/c5md00344j] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.
Collapse
Affiliation(s)
- Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. ; Tel: 859-218-1686
| | - Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI, USA. ; Tel: 608-363-2273
| |
Collapse
|
321
|
Impaired mitochondrial protein synthesis in head and neck squamous cell carcinoma. Mitochondrion 2015; 24:113-21. [DOI: 10.1016/j.mito.2015.07.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
|
322
|
Matsushita T, Chen W, Juskeviciene R, Teo Y, Shcherbakov D, Vasella A, Böttger EC, Crich D. Influence of 4'-O-Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. J Am Chem Soc 2015; 137:7706-17. [PMID: 26024064 DOI: 10.1021/jacs.5b02248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of 20 4'-O-glycosides of the aminoglycoside antibiotic paromomycin were synthesized and evaluated for their ability to inhibit protein synthesis by bacterial, mitochondrial and cytosolic ribosomes. Target selectivity, i.e., inhibition of the bacterial ribosome over eukaryotic mitochondrial and cytosolic ribosomes, which is predictive of antibacterial activity with reduced ototoxicity and systemic toxicity, was greater for the equatorial than for the axial pyranosides, and greater for the d-pentopyranosides than for the l-pentopyranosides and d-hexopyranosides. In particular, 4'-O-β-d-xylopyranosyl paromomycin shows antibacterioribosomal activity comparable to that of paromomycin, but is significantly more selective showing considerably reduced affinity for the cytosolic ribosome and for the A1555G mutant mitochondrial ribosome associated with hypersusceptibility to drug-induced ototoxicity. Compound antibacterioribosomal activity correlates with antibacterial activity, and the ribosomally more active compounds show activity against Escherichia coli, Klebsiella pneumonia, Enterobacter cloacae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). The paromomycin glycosides retain activity against clinical strains of MRSA that are resistant to paromomycin, which is demonstrated to be a consequence of 4'-O-glycosylation blocking the action of 4'-aminoglycoside nucleotidyl transferases by the use of recombinant E. coli carrying the specific resistance determinant.
Collapse
Affiliation(s)
- Takahiko Matsushita
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Weiwei Chen
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Reda Juskeviciene
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Youjin Teo
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Dimitri Shcherbakov
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Andrea Vasella
- §Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C Böttger
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
323
|
Cannone JJ, Sweeney BA, Petrov AI, Gutell RR, Zirbel CL, Leontis N. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server. Nucleic Acids Res 2015; 43:W15-23. [PMID: 26048960 PMCID: PMC4489222 DOI: 10.1093/nar/gkv543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 01/01/2023] Open
Abstract
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.
Collapse
Affiliation(s)
- Jamie J Cannone
- Institute for Cellular and Molecular Biology, and the Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Blake A Sweeney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Anton I Petrov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Robin R Gutell
- Institute for Cellular and Molecular Biology, and the Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Neocles Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
324
|
|